Fast and Robust Non-Rigid Registration Using Accelerated Majorization-Minimization

Non-rigid 3D registration, which deforms a source 3D shape in a non-rigid way to align with a target 3D shape, is a classical problem in computer vision. Such problems can be challenging because of imperfect data (noise, outliers and partial overlap) and high degrees of freedom. Existing methods typ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on pattern analysis and machine intelligence Ročník 45; číslo 8; s. 9681 - 9698
Hlavní autoři: Yao, Yuxin, Deng, Bailin, Xu, Weiwei, Zhang, Juyong
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Non-rigid 3D registration, which deforms a source 3D shape in a non-rigid way to align with a target 3D shape, is a classical problem in computer vision. Such problems can be challenging because of imperfect data (noise, outliers and partial overlap) and high degrees of freedom. Existing methods typically adopt the <inline-formula><tex-math notation="LaTeX">\ell _{p}</tex-math> <mml:math><mml:msub><mml:mi>ℓ</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="zhang-ieq1-3247603.gif"/> </inline-formula> type robust norm to measure the alignment error and regularize the smoothness of deformation, and use a proximal algorithm to solve the resulting non-smooth optimization problem. However, the slow convergence of such algorithms limits their wide applications. In this paper, we propose a formulation for robust non-rigid registration based on a globally smooth robust norm for alignment and regularization, which can effectively handle outliers and partial overlaps. The problem is solved using the majorization-minimization algorithm, which reduces each iteration to a convex quadratic problem with a closed-form solution. We further apply Anderson acceleration to speed up the convergence of the solver, enabling the solver to run efficiently on devices with limited compute capability. Extensive experiments demonstrate the effectiveness of our method for non-rigid alignment between two shapes with outliers and partial overlaps, with quantitative evaluation showing that it outperforms state-of-the-art methods in terms of registration accuracy and computational speed. The source code is available at https://github.com/yaoyx689/AMM_NRR .
AbstractList Non-rigid 3D registration, which deforms a source 3D shape in a non-rigid way to align with a target 3D shape, is a classical problem in computer vision. Such problems can be challenging because of imperfect data (noise, outliers and partial overlap) and high degrees of freedom. Existing methods typically adopt the <inline-formula><tex-math notation="LaTeX">\ell _{p}</tex-math> <mml:math><mml:msub><mml:mi>ℓ</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:math><inline-graphic xlink:href="zhang-ieq1-3247603.gif"/> </inline-formula> type robust norm to measure the alignment error and regularize the smoothness of deformation, and use a proximal algorithm to solve the resulting non-smooth optimization problem. However, the slow convergence of such algorithms limits their wide applications. In this paper, we propose a formulation for robust non-rigid registration based on a globally smooth robust norm for alignment and regularization, which can effectively handle outliers and partial overlaps. The problem is solved using the majorization-minimization algorithm, which reduces each iteration to a convex quadratic problem with a closed-form solution. We further apply Anderson acceleration to speed up the convergence of the solver, enabling the solver to run efficiently on devices with limited compute capability. Extensive experiments demonstrate the effectiveness of our method for non-rigid alignment between two shapes with outliers and partial overlaps, with quantitative evaluation showing that it outperforms state-of-the-art methods in terms of registration accuracy and computational speed. The source code is available at https://github.com/yaoyx689/AMM_NRR .
Non-rigid 3D registration, which deforms a source 3D shape in a non-rigid way to align with a target 3D shape, is a classical problem in computer vision. Such problems can be challenging because of imperfect data (noise, outliers and partial overlap) and high degrees of freedom. Existing methods typically adopt the [Formula Omitted] type robust norm to measure the alignment error and regularize the smoothness of deformation, and use a proximal algorithm to solve the resulting non-smooth optimization problem. However, the slow convergence of such algorithms limits their wide applications. In this paper, we propose a formulation for robust non-rigid registration based on a globally smooth robust norm for alignment and regularization, which can effectively handle outliers and partial overlaps. The problem is solved using the majorization-minimization algorithm, which reduces each iteration to a convex quadratic problem with a closed-form solution. We further apply Anderson acceleration to speed up the convergence of the solver, enabling the solver to run efficiently on devices with limited compute capability. Extensive experiments demonstrate the effectiveness of our method for non-rigid alignment between two shapes with outliers and partial overlaps, with quantitative evaluation showing that it outperforms state-of-the-art methods in terms of registration accuracy and computational speed. The source code is available at https://github.com/yaoyx689/AMM_NRR .
Non-rigid 3D registration, which deforms a source 3D shape in a non-rigid way to align with a target 3D shape, is a classical problem in computer vision. Such problems can be challenging because of imperfect data (noise, outliers and partial overlap) and high degrees of freedom. Existing methods typically adopt the l type robust norm to measure the alignment error and regularize the smoothness of deformation, and use a proximal algorithm to solve the resulting non-smooth optimization problem. However, the slow convergence of such algorithms limits their wide applications. In this paper, we propose a formulation for robust non-rigid registration based on a globally smooth robust norm for alignment and regularization, which can effectively handle outliers and partial overlaps. The problem is solved using the majorization-minimization algorithm, which reduces each iteration to a convex quadratic problem with a closed-form solution. We further apply Anderson acceleration to speed up the convergence of the solver, enabling the solver to run efficiently on devices with limited compute capability. Extensive experiments demonstrate the effectiveness of our method for non-rigid alignment between two shapes with outliers and partial overlaps, with quantitative evaluation showing that it outperforms state-of-the-art methods in terms of registration accuracy and computational speed. The source code is available at https://github.com/yaoyx689/AMM_NRR.
Non-rigid 3D registration, which deforms a source 3D shape in a non-rigid way to align with a target 3D shape, is a classical problem in computer vision. Such problems can be challenging because of imperfect data (noise, outliers and partial overlap) and high degrees of freedom. Existing methods typically adopt the lp type robust norm to measure the alignment error and regularize the smoothness of deformation, and use a proximal algorithm to solve the resulting non-smooth optimization problem. However, the slow convergence of such algorithms limits their wide applications. In this paper, we propose a formulation for robust non-rigid registration based on a globally smooth robust norm for alignment and regularization, which can effectively handle outliers and partial overlaps. The problem is solved using the majorization-minimization algorithm, which reduces each iteration to a convex quadratic problem with a closed-form solution. We further apply Anderson acceleration to speed up the convergence of the solver, enabling the solver to run efficiently on devices with limited compute capability. Extensive experiments demonstrate the effectiveness of our method for non-rigid alignment between two shapes with outliers and partial overlaps, with quantitative evaluation showing that it outperforms state-of-the-art methods in terms of registration accuracy and computational speed. The source code is available at https://github.com/yaoyx689/AMM_NRR.Non-rigid 3D registration, which deforms a source 3D shape in a non-rigid way to align with a target 3D shape, is a classical problem in computer vision. Such problems can be challenging because of imperfect data (noise, outliers and partial overlap) and high degrees of freedom. Existing methods typically adopt the lp type robust norm to measure the alignment error and regularize the smoothness of deformation, and use a proximal algorithm to solve the resulting non-smooth optimization problem. However, the slow convergence of such algorithms limits their wide applications. In this paper, we propose a formulation for robust non-rigid registration based on a globally smooth robust norm for alignment and regularization, which can effectively handle outliers and partial overlaps. The problem is solved using the majorization-minimization algorithm, which reduces each iteration to a convex quadratic problem with a closed-form solution. We further apply Anderson acceleration to speed up the convergence of the solver, enabling the solver to run efficiently on devices with limited compute capability. Extensive experiments demonstrate the effectiveness of our method for non-rigid alignment between two shapes with outliers and partial overlaps, with quantitative evaluation showing that it outperforms state-of-the-art methods in terms of registration accuracy and computational speed. The source code is available at https://github.com/yaoyx689/AMM_NRR.
Author Deng, Bailin
Yao, Yuxin
Xu, Weiwei
Zhang, Juyong
Author_xml – sequence: 1
  givenname: Yuxin
  orcidid: 0000-0002-5410-0782
  surname: Yao
  fullname: Yao, Yuxin
  email: yaoyuxin@mail.ustc.edu.cn
  organization: School of Mathematical Sciences, University of Science and Technology of China, Hefei, China
– sequence: 2
  givenname: Bailin
  orcidid: 0000-0002-0158-7670
  surname: Deng
  fullname: Deng, Bailin
  email: dengb3@cardiff.ac.uk
  organization: School of Computer Science and Informatics, Cardiff University, Cardiff, U.K
– sequence: 3
  givenname: Weiwei
  surname: Xu
  fullname: Xu, Weiwei
  email: xww@cad.zju.edu.cn
  organization: Department of Computer science, State Key Lab of CAD & CG, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Juyong
  orcidid: 0000-0002-1805-1426
  surname: Zhang
  fullname: Zhang, Juyong
  email: juyong@ustc.edu.cn
  organization: School of Mathematical Sciences, University of Science and Technology of China, Hefei, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37027610$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFrGzEQhUVIie0kf6CUstBLL-uORutd6WhC0xrspDjJWWi1s0bGltLV7iH99VVsB0oOPUkafW-YeW_Czn3wxNhHDlPOQX17_DVfLaYIKKYCi6oEccbGyEvIFSo8Z2PgJeZSohyxSYxbAF7MQFywkagAq5LDmK1vTewz45tsHeohXe-Cz9du41KBNi72neld8NlTdH6Tza2lHaUSNdnKbEPn_hy-85Xzbn96XLEPrdlFuj6dl-zh9vvjzc98ef9jcTNf5lbMsM9Jtbxp0WBNhbVtbVRjjUEhoDWF4ZKMqKWpK2ol1ljxVnFlLRQNillJ4pJ9PXZ97sLvgWKv9y6m6XbGUxiixkrJKtnERUK_vEO3Yeh8mk2jFHwGkkOZqM8naqj31Ojnzu1N96LfvEqAPAK2CzF21Grr-sPGySS30xz0ayz6EIt-jUWfYklSfCd96_5f0aejyBHRPwIoVIWF-AuvG5jy
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126524
crossref_primary_10_1016_j_knosys_2023_111280
crossref_primary_10_3390_aerospace11100859
crossref_primary_10_1109_TPAMI_2025_3560297
crossref_primary_10_1111_cgf_15230
crossref_primary_10_1111_cgf_70035
crossref_primary_10_1016_j_cag_2024_103972
crossref_primary_10_1109_TCSVT_2024_3447044
crossref_primary_10_1016_j_dsp_2025_105545
crossref_primary_10_1093_bjr_tqae067
Cites_doi 10.1109/CVPR42600.2020.00496
10.1145/1399504.1360696
10.1111/cgf.14502
10.1109/TSP.2014.2388434
10.1142/S1793536911000829
10.1109/ICME.2019.00061
10.1109/CVPR.2015.7299115
10.1145/3355089.3356491
10.1145/1516522.1516526
10.1002/nla.617
10.1109/CVPR.2014.491
10.1111/cgf.12699
10.1109/TIP.2019.2909197
10.1007/978-3-642-15558-1_26
10.1145/2517967
10.1145/321296.321305
10.1109/TPAMI.2010.223
10.1080/03610927708827533
10.1109/TVCG.2018.2832136
10.1145/3197517.3201290
10.1109/CVPR.2018.00761
10.1137/130919398
10.1007/s00371-019-01670-1
10.1002/cpa.20303
10.1109/ICCV.2015.353
10.1109/CVPR.2011.5995438
10.1145/2601097.2601165
10.1137/1.9781611974409
10.1109/TPAMI.2022.3164653
10.1109/CVPR42600.2020.00142
10.1109/ICCV.2009.5459161
10.1137/19M1245384
10.1109/CVPR.2015.7298631
10.1111/j.1467-8659.2008.01282.x
10.1109/CVPR.2007.383165
10.1109/TPAMI.2019.2915229
10.1109/TVCG.2012.310
10.1109/ICCV.2005.17
10.1109/ICCV.2015.236
10.1109/TVCG.2018.2816926
10.1561/2200000016
10.1109/3DV.2019.00013
10.1109/ICCV.2017.104
10.1145/2897824.2925930
10.1109/CVPR52688.2022.00547
10.1109/CVPR46437.2021.01016
10.1109/CVPR42600.2020.00762
10.1109/TPAMI.2020.2971687
10.1007/978-3-030-58548-8_15
10.1145/1276377.1276478
10.1073/pnas.0508601103
10.1109/TPAMI.2010.46
10.1145/1618452.1618521
10.1109/ICRA.2018.8461063
10.1137/10078356X
10.1109/TPAMI.2019.2940655
10.1111/cgf.12178
10.1111/cgf.14081
10.1109/CVPR.2012.6247673
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2023.3247603
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Technology Research Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 9698
ExternalDocumentID 37027610
10_1109_TPAMI_2023_3247603
10049724
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62122071; 62272433
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: WK3470000021
  funderid: 10.13039/501100012226
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c352t-e9f1df2a2be4ccfba9dcaa2330fa4a18ea3b8ab7ef82b271f919cc04d2356e3
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001022958600027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sat Sep 27 19:41:38 EDT 2025
Sun Nov 30 04:33:29 EST 2025
Mon Jul 21 05:27:55 EDT 2025
Sat Nov 29 02:58:23 EST 2025
Tue Nov 18 20:53:11 EST 2025
Wed Aug 27 02:03:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-e9f1df2a2be4ccfba9dcaa2330fa4a18ea3b8ab7ef82b271f919cc04d2356e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5410-0782
0000-0002-0158-7670
0000-0002-1805-1426
PMID 37027610
PQID 2831508106
PQPubID 85458
PageCount 18
ParticipantIDs proquest_journals_2831508106
crossref_primary_10_1109_TPAMI_2023_3247603
crossref_citationtrail_10_1109_TPAMI_2023_3247603
ieee_primary_10049724
pubmed_primary_37027610
proquest_miscellaneous_2798711013
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
li (ref66) 2022
ref47
ref42
ref44
boži? (ref41) 2020
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
guennebaud (ref60) 2010
ref40
zhang (ref12) 2022; 44
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
boži? (ref43) 2020
ref24
ref23
ref67
ref26
andriy (ref25) 2010; 32
bronstein (ref62) 2008
moenning (ref56) 2003
ref64
ref63
ref22
ref21
ref65
ref28
ref27
ref29
wand (ref20) 2007
ref61
References_xml – year: 2008
  ident: ref62
  publication-title: Numerical Geometry of Non-Rigid Shapes
– ident: ref42
  doi: 10.1109/CVPR42600.2020.00496
– ident: ref57
  doi: 10.1145/1399504.1360696
– year: 2003
  ident: ref56
  article-title: Fast marching farthest point sampling
– ident: ref18
  doi: 10.1111/cgf.14502
– start-page: 18727
  year: 2020
  ident: ref43
  article-title: Neural non-rigid tracking
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref31
  doi: 10.1109/TSP.2014.2388434
– ident: ref38
  doi: 10.1142/S1793536911000829
– ident: ref23
  doi: 10.1109/ICME.2019.00061
– ident: ref10
  doi: 10.1109/CVPR.2015.7299115
– ident: ref52
  doi: 10.1145/3355089.3356491
– ident: ref30
  doi: 10.1145/1516522.1516526
– year: 2010
  ident: ref60
  article-title: Eigen v3
– ident: ref50
  doi: 10.1002/nla.617
– ident: ref61
  doi: 10.1109/CVPR.2014.491
– ident: ref4
  doi: 10.1111/cgf.12699
– ident: ref24
  doi: 10.1109/TIP.2019.2909197
– ident: ref63
  doi: 10.1007/978-3-642-15558-1_26
– ident: ref64
  doi: 10.1145/2517967
– ident: ref14
  doi: 10.1145/321296.321305
– ident: ref29
  doi: 10.1109/TPAMI.2010.223
– ident: ref9
  doi: 10.1080/03610927708827533
– ident: ref5
  doi: 10.1109/TVCG.2018.2832136
– ident: ref51
  doi: 10.1145/3197517.3201290
– ident: ref35
  doi: 10.1109/CVPR.2018.00761
– ident: ref48
  doi: 10.1137/130919398
– ident: ref6
  doi: 10.1007/s00371-019-01670-1
– ident: ref59
  doi: 10.1002/cpa.20303
– ident: ref7
  doi: 10.1109/ICCV.2015.353
– ident: ref22
  doi: 10.1109/CVPR.2011.5995438
– ident: ref32
  doi: 10.1145/2601097.2601165
– ident: ref13
  doi: 10.1137/1.9781611974409
– volume: 44
  start-page: 3450
  year: 2022
  ident: ref12
  article-title: Fast and robust iterative closest point
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref67
  doi: 10.1109/TPAMI.2022.3164653
– ident: ref36
  doi: 10.1109/CVPR42600.2020.00142
– ident: ref21
  doi: 10.1109/ICCV.2009.5459161
– ident: ref49
  doi: 10.1137/19M1245384
– ident: ref33
  doi: 10.1109/CVPR.2015.7298631
– ident: ref2
  doi: 10.1111/j.1467-8659.2008.01282.x
– ident: ref1
  doi: 10.1109/CVPR.2007.383165
– ident: ref46
  doi: 10.1109/TPAMI.2019.2915229
– year: 2022
  ident: ref66
  article-title: Non-rigid point cloud registration with neural deformation pyramid
– ident: ref17
  doi: 10.1109/TVCG.2012.310
– ident: ref28
  doi: 10.1109/ICCV.2005.17
– ident: ref39
  doi: 10.1109/ICCV.2015.236
– ident: ref11
  doi: 10.1109/TVCG.2018.2816926
– ident: ref8
  doi: 10.1561/2200000016
– ident: ref40
  doi: 10.1109/3DV.2019.00013
– ident: ref34
  doi: 10.1109/ICCV.2017.104
– ident: ref55
  doi: 10.1145/2897824.2925930
– ident: ref65
  doi: 10.1109/CVPR52688.2022.00547
– ident: ref44
  doi: 10.1109/CVPR46437.2021.01016
– ident: ref16
  doi: 10.1109/CVPR42600.2020.00762
– ident: ref26
  doi: 10.1109/TPAMI.2020.2971687
– ident: ref47
  doi: 10.1007/978-3-030-58548-8_15
– ident: ref19
  doi: 10.1145/1276377.1276478
– ident: ref37
  doi: 10.1073/pnas.0508601103
– volume: 32
  start-page: 2262
  year: 2010
  ident: ref25
  article-title: Point set registration: Coherent point drift
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.46
– ident: ref3
  doi: 10.1145/1618452.1618521
– ident: ref54
  doi: 10.1109/ICRA.2018.8461063
– ident: ref15
  doi: 10.1137/10078356X
– ident: ref45
  doi: 10.1109/TPAMI.2019.2940655
– ident: ref58
  doi: 10.1111/cgf.12178
– ident: ref53
  doi: 10.1111/cgf.14081
– ident: ref27
  doi: 10.1109/CVPR.2012.6247673
– start-page: 7002
  year: 2020
  ident: ref41
  article-title: DeepDeform: Learning non-rigid RGB-D reconstruction with semi-supervised data
  publication-title: Proc IEEE Conf Comput Vis and Pattern Recog
– start-page: 49
  year: 2007
  ident: ref20
  article-title: Reconstruction of deforming geometry from time-varying point clouds
  publication-title: Proc 5th Eurographics Symp Geometry Process
SSID ssj0014503
Score 2.5443616
Snippet Non-rigid 3D registration, which deforms a source 3D shape in a non-rigid way to align with a target 3D shape, is a classical problem in computer vision. Such...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9681
SubjectTerms Acceleration
Algorithms
Alignment
Anderson acceleration
Computer vision
Convergence
Deformable models
Deformation
Error analysis
Iterative methods
non-rigid registration
Optimization
Outliers (statistics)
Registration
Regularization
robust estimator
Robustness
Shape
Smoothness
Software
Solvers
Source code
Three-dimensional displays
welsch's function
Title Fast and Robust Non-Rigid Registration Using Accelerated Majorization-Minimization
URI https://ieeexplore.ieee.org/document/10049724
https://www.ncbi.nlm.nih.gov/pubmed/37027610
https://www.proquest.com/docview/2831508106
https://www.proquest.com/docview/2798711013
Volume 45
WOSCitedRecordID wos001022958600027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RigMcaCkFFtoqSNxQtonzcHxcIVbtYVfV0sPeIj_GVRAkaB_9_R07TrSXInFzEsexMjOZ-WLPfABfUStGbtjEPNeMAAqpscqwiI2xstRFZRBzTzbBl8tqvRZ3IVnd58Igot98hlPX9Gv5ptN796vs2lU3E5zlR3DEedkna41LBnnhaZAphCETJxwxZMgk4vr-bra4nTqi8CnFD7xMHHtOxgmRlS5z9sAheYaV54NN73TmJ_853VN4E6LLaNarw1t4ge0ZnAzMDVEw5DN4fVCG8B2s5nK7i2RrolWn9tRcdm28ah4aOoEPY2XdyG8viGZak6tyFSZMtJC_uk3I5IwXTdv8CQfn8HP-4_77TRy4FmJNIdguRmFTY5lkCnOtrZLCaClZliVW5jKtUGaqkoqjrZhiPLUiFVonuWFZUWL2Ho7brsWPEInCitJokaKqciU54S_HWVUKLsvcJmYC6fC6ax3KkDs2jN-1hyOJqL20aietOkhrAt_Ge_72RTj-2fvcyeKgZy-GCVwMYq2DoW5riq5cRXwCxhP4Ml4mE3PrJrLFbk99uCBYSd8uGvpDrw7j4IMWfXrmoZ_hlZtbv2XwAo53mz1ewkv9uGu2myvS43V15fX4CR6B7Wk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQQIOFEqBhQJB4oayzcOJ4-MKsWpFd1Ute-gt8mNcBUGC9sHvZ-w40V6KxM1JHMfKzGTmiz3zAXxCrTJywybmTGcEUEiNVY5FbIyVpS4qg8g82QRfLqubG3EdktV9Lgwi-s1nOHVNv5ZvOr13v8rOXXUzwTN2Hx4UjIBPn641LhqwwhMhUxBDRk5IYsiRScT5-nq2uJw6qvApRRC8TBx_Ts4Jk5Uud_bAJXmOlbvDTe925sf_OeFn8DTEl9GsV4jncA_bEzgeuBuiYMon8OSgEOELWM3ldhfJ1kSrTu2puezaeNXcNnQCb8faupHfYBDNtCZn5WpMmGghf3SbkMsZL5q2-RUOTuH7_Ov6y0Uc2BZiTUHYLkZhU2MzmSlkWlslhdFSZnmeWMlkWqHMVSUVR1tlKuOpFanQOmEmy4sS85dw1HYtvoZIFFaURosUVcWU5ITAHGtVKbgsmU3MBNLhddc6FCJ3fBg_aw9IElF7adVOWnWQ1gQ-j_f87stw_LP3qZPFQc9eDBM4G8RaB1Pd1hRfuZr4BI0n8HG8TEbmVk5ki92e-nBBwJK-XjT0q14dxsEHLXpzx0M_wKOL9eKqvrpcfnsLj908-w2EZ3C02-zxHTzUf3bNdvPea_NfBEXvyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Robust+Non-Rigid+Registration+Using+Accelerated+Majorization-Minimization&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Yao%2C+Yuxin&rft.au=Deng%2C+Bailin&rft.au=Xu%2C+Weiwei&rft.au=Zhang%2C+Juyong&rft.date=2023-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=45&rft.issue=8&rft.spage=9681&rft_id=info:doi/10.1109%2FTPAMI.2023.3247603&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon