Empirical investigation of active learning strategies

Many predictive tasks require labeled data to induce classification models. The data labeling process may have a high cost. Several strategies have been proposed to optimize the selection of the most relevant examples, a process referred to as active learning. However, a lack of empirical studies co...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 326-327; pp. 15 - 27
Main Authors: Pereira-Santos, Davi, Prudêncio, Ricardo Bastos Cavalcante, de Carvalho, André C.P.L.F.
Format: Journal Article
Language:English
Published: Elsevier B.V 31.01.2019
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Many predictive tasks require labeled data to induce classification models. The data labeling process may have a high cost. Several strategies have been proposed to optimize the selection of the most relevant examples, a process referred to as active learning. However, a lack of empirical studies comparing different active learning approaches across multiple datasets makes it difficult identifying the most promising strategies, or even assessing the relative gain of active learning over the trivial random selection of instances. In this study, a comprehensive comparison of active learning strategies is presented, with various instance selection criteria, different classification algorithms and a large number of datasets. The experimental results confirm the effectiveness of active learning and provide insights about the relationship between classification algorithms and active learning strategies. Additionally, ranking curves with bands are introduced as a means to summarize in a single chart the performance of each active learning strategy for different classification algorithms and datasets.
AbstractList Many predictive tasks require labeled data to induce classification models. The data labeling process may have a high cost. Several strategies have been proposed to optimize the selection of the most relevant examples, a process referred to as active learning. However, a lack of empirical studies comparing different active learning approaches across multiple datasets makes it difficult identifying the most promising strategies, or even assessing the relative gain of active learning over the trivial random selection of instances. In this study, a comprehensive comparison of active learning strategies is presented, with various instance selection criteria, different classification algorithms and a large number of datasets. The experimental results confirm the effectiveness of active learning and provide insights about the relationship between classification algorithms and active learning strategies. Additionally, ranking curves with bands are introduced as a means to summarize in a single chart the performance of each active learning strategy for different classification algorithms and datasets.
Author de Carvalho, André C.P.L.F.
Pereira-Santos, Davi
Prudêncio, Ricardo Bastos Cavalcante
Author_xml – sequence: 1
  givenname: Davi
  orcidid: 0000-0002-3766-3137
  surname: Pereira-Santos
  fullname: Pereira-Santos, Davi
  email: davips@icmc.usp.br, dpsabc@gmail.com
  organization: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Trabalhador São-carlense Av. 400, São Carlos, São Paulo 13560-970, Brazil
– sequence: 2
  givenname: Ricardo Bastos Cavalcante
  surname: Prudêncio
  fullname: Prudêncio, Ricardo Bastos Cavalcante
  email: rbcp@cin.ufpe.br
  organization: Centro de Informática, Universidade Federal de Pernambuco, Jornalista Aníbal Fernandes Av., Recife, Pernambuco 50740-560, Brazil
– sequence: 3
  givenname: André C.P.L.F.
  surname: de Carvalho
  fullname: de Carvalho, André C.P.L.F.
  email: andre@icmc.usp.br
  organization: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Trabalhador São-carlense Av. 400, São Carlos, São Paulo 13560-970, Brazil
BookMark eNqFkEFLAzEQhYNUsK3-Aw_7B3ZNsptu4kGQUqtQ8KLnkE1my5RttiSx4L83tZ486GngzXyPN29GJn70QMgtoxWjbHG3qzx82HFfccraioqsigsyZbLlpeRyMSFTqrgoec34FZnFuKP5kHE1JWK1P2BAa4YC_RFiwq1JOPpi7AtjEx6hGMAEj35bxBRMgi1CvCaXvRki3PzMOXl_Wr0tn8vN6_pl-bgpbS14KqEFxVu-aKBTYJhTtu8c612nGmCUyt4JwykYC6pXTSeZy3vFJMhWslrZek7uz742jDEG6LXF9J0vR8FBM6pPBeidPhegTwVoKrIqMtz8gg8B9yZ8_oc9nDHIjx0Rgo4WwVtwGMAm7Ub82-ALKCl7TQ
CitedBy_id crossref_primary_10_1016_j_ijmultiphaseflow_2025_105265
crossref_primary_10_1177_01655515231204802
crossref_primary_10_1016_j_addma_2021_102411
crossref_primary_10_1080_10494820_2023_2263043
crossref_primary_10_1111_coin_12217
crossref_primary_10_1016_j_neucom_2021_08_091
crossref_primary_10_1109_ACCESS_2021_3063002
crossref_primary_10_1021_acs_jchemed_4c00887
crossref_primary_10_1109_ACCESS_2022_3214544
crossref_primary_10_1371_journal_pone_0273725
crossref_primary_10_1109_TSE_2024_3376964
crossref_primary_10_3390_informatics7040050
crossref_primary_10_3233_IDA_226899
crossref_primary_10_3138_jvme_2022_0013
crossref_primary_10_1016_j_jocs_2023_101946
crossref_primary_10_1007_s00521_022_07812_2
crossref_primary_10_1080_0144929X_2022_2079560
crossref_primary_10_1038_s41524_022_00787_7
Cites_doi 10.1016/j.neucom.2013.01.051
10.1007/s10618-016-0469-7
10.1023/A:1010933404324
10.1109/JPROC.2012.2231951
10.1007/BF00993468
10.1016/j.tcs.2010.12.054
10.1007/BF00994018
10.1016/j.neucom.2015.03.056
10.1109/5254.708428
10.1016/j.neucom.2016.01.091
10.1016/j.neucom.2011.06.037
10.1145/219587.219592
10.1016/j.patcog.2011.08.009
10.1016/j.neucom.2013.01.008
10.1007/s10994-007-5019-5
10.1016/j.neucom.2014.05.075
10.1007/BF00993277
10.1145/1656274.1656278
10.1002/j.1538-7305.1949.tb00928.x
10.1109/TIT.1968.1054155
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2017.05.105
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 27
ExternalDocumentID 10_1016_j_neucom_2017_05_105
S0925231217315357
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c352t-e7e927264eb9ea1d9cfbd1fdb94e1008fd5a20eace9f94b81dfbd918e878139c3
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000452306700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 03:02:52 EST 2025
Tue Nov 18 22:38:10 EST 2025
Fri Feb 23 02:30:22 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Partially labeled data
Non-agnostic active learning
Agnostic active learning
Data labeling
Active learning
Data sampling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-e7e927264eb9ea1d9cfbd1fdb94e1008fd5a20eace9f94b81dfbd918e878139c3
ORCID 0000-0002-3766-3137
OpenAccessLink http://dx.doi.org/10.1016/j.neucom.2017.05.105
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2017_05_105
crossref_primary_10_1016_j_neucom_2017_05_105
elsevier_sciencedirect_doi_10_1016_j_neucom_2017_05_105
PublicationCentury 2000
PublicationDate 2019-01-31
PublicationDateYYYYMMDD 2019-01-31
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-31
  day: 31
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Abe, Mamitsuka (bib0037) 1998
Cherman (bib0040) 2013
Cohn, Atlas, Ladner (bib0025) 1994; 15
Settles (bib0012) 2010; 52
Xiong, Xie, Zhou, Guan (bib0004) 2014; 145
Guo, Schuurmans (bib0042) 2007
Freytag, Rodner, Denzler (bib0030) 2014
Zhao, Sukthankar, Sukthankar (bib0026) 2012
Kearns, Schapire, Sellie (bib0013) 1994; 17
Ross (bib0035) 2000
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (bib0051) 2009; 11
Maiora, Ayerdi, Graña (bib0005) 2014; 126
Settles, Craven (bib0008) 2008
Dasgupta (bib0016) 2005
Guo, Greiner (bib0020) 2007
Delgado, Cernadas, Barro, Amorim (bib0053) 2014; 15
Quinlan (bib0047) 1993
Zhang, Wang, Zhu, Yun, Wu, Wang (bib0029) 2015; 162
Lewis (bib0048) 1998; volume 1398
Miller (bib0055) 1968; volume 33
Mitchell (bib0024) 1997
Demsar (bib0043) 2006; 7
Bagaveyev, Cook (bib0023) 2014
Beygelzimer, Dasgupta, Langford (bib0027) 2009
Breiman (bib0050) 2001; 45
Ramirez-Loaiza, Sharma, Kumar, Bilgic (bib0010) 2017; 31
Raghavan, Madani, Jones (bib0041) 2006; 7
Feng, Xiao, Zha, Zhang, Yang (bib0003) 2012; 95
Hearst, Dumais, Osman, Platt, Scholkopf (bib0049) 1998; 13
dos Santos, de Carvalho (bib0014) 2015
Shannon (bib0032) 1949; 28
Fujii, Inui, Tokunaga, Tanaka (bib0034) 1998; 24
Bache, Lichman (bib0044) 2013
Batista, Campello, Sander (bib0021) 2016
Lewis (bib0031) 1995; 29
Körner, Wrobel (bib0009) 2006; volume 4212
Roy, McCallum (bib0019) 2001
Settles (bib0018) 2008
Nah (bib0054) 2003
Prieto, Ruiz, Hernández (bib0001) 2013; 121
Settles (bib0002) 2012
Lughofer (bib0036) 2012; 45
Santos, Carvalho (bib0017) 2014; volume 8480
Cortes, Vapnik (bib0052) 1995; 20
Settles, Craven, Ray (bib0033) 2007
Shah (bib0038) 2011; volume 6913
Hart (bib0046) 1968; 14
Beygelzimer, Hsu, Langford, Zhang (bib0022) 2016
Dasgupta (bib0015) 2011; 412
Evans, Adams, Anagnostopoulos (bib0011) 2013; volume 8207
Crawford, Tuia, Yang (bib0039) 2013; 101
Garcia (bib0045) 2015
Schein, Ungar (bib0007) 2007; 68
Ye, Liu, Liu, Tang, Zhao (bib0028) 2016; 196
Miller (10.1016/j.neucom.2017.05.105_bib0055) 1968; volume 33
Ross (10.1016/j.neucom.2017.05.105_bib0035) 2000
Settles (10.1016/j.neucom.2017.05.105_bib0012) 2010; 52
Batista (10.1016/j.neucom.2017.05.105_bib0021) 2016
dos Santos (10.1016/j.neucom.2017.05.105_bib0014) 2015
Breiman (10.1016/j.neucom.2017.05.105_bib0050) 2001; 45
Roy (10.1016/j.neucom.2017.05.105_bib0019) 2001
Shah (10.1016/j.neucom.2017.05.105_bib0038) 2011; volume 6913
Nah (10.1016/j.neucom.2017.05.105_bib0054) 2003
Zhao (10.1016/j.neucom.2017.05.105_bib0026) 2012
Garcia (10.1016/j.neucom.2017.05.105_sbref0045) 2015
Bache (10.1016/j.neucom.2017.05.105_bib0044) 2013
Quinlan (10.1016/j.neucom.2017.05.105_bib0047) 1993
Kearns (10.1016/j.neucom.2017.05.105_bib0013) 1994; 17
Guo (10.1016/j.neucom.2017.05.105_bib0020) 2007
Lewis (10.1016/j.neucom.2017.05.105_bib0031) 1995; 29
Hearst (10.1016/j.neucom.2017.05.105_bib0049) 1998; 13
Shannon (10.1016/j.neucom.2017.05.105_bib0032) 1949; 28
Freytag (10.1016/j.neucom.2017.05.105_bib0030) 2014
Guo (10.1016/j.neucom.2017.05.105_bib0042) 2007
Abe (10.1016/j.neucom.2017.05.105_bib0037) 1998
Evans (10.1016/j.neucom.2017.05.105_bib0011) 2013; volume 8207
Beygelzimer (10.1016/j.neucom.2017.05.105_bib0027) 2009
Xiong (10.1016/j.neucom.2017.05.105_bib0004) 2014; 145
Hall (10.1016/j.neucom.2017.05.105_bib0051) 2009; 11
Settles (10.1016/j.neucom.2017.05.105_bib0008) 2008
Schein (10.1016/j.neucom.2017.05.105_bib0007) 2007; 68
Lewis (10.1016/j.neucom.2017.05.105_bib0048) 1998; volume 1398
Settles (10.1016/j.neucom.2017.05.105_bib0033) 2007
Lughofer (10.1016/j.neucom.2017.05.105_bib0036) 2012; 45
Feng (10.1016/j.neucom.2017.05.105_bib0003) 2012; 95
Zhang (10.1016/j.neucom.2017.05.105_bib0029) 2015; 162
Körner (10.1016/j.neucom.2017.05.105_bib0009) 2006; volume 4212
Ramirez-Loaiza (10.1016/j.neucom.2017.05.105_bib0010) 2017; 31
Demsar (10.1016/j.neucom.2017.05.105_bib0043) 2006; 7
Ye (10.1016/j.neucom.2017.05.105_bib0028) 2016; 196
Santos (10.1016/j.neucom.2017.05.105_bib0017) 2014; volume 8480
Mitchell (10.1016/j.neucom.2017.05.105_bib0024) 1997
Dasgupta (10.1016/j.neucom.2017.05.105_bib0016) 2005
Crawford (10.1016/j.neucom.2017.05.105_bib0039) 2013; 101
Cortes (10.1016/j.neucom.2017.05.105_bib0052) 1995; 20
Delgado (10.1016/j.neucom.2017.05.105_bib0053) 2014; 15
Fujii (10.1016/j.neucom.2017.05.105_bib0034) 1998; 24
Prieto (10.1016/j.neucom.2017.05.105_bib0001) 2013; 121
Maiora (10.1016/j.neucom.2017.05.105_bib0005) 2014; 126
Bagaveyev (10.1016/j.neucom.2017.05.105_bib0023) 2014
Cherman (10.1016/j.neucom.2017.05.105_bib0040) 2013
Settles (10.1016/j.neucom.2017.05.105_bib0002) 2012
Beygelzimer (10.1016/j.neucom.2017.05.105_bib0022) 2016
Settles (10.1016/j.neucom.2017.05.105_bib0018) 2008
Raghavan (10.1016/j.neucom.2017.05.105_bib0041) 2006; 7
Dasgupta (10.1016/j.neucom.2017.05.105_bib0015) 2011; 412
Cohn (10.1016/j.neucom.2017.05.105_bib0025) 1994; 15
Hart (10.1016/j.neucom.2017.05.105_bib0046) 1968; 14
References_xml – year: 2008
  ident: bib0018
  publication-title: Curious Machines: Active Learning with Structured Instances
– start-page: 823
  year: 2007
  end-page: 829
  ident: bib0020
  article-title: Optimistic active-learning using mutual information
  publication-title: Proceedings of International Joint Conference on Artificial Intelligence IJCAI
– volume: 7
  start-page: 1655
  year: 2006
  end-page: 1686
  ident: bib0041
  article-title: Active learning with feedback on features and instances
  publication-title: J. Mach. Learn. Res.
– year: 1993
  ident: bib0047
  publication-title: C4.5: Programs for Machine Learning
– volume: 68
  start-page: 235
  year: 2007
  end-page: 265
  ident: bib0007
  article-title: Active learning for logistic regression: an evaluation
  publication-title: Mach. Learn.
– year: 2000
  ident: bib0035
  publication-title: Introduction to Probability and Statistics for Engineers and Scientists (2nd ed.)
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: bib0051
  article-title: The WEKA data mining software: an update
  publication-title: SIGKDD Explor.
– volume: 95
  start-page: 54
  year: 2012
  end-page: 59
  ident: bib0003
  article-title: Active learning for social image retrieval using locally regressive optimal design
  publication-title: Neurocomputing
– volume: 52
  start-page: 55
  year: 2010
  end-page: 66
  ident: bib0012
  publication-title: Active Learning Literature Survey
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0052
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– start-page: 1
  year: 1998
  end-page: 9
  ident: bib0037
  article-title: Query learning strategies using boosting and bagging
  publication-title: Proceedings of International Conference on Machine Learning, ICML
– volume: 24
  start-page: 573
  year: 1998
  end-page: 597
  ident: bib0034
  article-title: Selective sampling for example-based word sense disambiguation
  publication-title: Comput. Linguist.
– volume: 121
  start-page: 1
  year: 2013
  end-page: 4
  ident: bib0001
  article-title: Advances in artificial neural networks and machine learning
  publication-title: Neurocomputing
– volume: 162
  start-page: 163
  year: 2015
  end-page: 170
  ident: bib0029
  article-title: Update vs. upgrade: modeling with indeterminate multi-class active learning
  publication-title: Neurocomputing
– year: 2007
  ident: bib0033
  article-title: Multiple-Instance Active Learning
  publication-title: NIPS
– volume: volume 8207
  start-page: 174
  year: 2013
  end-page: 185
  ident: bib0011
  article-title: When does active learning work?
  publication-title: Advances in Intelligent Data Analysis
– start-page: 235
  year: 2005
  end-page: 242
  ident: bib0016
  article-title: Coarse sample complexity bounds for active learning
  publication-title: Proceedings of Advances in Neural Information Processing Systems
– volume: 14
  start-page: 515
  year: 1968
  end-page: 516
  ident: bib0046
  article-title: The condensed nearest neighbor rule (corresp.)
  publication-title: IEEE Trans. Inf. Theory
– volume: volume 8480
  start-page: 618
  year: 2014
  end-page: 629
  ident: bib0017
  article-title: Comparison of active learning strategies and proposal of a multiclass hypothesis space search
  publication-title: Proceedings of Hybrid Artificial Intelligent Systems HAIS
– volume: volume 6913
  start-page: 191
  year: 2011
  end-page: 206
  ident: bib0038
  article-title: Generalized agreement statistics over fixed group of experts
  publication-title: Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases ECMLPKDD (3)
– volume: 45
  start-page: 884
  year: 2012
  end-page: 896
  ident: bib0036
  article-title: Hybrid active learning for reducing the annotation effort of operators in classification systems
  publication-title: Pattern Recogn.
– start-page: 469
  year: 2014
  end-page: 478
  ident: bib0023
  article-title: Designing and evaluating active learning methods for activity recognition
  publication-title: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0043
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– year: 2007
  ident: bib0042
  article-title: Discriminative Batch Mode Active Learning
  publication-title: NIPS
– year: 2015
  ident: bib0045
  publication-title: A Huge Collection of Preprocessed ARFF Datasets for Supervised Classification Problems
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  ident: bib0053
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– volume: 196
  start-page: 95
  year: 2016
  end-page: 106
  ident: bib0028
  article-title: Practice makes perfect: an adaptive active learning framework for image classification
  publication-title: Neurocomputing
– year: 2012
  ident: bib0002
  publication-title: Active Learning
– volume: 145
  start-page: 44
  year: 2014
  end-page: 52
  ident: bib0004
  article-title: Active learning for protein function prediction in protein-protein interaction networks
  publication-title: Neurocomputing
– start-page: 62
  year: 2015
  end-page: 67
  ident: bib0014
  article-title: Selectively inhibiting learning bias for active sampling
  publication-title: Proceedings of Brazilian Conference on Intelligent Systems
– volume: 101
  start-page: 593
  year: 2013
  end-page: 608
  ident: bib0039
  article-title: Active learning: any value for classification of remotely sensed data?
  publication-title: Proc. IEEE
– volume: 28
  start-page: 656
  year: 1949
  end-page: 715
  ident: bib0032
  article-title: Communication theory of secrecy systems
  publication-title: Bell Syst. Tech. J.
– volume: volume 1398
  start-page: 4
  year: 1998
  end-page: 15
  ident: bib0048
  article-title: Naive (bayes) at forty: the independence assumption in information retrieval
  publication-title: Proceedings of European Conference on Machine Learning ECML
– volume: 17
  start-page: 115
  year: 1994
  end-page: 141
  ident: bib0013
  article-title: Toward efficient agnostic learning
  publication-title: Mach. Learn.
– start-page: 3476
  year: 2012
  end-page: 3479
  ident: bib0026
  article-title: Importance-weighted label prediction for active learning with noisy annotations
  publication-title: Proceedings of the 21st International Conference on Pattern Recognition, ICPR 2012, Tsukuba, Japan, November 11–15, 2012
– start-page: 1070
  year: 2008
  end-page: 1079
  ident: bib0008
  article-title: An analysis of active learning strategies for sequence labeling tasks
  publication-title: Empirical Methods in Natural Language Processing
– volume: volume 4212
  start-page: 687
  year: 2006
  end-page: 694
  ident: bib0009
  article-title: Multi-class ensemble-based active learning
  publication-title: Proceedings of European Conference on Machine Learning
– year: 1997
  ident: bib0024
  publication-title: Machine Learning
– volume: 126
  start-page: 71
  year: 2014
  end-page: 77
  ident: bib0005
  article-title: Random forest active learning for AAA thrombus segmentation in computed tomography angiography images
  publication-title: Neurocomputing
– volume: 29
  start-page: 13
  year: 1995
  end-page: 19
  ident: bib0031
  article-title: A sequential algorithm for training text classifiers: corrigendum and additional data
  publication-title: SIGIR Forum
– volume: volume 33
  start-page: 267
  year: 1968
  end-page: 277
  ident: bib0055
  article-title: Response time in man-computer conversational transactions
  publication-title: Proceedings of Fall Joint Computing Conference
– volume: 15
  start-page: 201
  year: 1994
  end-page: 221
  ident: bib0025
  article-title: Improving generalization with active learning
  publication-title: Mach. Learn.
– start-page: 11
  year: 2016
  end-page: 20
  ident: bib0021
  article-title: Active semi-supervised classification based on multiple clustering hierarchies
  publication-title: Proceedings of IEEE International Conference on Data Science and Advanced Analytics (DSAA), 2016
– year: 2013
  ident: bib0044
  article-title: UCI Repository of Machine Learning Databases, Machine-Readable Data Repository
– year: 2013
  ident: bib0040
  publication-title: Aprendizado de máquina Multirrótulo: Explorando a Dependência de róTulos e o Aprendizado ativo
– volume: 412
  start-page: 1767
  year: 2011
  end-page: 1781
  ident: bib0015
  article-title: Two faces of active learning
  publication-title: Theor. Comput. Sci.
– volume: 13
  start-page: 18
  year: 1998
  end-page: 28
  ident: bib0049
  article-title: Support vector machines
  publication-title: Intell. Syst. Appl. IEEE
– volume: 31
  start-page: 287
  year: 2017
  end-page: 313
  ident: bib0010
  article-title: Active learning: an empirical study of common baselines
  publication-title: Data Min. Knowl. Discov.
– start-page: 3342
  year: 2016
  end-page: 3350
  ident: bib0022
  article-title: Search improves label for active learning
  publication-title: Proceedings of Advances in Neural Information Processing Systems
– start-page: 49
  year: 2009
  end-page: 56
  ident: bib0027
  article-title: Importance weighted active learning
  publication-title: Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14–18, 2009
– start-page: 285
  year: 2003
  ident: bib0054
  article-title: A study on tolerable waiting time: how long are web users willing to wait?
  publication-title: Proceedings of Americas Conference on Information Systems, AMCIS
– start-page: 441
  year: 2001
  end-page: 448
  ident: bib0019
  article-title: Toward optimal active learning through sampling estimation of error reduction
  publication-title: ICML
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0050
  article-title: Random forests
  publication-title: Mac. Learn.
– start-page: 562
  year: 2014
  end-page: 577
  ident: bib0030
  article-title: Selecting influential examples: active learning with expected model output changes
  publication-title: Proceedings of European Conference on Computer Vision
– start-page: 823
  year: 2007
  ident: 10.1016/j.neucom.2017.05.105_bib0020
  article-title: Optimistic active-learning using mutual information
– start-page: 3342
  year: 2016
  ident: 10.1016/j.neucom.2017.05.105_bib0022
  article-title: Search improves label for active learning
– start-page: 62
  year: 2015
  ident: 10.1016/j.neucom.2017.05.105_bib0014
  article-title: Selectively inhibiting learning bias for active sampling
– volume: 126
  start-page: 71
  year: 2014
  ident: 10.1016/j.neucom.2017.05.105_bib0005
  article-title: Random forest active learning for AAA thrombus segmentation in computed tomography angiography images
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.051
– volume: 31
  start-page: 287
  issue: 2
  year: 2017
  ident: 10.1016/j.neucom.2017.05.105_bib0010
  article-title: Active learning: an empirical study of common baselines
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-016-0469-7
– start-page: 3476
  year: 2012
  ident: 10.1016/j.neucom.2017.05.105_bib0026
  article-title: Importance-weighted label prediction for active learning with noisy annotations
– volume: volume 4212
  start-page: 687
  year: 2006
  ident: 10.1016/j.neucom.2017.05.105_bib0009
  article-title: Multi-class ensemble-based active learning
– start-page: 469
  year: 2014
  ident: 10.1016/j.neucom.2017.05.105_bib0023
  article-title: Designing and evaluating active learning methods for activity recognition
– year: 1993
  ident: 10.1016/j.neucom.2017.05.105_bib0047
– year: 2000
  ident: 10.1016/j.neucom.2017.05.105_bib0035
– year: 2007
  ident: 10.1016/j.neucom.2017.05.105_bib0042
  article-title: Discriminative Batch Mode Active Learning
– start-page: 1070
  year: 2008
  ident: 10.1016/j.neucom.2017.05.105_bib0008
  article-title: An analysis of active learning strategies for sequence labeling tasks
– volume: volume 1398
  start-page: 4
  year: 1998
  ident: 10.1016/j.neucom.2017.05.105_bib0048
  article-title: Naive (bayes) at forty: the independence assumption in information retrieval
– start-page: 49
  year: 2009
  ident: 10.1016/j.neucom.2017.05.105_bib0027
  article-title: Importance weighted active learning
– year: 2007
  ident: 10.1016/j.neucom.2017.05.105_bib0033
  article-title: Multiple-Instance Active Learning
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.neucom.2017.05.105_bib0050
  article-title: Random forests
  publication-title: Mac. Learn.
  doi: 10.1023/A:1010933404324
– start-page: 285
  year: 2003
  ident: 10.1016/j.neucom.2017.05.105_bib0054
  article-title: A study on tolerable waiting time: how long are web users willing to wait?
– volume: 101
  start-page: 593
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2017.05.105_bib0039
  article-title: Active learning: any value for classification of remotely sensed data?
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2231951
– volume: 17
  start-page: 115
  issue: 2–3
  year: 1994
  ident: 10.1016/j.neucom.2017.05.105_bib0013
  article-title: Toward efficient agnostic learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00993468
– volume: 412
  start-page: 1767
  issue: 19
  year: 2011
  ident: 10.1016/j.neucom.2017.05.105_bib0015
  article-title: Two faces of active learning
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2010.12.054
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.neucom.2017.05.105_bib0052
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– year: 1997
  ident: 10.1016/j.neucom.2017.05.105_bib0024
– volume: 162
  start-page: 163
  year: 2015
  ident: 10.1016/j.neucom.2017.05.105_bib0029
  article-title: Update vs. upgrade: modeling with indeterminate multi-class active learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.03.056
– volume: 13
  start-page: 18
  issue: 4
  year: 1998
  ident: 10.1016/j.neucom.2017.05.105_bib0049
  article-title: Support vector machines
  publication-title: Intell. Syst. Appl. IEEE
  doi: 10.1109/5254.708428
– start-page: 1
  year: 1998
  ident: 10.1016/j.neucom.2017.05.105_bib0037
  article-title: Query learning strategies using boosting and bagging
– volume: 7
  start-page: 1655
  year: 2006
  ident: 10.1016/j.neucom.2017.05.105_bib0041
  article-title: Active learning with feedback on features and instances
  publication-title: J. Mach. Learn. Res.
– volume: 196
  start-page: 95
  year: 2016
  ident: 10.1016/j.neucom.2017.05.105_bib0028
  article-title: Practice makes perfect: an adaptive active learning framework for image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.091
– volume: 95
  start-page: 54
  year: 2012
  ident: 10.1016/j.neucom.2017.05.105_bib0003
  article-title: Active learning for social image retrieval using locally regressive optimal design
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.06.037
– volume: 15
  start-page: 3133
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2017.05.105_bib0053
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– volume: volume 6913
  start-page: 191
  year: 2011
  ident: 10.1016/j.neucom.2017.05.105_bib0038
  article-title: Generalized agreement statistics over fixed group of experts
– start-page: 11
  year: 2016
  ident: 10.1016/j.neucom.2017.05.105_bib0021
  article-title: Active semi-supervised classification based on multiple clustering hierarchies
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.neucom.2017.05.105_bib0043
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– year: 2013
  ident: 10.1016/j.neucom.2017.05.105_bib0044
– start-page: 235
  year: 2005
  ident: 10.1016/j.neucom.2017.05.105_bib0016
  article-title: Coarse sample complexity bounds for active learning
– volume: 29
  start-page: 13
  issue: 2
  year: 1995
  ident: 10.1016/j.neucom.2017.05.105_bib0031
  article-title: A sequential algorithm for training text classifiers: corrigendum and additional data
  publication-title: SIGIR Forum
  doi: 10.1145/219587.219592
– volume: volume 8480
  start-page: 618
  year: 2014
  ident: 10.1016/j.neucom.2017.05.105_bib0017
  article-title: Comparison of active learning strategies and proposal of a multiclass hypothesis space search
– volume: 45
  start-page: 884
  issue: 2
  year: 2012
  ident: 10.1016/j.neucom.2017.05.105_bib0036
  article-title: Hybrid active learning for reducing the annotation effort of operators in classification systems
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2011.08.009
– start-page: 562
  year: 2014
  ident: 10.1016/j.neucom.2017.05.105_bib0030
  article-title: Selecting influential examples: active learning with expected model output changes
– volume: 121
  start-page: 1
  year: 2013
  ident: 10.1016/j.neucom.2017.05.105_bib0001
  article-title: Advances in artificial neural networks and machine learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.008
– volume: 68
  start-page: 235
  issue: 3
  year: 2007
  ident: 10.1016/j.neucom.2017.05.105_bib0007
  article-title: Active learning for logistic regression: an evaluation
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-007-5019-5
– volume: 145
  start-page: 44
  year: 2014
  ident: 10.1016/j.neucom.2017.05.105_bib0004
  article-title: Active learning for protein function prediction in protein-protein interaction networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.075
– volume: 15
  start-page: 201
  issue: 2
  year: 1994
  ident: 10.1016/j.neucom.2017.05.105_bib0025
  article-title: Improving generalization with active learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00993277
– year: 2015
  ident: 10.1016/j.neucom.2017.05.105_sbref0045
– year: 2012
  ident: 10.1016/j.neucom.2017.05.105_bib0002
– start-page: 441
  year: 2001
  ident: 10.1016/j.neucom.2017.05.105_bib0019
  article-title: Toward optimal active learning through sampling estimation of error reduction
– volume: volume 8207
  start-page: 174
  year: 2013
  ident: 10.1016/j.neucom.2017.05.105_bib0011
  article-title: When does active learning work?
– volume: 24
  start-page: 573
  issue: 4
  year: 1998
  ident: 10.1016/j.neucom.2017.05.105_bib0034
  article-title: Selective sampling for example-based word sense disambiguation
  publication-title: Comput. Linguist.
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.neucom.2017.05.105_bib0051
  article-title: The WEKA data mining software: an update
  publication-title: SIGKDD Explor.
  doi: 10.1145/1656274.1656278
– volume: 28
  start-page: 656
  issue: 4
  year: 1949
  ident: 10.1016/j.neucom.2017.05.105_bib0032
  article-title: Communication theory of secrecy systems
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1949.tb00928.x
– year: 2008
  ident: 10.1016/j.neucom.2017.05.105_bib0018
– volume: 14
  start-page: 515
  issue: 3
  year: 1968
  ident: 10.1016/j.neucom.2017.05.105_bib0046
  article-title: The condensed nearest neighbor rule (corresp.)
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1968.1054155
– volume: volume 33
  start-page: 267
  year: 1968
  ident: 10.1016/j.neucom.2017.05.105_bib0055
  article-title: Response time in man-computer conversational transactions
– year: 2013
  ident: 10.1016/j.neucom.2017.05.105_bib0040
– volume: 52
  start-page: 55
  year: 2010
  ident: 10.1016/j.neucom.2017.05.105_bib0012
SSID ssj0017129
Score 2.45383
Snippet Many predictive tasks require labeled data to induce classification models. The data labeling process may have a high cost. Several strategies have been...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 15
SubjectTerms Active learning
Agnostic active learning
Data labeling
Data sampling
Non-agnostic active learning
Partially labeled data
Title Empirical investigation of active learning strategies
URI https://dx.doi.org/10.1016/j.neucom.2017.05.105
Volume 326-327
WOSCitedRecordID wos000452306700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZuoe97D7a7oIf9hZkbMWypccspGyjlMK6kTcjSzJzae3gJKX_YH-7R5Zkp-vo1oe9mCBF8uV8HH06OheEPpaE6FRQjqlMGU50QrBQJcdpAXyXpFRHXSzMj-Ps5IQtl_x0NPrlY2GuLrK6ZtfXfPVfRQ1tIGwTOvsAcfeTQgP8BqHDFcQO138S_OJyVdm8H9WQQ8OyQtEpN18pwtgRfKKIXY7a5euQXbUHZ0eYXZp0Cspghw-6tNVVK_A3U4V47d3j-952q7oz-Fktq8ZF8AMYm8knAXRzPZkLeOdOrH6I0sb7BFp_Nt7T0p7iT-bhaXgcHoW7FgoTFBV71e5MjYRi4JG3tC7QRjy1aQGc7rRhnW4Vtj139Ls1NZyHtd4aZx-4W5d4NY7osJ75M_zflrne-dD7tZ3ndpbczJJHFFrpI7RHMsrZGO3NviyWX_sDqSwmNm2jexUfhdm5Ct59mj-znB3mcvYcPXVbjmBmofICjXT9Ej3z5TwCp91fIdojJ7iFnKApA4ucwCMnGJDzGn0_WpzNP2NXVQNLINsbrDPNSQY8WBdci1hxWRYqLlXBE20yPZWKChLBeqx5yZMC9jPQz2OmWcZguyCnb9C4bmq9j4IYmjTniUw1SyIhWVHGBSGqTGhBiyQ6QFP_FXLpUs6byicX-X0yOEC4H7WyKVf-8v_Mf-Dc0UZLB3NAzb0jDx94p7foyYDvd2i8abf6PXosrzbVuv3gIHMDebGP7g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+investigation+of+active+learning+strategies&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Pereira-Santos%2C+Davi&rft.au=Prud%C3%AAncio%2C+Ricardo+Bastos+Cavalcante&rft.au=de+Carvalho%2C+Andr%C3%A9+C.P.L.F.&rft.date=2019-01-31&rft.issn=0925-2312&rft.volume=326-327&rft.spage=15&rft.epage=27&rft_id=info:doi/10.1016%2Fj.neucom.2017.05.105&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2017_05_105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon