Tool Wear Classification Using Decision Treesin Stone Drilling Applications: A Preliminary Study

Process parameters of stone drilling with a small diameter twist drill were used to predict tool wear by means of a machine learning decision tree algorithm. The model links tool wear with features extracted from the force sensor and the main and feed drive current sensors signals recorded under dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia engineering Jg. 69; S. 1326 - 1335
Hauptverfasser: Klaic, Miho, Staroveski, Tomislav, Udiljak, Toma
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 2014
Schlagworte:
ISSN:1877-7058, 1877-7058
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Process parameters of stone drilling with a small diameter twist drill were used to predict tool wear by means of a machine learning decision tree algorithm. The model links tool wear with features extracted from the force sensor and the main and feed drive current sensors signals recorded under different cutting conditions and different tool wear states. Signal features extracted from both the time and frequency domain were used as input parameters for construction of a decision tree which classifies the tool state into sharp or worn. The model was refined by selecting only the feature sources most important for classification. The best model achieves 90% accuracy in classification and relies only on features of the current signals, which simplifies its implementation in a CNC system for industrial applications.
AbstractList Process parameters of stone drilling with a small diameter twist drill were used to predict tool wear by means of a machine learning decision tree algorithm. The model links tool wear with features extracted from the force sensor and the main and feed drive current sensors signals recorded under different cutting conditions and different tool wear states. Signal features extracted from both the time and frequency domain were used as input parameters for construction of a decision tree which classifies the tool state into sharp or worn. The model was refined by selecting only the feature sources most important for classification. The best model achieves 90% accuracy in classification and relies only on features of the current signals, which simplifies its implementation in a CNC system for industrial applications.
Author Udiljak, Toma
Klaic, Miho
Staroveski, Tomislav
Author_xml – sequence: 1
  givenname: Miho
  surname: Klaic
  fullname: Klaic, Miho
  email: miho.klaic@fsb.hr
– sequence: 2
  givenname: Tomislav
  surname: Staroveski
  fullname: Staroveski, Tomislav
– sequence: 3
  givenname: Toma
  surname: Udiljak
  fullname: Udiljak, Toma
BookMark eNqFkMtOwzAQRS1UJErpH7DwDyT4kdRpF0hVy0uqBBKtWBrHmVRTuUlkB6T-PQntArGA2Xg8nnM9cy_JoKorIOSas5gzPrnZxY2vodrGgvEkZjLmIj0jQ54pFSmWZoMf-QUZh7BjfSgmUj4k7-u6dvQNjKcLZ0LAEq1psa7oJmC1pUuwGPrr2gN0Ffradt_TpUfn-vd507gTEWZ0Tl88ONxjZfyha_0oDlfkvDQuwPh0jsjm_m69eIxWzw9Pi_kqsjIVbQTKJqYwkueTQppiakpjJ1meWAXJVOQsY5BIIRVIyPJSpAKEzWWq-i4jCiFHJDnqWl-H4KHUjcd9N4bmTPdG6Z0-GqV7ozSTujOqw2a_MIvt9zqtN-j-g2-PMHSLfSJ4HSxCZaFAD7bVRY1_C3wB-pGKug
CitedBy_id crossref_primary_10_1007_s11740_018_0866_4
crossref_primary_10_1007_s10845_020_01635_5
crossref_primary_10_1520_SSMS20190039
crossref_primary_10_1016_j_procir_2020_03_063
crossref_primary_10_4028_www_scientific_net_AMM_760_495
crossref_primary_10_1016_j_wear_2015_10_006
crossref_primary_10_7736_JKSPE_024_026
crossref_primary_10_1016_j_wear_2018_05_012
crossref_primary_10_3390_ma13143232
crossref_primary_10_1007_s00170_019_04733_8
crossref_primary_10_1016_j_ifacol_2023_10_1541
crossref_primary_10_1007_s10845_023_02313_y
crossref_primary_10_4028_www_scientific_net_AMR_1039_155
crossref_primary_10_1109_TIM_2022_3165816
crossref_primary_10_1002_eng2_70279
crossref_primary_10_3390_ma13081931
crossref_primary_10_1007_s00603_016_1150_6
crossref_primary_10_1007_s40808_023_01901_4
crossref_primary_10_3390_logistics6020035
Cites_doi 10.1016/j.culher.2009.11.004
10.1016/S0890-6955(02)00040-8
10.1016/S0890-6955(03)00023-3
10.1127/1860-1804/2007/0158-0665
10.1016/j.ijmachtools.2005.05.012
10.1023/A:1008280620621
10.1016/S0890-6955(00)00112-7
10.1016/j.cirp.2010.05.010
10.1115/1.3439211
10.1016/S0890-6955(00)00111-5
10.1016/j.ijmachtools.2009.08.002
10.1016/0043-1648(94)06539-X
10.1515/rbm-2000-5478
10.1007/978-3-642-18638-7_6
10.1016/j.jmapro.2012.09.019
10.1016/S0890-6955(97)00066-7
10.2507/22nd.daaam.proceedings.012
10.1515/rbm-2004-5855
10.1016/j.ijmachtools.2009.10.004
ContentType Journal Article
Copyright 2014 The Authors
Copyright_xml – notice: 2014 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.proeng.2014.03.125
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1877-7058
EndPage 1335
ExternalDocumentID 10_1016_j_proeng_2014_03_125
S1877705814003713
GroupedDBID --K
0R~
0SF
1B1
4.4
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADMUD
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FEDTE
FNPLU
HVGLF
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
OZT
P2P
RIG
ROL
SES
SSZ
XH2
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c352t-e7c4ada31b6d3ad9afac68b4c7e492b080e43237e3e8bf252e2cb357ac68a2d23
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000335859300174&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1877-7058
IngestDate Sat Nov 29 05:43:38 EST 2025
Tue Nov 18 22:42:22 EST 2025
Fri Feb 23 02:33:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords tool wear
stone drilling
machine learning
tool condition monitoring
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-e7c4ada31b6d3ad9afac68b4c7e492b080e43237e3e8bf252e2cb357ac68a2d23
OpenAccessLink https://dx.doi.org/10.1016/j.proeng.2014.03.125
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_proeng_2014_03_125
crossref_citationtrail_10_1016_j_proeng_2014_03_125
elsevier_sciencedirect_doi_10_1016_j_proeng_2014_03_125
PublicationCentury 2000
PublicationDate 2014
2014-00-00
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle Procedia engineering
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References M. Pamplona, M. Kocher, L. Aires-Barros, “Drilling resistance: overview and outlook”, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, Vol. 158, no. 3, pp. 665-679, 2007.
I. Abu-Mahfouz, “Drilling wear detection and classification using vibration signals and artificial neural network”, International Journal of Machine Tools and Manufacture, Vol. 43, no. 7, pp. 707-720, 2003.
R. Teti, K. Jemielniak, G. O’Donnell, D. Dornfeld, “Advanced monitoring of machining operations”, CIRP Annals - Manufacturing Technology, Vol. 59, no. 2, pp. 717-739, 2010.
X. Wang, P.Y. Kwon, C. Sturtevant, D. Kim, J. Lantrip, “Tool wear of coated drills in drilling CFRP”, Journal of Manufacturing Processes, Vol. 15, no. 1, pp. 127-135, 2013.
G. Exadaktylos, P. Tiano, C. Flareto, “Validation of a model of rotary drilling of rocks with the drilling force measurement system”, International Journal for Restoration of Buildings and Monuments, Vol. 6, no. 3, pp. 307-340, 2000.
H.M. Ertunc, K.A. Loparo, H. Ocak, “Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs)”, International Journal of Machine Tools and Manufacture, Vol. 41, no. 9, pp. 1363-1384, 2001.
J. D. Rodrigues, D. Costa, “A New Method for Data Correction in Drill Resistance Tests for the Effect of Drill Bit Wear”, International Journal for Restoration, Vol. 10, no. 3, pp. 1-18, 2004.
T. Staroveski, D. Brezak, T. Udiljak, D. Majetic, “Experimental Machine Tool for Process Monitoring and Control Systems Research”, in 22nd Daaam International Symposium, Annals OfDaaam International 2011, Vienna, 2011, pp. 0023-0024.
L. A. Franco-Gasca, G. Herrera-Ruiz, R. Peniche-Vera, R. de J. Romero-Troncoso, W. Leal-Tafolla, “Sensorless tool failure monitoring system for drilling machines”, International Journal of Machine Tools and Manufacture, Vol. 46, no. 3-4, pp. 381-386, 2006.
E. Jantunen, “A summary of methods applied to tool condition monitoring in drilling”, Journal of Machine Tools and Manufacture, Vol. 42, no. 9, pp. 997-1010, 2002.
K. Subramanian, N.H. Cook, “Sensing of drill wear and prediction of drill life (I)”, Journal of Engineering for Industry, Transactions of the ASME, Vol. 99, no. 2, pp. 295-301, 1977.
A. Bartulović, “Stone drilling”, Diploma thesis, University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, 2013.
J. Ellson, E.R. Gansner, E. Koutsofios, S.C. North, G. Woodhull, “Graphviz and Dynagraph — Static and Dynamic Graph Drawing Tools”, in Graph Drawing Software., Springer Berlin Heidelberg, 2004, ch. Mathematics and Visualization, pp. 127-148.
L. Xiaoli, “On-line detection of the breakage of small diameter drills using current signature wavelet transform”, International Journal of Machine Tools and Manufacture, Vol. 39, no. 1, pp. 157-164, 1999.
T. Staroveski, “Wear Modelling of Medical Drill”, PhD thesis, University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, 2013.
I. Kononenko, E. Simec, M. Robnik-Sikonja, “Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF”, Applied Intelligence, Vol. 7, no. 1, pp. 39-55, 1997.
I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. San Francisco, CA, USA, Morgan Kaufmann, 1999.
S.C. Lin, C.J. Ting, “Tool wear monitoring in drilling using force signals”, Wear, Vol. 180, no. 1-2, pp. 53-60, 1995.
H.M. Ertunc, K.A. Loparo, “A decision fusion algorithm for tool wear condition monitoring in drilling”, International Journal of Machine Tools and Manufacture, Vol. 41, no. 9, pp. 1347-1362, 2001.
A. Faraz, D. Biermann, K. Weinert, “Cutting edge rounding: An innovative tool wear criterion in drilling CFRP composite laminates”, International Journal of Machine Tools and Manufacture, Vol. 49, no. 15, pp. 1185-1196, 2009.
M. Pamplona, M. Kocher, R. Snethlage, “Halite – A new calibration material for microdrilling resistance measurements”, Journal of cultural heritage, Vol. 11, no. 2, pp. 180-184, 2010.
D. Iliescu, D. Gehin, M.E. Gutierrez, F. Girot, “Modeling and tool wear in drilling of CFRP”, International Journal of Machine Tools and Manufacture, Vol. 50, no. 2, pp. 204-213, 2010.
10.1016/j.proeng.2014.03.125_bib0060
10.1016/j.proeng.2014.03.125_bib0070
10.1016/j.proeng.2014.03.125_bib0080
10.1016/j.proeng.2014.03.125_bib0090
10.1016/j.proeng.2014.03.125_bib0105
10.1016/j.proeng.2014.03.125_bib0005
10.1016/j.proeng.2014.03.125_bib0015
10.1016/j.proeng.2014.03.125_bib0025
10.1016/j.proeng.2014.03.125_bib0020
10.1016/j.proeng.2014.03.125_bib0075
10.1016/j.proeng.2014.03.125_bib0030
10.1016/j.proeng.2014.03.125_bib0085
10.1016/j.proeng.2014.03.125_bib0040
10.1016/j.proeng.2014.03.125_bib0095
10.1016/j.proeng.2014.03.125_bib0050
10.1016/j.proeng.2014.03.125_bib0035
10.1016/j.proeng.2014.03.125_bib0045
10.1016/j.proeng.2014.03.125_bib0100
10.1016/j.proeng.2014.03.125_bib0055
10.1016/j.proeng.2014.03.125_bib0110
10.1016/j.proeng.2014.03.125_bib0010
10.1016/j.proeng.2014.03.125_bib0065
References_xml – reference: X. Wang, P.Y. Kwon, C. Sturtevant, D. Kim, J. Lantrip, “Tool wear of coated drills in drilling CFRP”, Journal of Manufacturing Processes, Vol. 15, no. 1, pp. 127-135, 2013.
– reference: A. Faraz, D. Biermann, K. Weinert, “Cutting edge rounding: An innovative tool wear criterion in drilling CFRP composite laminates”, International Journal of Machine Tools and Manufacture, Vol. 49, no. 15, pp. 1185-1196, 2009.
– reference: I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. San Francisco, CA, USA, Morgan Kaufmann, 1999.
– reference: H.M. Ertunc, K.A. Loparo, H. Ocak, “Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs)”, International Journal of Machine Tools and Manufacture, Vol. 41, no. 9, pp. 1363-1384, 2001.
– reference: H.M. Ertunc, K.A. Loparo, “A decision fusion algorithm for tool wear condition monitoring in drilling”, International Journal of Machine Tools and Manufacture, Vol. 41, no. 9, pp. 1347-1362, 2001.
– reference: G. Exadaktylos, P. Tiano, C. Flareto, “Validation of a model of rotary drilling of rocks with the drilling force measurement system”, International Journal for Restoration of Buildings and Monuments, Vol. 6, no. 3, pp. 307-340, 2000.
– reference: E. Jantunen, “A summary of methods applied to tool condition monitoring in drilling”, Journal of Machine Tools and Manufacture, Vol. 42, no. 9, pp. 997-1010, 2002.
– reference: M. Pamplona, M. Kocher, L. Aires-Barros, “Drilling resistance: overview and outlook”, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, Vol. 158, no. 3, pp. 665-679, 2007.
– reference: L. Xiaoli, “On-line detection of the breakage of small diameter drills using current signature wavelet transform”, International Journal of Machine Tools and Manufacture, Vol. 39, no. 1, pp. 157-164, 1999.
– reference: I. Abu-Mahfouz, “Drilling wear detection and classification using vibration signals and artificial neural network”, International Journal of Machine Tools and Manufacture, Vol. 43, no. 7, pp. 707-720, 2003.
– reference: R. Teti, K. Jemielniak, G. O’Donnell, D. Dornfeld, “Advanced monitoring of machining operations”, CIRP Annals - Manufacturing Technology, Vol. 59, no. 2, pp. 717-739, 2010.
– reference: K. Subramanian, N.H. Cook, “Sensing of drill wear and prediction of drill life (I)”, Journal of Engineering for Industry, Transactions of the ASME, Vol. 99, no. 2, pp. 295-301, 1977.
– reference: I. Kononenko, E. Simec, M. Robnik-Sikonja, “Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF”, Applied Intelligence, Vol. 7, no. 1, pp. 39-55, 1997.
– reference: J. Ellson, E.R. Gansner, E. Koutsofios, S.C. North, G. Woodhull, “Graphviz and Dynagraph — Static and Dynamic Graph Drawing Tools”, in Graph Drawing Software., Springer Berlin Heidelberg, 2004, ch. Mathematics and Visualization, pp. 127-148.
– reference: T. Staroveski, “Wear Modelling of Medical Drill”, PhD thesis, University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Zagreb, 2013.
– reference: L. A. Franco-Gasca, G. Herrera-Ruiz, R. Peniche-Vera, R. de J. Romero-Troncoso, W. Leal-Tafolla, “Sensorless tool failure monitoring system for drilling machines”, International Journal of Machine Tools and Manufacture, Vol. 46, no. 3-4, pp. 381-386, 2006.
– reference: M. Pamplona, M. Kocher, R. Snethlage, “Halite – A new calibration material for microdrilling resistance measurements”, Journal of cultural heritage, Vol. 11, no. 2, pp. 180-184, 2010.
– reference: A. Bartulović, “Stone drilling”, Diploma thesis, University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, 2013.
– reference: S.C. Lin, C.J. Ting, “Tool wear monitoring in drilling using force signals”, Wear, Vol. 180, no. 1-2, pp. 53-60, 1995.
– reference: D. Iliescu, D. Gehin, M.E. Gutierrez, F. Girot, “Modeling and tool wear in drilling of CFRP”, International Journal of Machine Tools and Manufacture, Vol. 50, no. 2, pp. 204-213, 2010.
– reference: T. Staroveski, D. Brezak, T. Udiljak, D. Majetic, “Experimental Machine Tool for Process Monitoring and Control Systems Research”, in 22nd Daaam International Symposium, Annals OfDaaam International 2011, Vienna, 2011, pp. 0023-0024.
– reference: J. D. Rodrigues, D. Costa, “A New Method for Data Correction in Drill Resistance Tests for the Effect of Drill Bit Wear”, International Journal for Restoration, Vol. 10, no. 3, pp. 1-18, 2004.
– ident: 10.1016/j.proeng.2014.03.125_bib0070
  doi: 10.1016/j.culher.2009.11.004
– ident: 10.1016/j.proeng.2014.03.125_bib0010
  doi: 10.1016/S0890-6955(02)00040-8
– ident: 10.1016/j.proeng.2014.03.125_bib0020
  doi: 10.1016/S0890-6955(03)00023-3
– ident: 10.1016/j.proeng.2014.03.125_bib0095
– ident: 10.1016/j.proeng.2014.03.125_bib0080
  doi: 10.1127/1860-1804/2007/0158-0665
– ident: 10.1016/j.proeng.2014.03.125_bib0100
– ident: 10.1016/j.proeng.2014.03.125_bib0035
  doi: 10.1016/j.ijmachtools.2005.05.012
– ident: 10.1016/j.proeng.2014.03.125_bib0105
  doi: 10.1023/A:1008280620621
– ident: 10.1016/j.proeng.2014.03.125_bib0030
  doi: 10.1016/S0890-6955(00)00112-7
– ident: 10.1016/j.proeng.2014.03.125_bib0005
  doi: 10.1016/j.cirp.2010.05.010
– ident: 10.1016/j.proeng.2014.03.125_bib0085
– ident: 10.1016/j.proeng.2014.03.125_bib0045
  doi: 10.1115/1.3439211
– ident: 10.1016/j.proeng.2014.03.125_bib0015
  doi: 10.1016/S0890-6955(00)00111-5
– ident: 10.1016/j.proeng.2014.03.125_bib0025
  doi: 10.1016/j.ijmachtools.2009.08.002
– ident: 10.1016/j.proeng.2014.03.125_bib0040
  doi: 10.1016/0043-1648(94)06539-X
– ident: 10.1016/j.proeng.2014.03.125_bib0065
  doi: 10.1515/rbm-2000-5478
– ident: 10.1016/j.proeng.2014.03.125_bib0110
  doi: 10.1007/978-3-642-18638-7_6
– ident: 10.1016/j.proeng.2014.03.125_bib0055
  doi: 10.1016/j.jmapro.2012.09.019
– ident: 10.1016/j.proeng.2014.03.125_bib0050
  doi: 10.1016/S0890-6955(97)00066-7
– ident: 10.1016/j.proeng.2014.03.125_bib0090
  doi: 10.2507/22nd.daaam.proceedings.012
– ident: 10.1016/j.proeng.2014.03.125_bib0075
  doi: 10.1515/rbm-2004-5855
– ident: 10.1016/j.proeng.2014.03.125_bib0060
  doi: 10.1016/j.ijmachtools.2009.10.004
SSID ssj0000070251
Score 2.109992
Snippet Process parameters of stone drilling with a small diameter twist drill were used to predict tool wear by means of a machine learning decision tree algorithm....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1326
SubjectTerms machine learning
stone drilling
tool condition monitoring
tool wear
Title Tool Wear Classification Using Decision Treesin Stone Drilling Applications: A Preliminary Study
URI https://dx.doi.org/10.1016/j.proeng.2014.03.125
Volume 69
WOSCitedRecordID wos000335859300174&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-7058
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0000070251
  issn: 1877-7058
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfK4AEeJj7FxkB-4K0KauykTnirtiEeYJpEJ_YWbOciWqJ2Cl21vfC3c2c7aQYVXxIvUevEder76XJ3ufsdYy91BYmwNo1kAtTCbGwjYt6LQMMoLpO4VJ5d_506OcnOz_PTweC6rYVZ12qxyK6u8ov_KmocQ2FT6exfiLv7URzAzyh0PKLY8fhngidWzY_Ez-MaXlIqkBeyzw44Ck11htMGAEc8HffwqJl5du5J7422L1s_baB2vb-aa5d2eONFsCs0QIwNYUNs2CnxWs-sz83_vOxCOSvdLNcQ2mVPl4izWq_bs2flrJ7rL-GU7sck4k00siuT2eQkkVbNlIrUyHO0v4ItY0EV-64tQZeinzzuPZfRmU636nwffpjTEwf_KmXrJcRbG_uC6h_YtD_QurQsOpbEVihvsdsC8Uh--_tvm_Ac0SAJ17yzu9G28NJlB_682HbDpmesTO-z3eBl8IlHxwM2gMVDdq_HPfmIfSKccMIJv4kT7nDCW5zwgBPucMJbnPA-Tl7zCe-hhDuUPGZnb46nh2-j0G4jsmiFryJQNtGllrEZl1KXua60HWcmsQqSXBh0LSCRQiqQkJlKpAKENTJVdJUWpZBP2M4C7-Qp4zZPrbTGZNqKRFYqryBXlTZlXmbSZGaPyXavChu46KklSl20SYfzwu9wQTtcjGSBO7zHom7Whedi-c31qhVDEexJbycWCJ1fztz_55nP2F365oN0B2xn1VzCc3bHrlezr80Lh7HvS5mgSg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tool+Wear+Classification+Using+Decision+Treesin+Stone+Drilling+Applications%3A+A+Preliminary+Study&rft.jtitle=Procedia+engineering&rft.au=Klaic%2C+Miho&rft.au=Staroveski%2C+Tomislav&rft.au=Udiljak%2C+Toma&rft.date=2014&rft.pub=Elsevier+Ltd&rft.issn=1877-7058&rft.eissn=1877-7058&rft.volume=69&rft.spage=1326&rft.epage=1335&rft_id=info:doi/10.1016%2Fj.proeng.2014.03.125&rft.externalDocID=S1877705814003713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7058&client=summon