Passive distributed temperature sensing (PDTS)-based moisture content estimation in agricultural soils under different vegetative canopies
A semi-empirical Boltzmann model is proposed to describe the relationship between the rate of temperature increase and soil moisture content, which can replace the existing complicated numerical iterative algorithm. The proposed method greatly simplifies the calculation process and improves the appl...
Gespeichert in:
| Veröffentlicht in: | Paddy and water environment Jg. 19; H. 3; S. 383 - 393 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Singapore
Springer Singapore
01.07.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1611-2490, 1611-2504 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A semi-empirical Boltzmann model is proposed to describe the relationship between the rate of temperature increase and soil moisture content, which can replace the existing complicated numerical iterative algorithm. The proposed method greatly simplifies the calculation process and improves the applicability of the passive distributed temperature sensing (PDTS) technology. A field test was performed in the Loess Plateau of China to validate the capability of this method. The field site has four typical land cover conditions: bare soil (G1), plastic mulch (G2), plastic mulch cover with potatoes (G3), and plastic much cover with maize (G4). The monitoring results indicate that for G1 and G2, the relationship between soil moisture content and the rate of temperature increase can be quantitatively described by the Boltzmann model with a root-mean-square error of 0.024 m
3
/m
3
. For G3, a linear relationship is found. In contrast, the PDTS technology is not applicable for G4 because a constant ground surface heat power from solar radiation and small air temperature fluctuations are preconditions of PDTS. If the coefficient of determination (
R
2
) for fitting rate of temperature increase is larger than 0.9, the ground surface heat power by solar radiation can be considered as a constant. |
|---|---|
| AbstractList | A semi-empirical Boltzmann model is proposed to describe the relationship between the rate of temperature increase and soil moisture content, which can replace the existing complicated numerical iterative algorithm. The proposed method greatly simplifies the calculation process and improves the applicability of the passive distributed temperature sensing (PDTS) technology. A field test was performed in the Loess Plateau of China to validate the capability of this method. The field site has four typical land cover conditions: bare soil (G1), plastic mulch (G2), plastic mulch cover with potatoes (G3), and plastic much cover with maize (G4). The monitoring results indicate that for G1 and G2, the relationship between soil moisture content and the rate of temperature increase can be quantitatively described by the Boltzmann model with a root-mean-square error of 0.024 m3/m3. For G3, a linear relationship is found. In contrast, the PDTS technology is not applicable for G4 because a constant ground surface heat power from solar radiation and small air temperature fluctuations are preconditions of PDTS. If the coefficient of determination (R2) for fitting rate of temperature increase is larger than 0.9, the ground surface heat power by solar radiation can be considered as a constant. A semi-empirical Boltzmann model is proposed to describe the relationship between the rate of temperature increase and soil moisture content, which can replace the existing complicated numerical iterative algorithm. The proposed method greatly simplifies the calculation process and improves the applicability of the passive distributed temperature sensing (PDTS) technology. A field test was performed in the Loess Plateau of China to validate the capability of this method. The field site has four typical land cover conditions: bare soil (G1), plastic mulch (G2), plastic mulch cover with potatoes (G3), and plastic much cover with maize (G4). The monitoring results indicate that for G1 and G2, the relationship between soil moisture content and the rate of temperature increase can be quantitatively described by the Boltzmann model with a root-mean-square error of 0.024 m 3 /m 3 . For G3, a linear relationship is found. In contrast, the PDTS technology is not applicable for G4 because a constant ground surface heat power from solar radiation and small air temperature fluctuations are preconditions of PDTS. If the coefficient of determination ( R 2 ) for fitting rate of temperature increase is larger than 0.9, the ground surface heat power by solar radiation can be considered as a constant. |
| Author | Zhu, Hong-hu Wang, Jiachen Cao, Ding-feng Wu, Bing Guo, Chengchao |
| Author_xml | – sequence: 1 givenname: Ding-feng surname: Cao fullname: Cao, Ding-feng organization: School of Civil Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Marine Civil Engineering – sequence: 2 givenname: Hong-hu orcidid: 0000-0002-1312-0410 surname: Zhu fullname: Zhu, Hong-hu email: zhh@nju.edu.cn organization: School of Earth Sciences and Engineering, Nanjing University – sequence: 3 givenname: Chengchao surname: Guo fullname: Guo, Chengchao organization: School of Civil Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Marine Civil Engineering – sequence: 4 givenname: Bing surname: Wu fullname: Wu, Bing organization: School of Earth Sciences and Engineering, Nanjing University – sequence: 5 givenname: Jiachen surname: Wang fullname: Wang, Jiachen organization: School of Earth Sciences and Engineering, Nanjing University |
| BookMark | eNp9kMtKJDEUhoMoeJsXmFXAjbMoJ5eqVNVSehwdEEawXYd06qSJVCdtTqrBV_CpJ92tCLNwlUC-L_85_yk5DDEAId85u-KMtT-RMyllxQSvGOtkX6kDcsIV55VoWH34ca97dkxOEZ8ZE20t-Ql5ezCIfgN08JiTX0wZBpphtYZk8pSAIgT0YUkvH37NH39UC4MFWMVCb19tDBlCpoDZr0z2MVAfqFkmb6exEGakGP2IdAoDpBLiHKStsIEl5CKUZGtCXHvAc3LkzIjw7f08I0-_b-azu-r-7-2f2fV9ZWUjcgWiUQK4MA0w0TTWyWHRDaWEvqlr65wEMEo5Y1vouXCKDYPqJatFq9q2c608Ixf7f9cpvkxlcv0cpxRKpBZN3fWi7_ot1e0pmyJiAqetz7sNczJ-1JzpbfN637wuzetd81oVVfynrlNpJ71-Lcm9hAUOS0ifU31h_QPWs5tP |
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2023_129449 crossref_primary_10_1088_1755_1315_861_4_042042 crossref_primary_10_1007_s10333_022_00896_5 crossref_primary_10_1007_s10333_022_00900_y |
| Cites_doi | 10.1007/s10333-017-0622-y 10.1016/j.agwat.2017.12.008 10.1029/2009WR007846 10.1111/j.1745-6584.2012.00928.x 10.1016/j.still.2014.09.010 10.1016/j.measurement.2018.03.052 10.1016/j.advwatres.2015.05.017 10.1002/2013WR014983 10.3390/w11040645 10.1002/hyp.10615 10.1016/j.jhydrol.2012.06.021 10.1002/2015WR017897 10.1016/j.advwatres.2016.03.008 10.1016/j.enbuild.2018.01.022 10.2136/vzj2014.02.0014 10.1016/j.fcr.2005.01.030 10.1520/JTE20180320 10.1016/j.fcr.2018.05.019 10.1029/2009WR008272 10.2136/vzj2016.10.010 10.1007/s10333-018-0660-0 10.1016/j.agwat.2018.08.008 10.1016/j.agwat.2012.10.012 10.2136/vzj2011.0199 10.1016/j.measurement.2014.04.007 10.1016/j.fcr.2019.01.009 10.1002/2015WR018425 |
| ContentType | Journal Article |
| Copyright | The International Society of Paddy and Water Environment Engineering 2021 The International Society of Paddy and Water Environment Engineering 2021. |
| Copyright_xml | – notice: The International Society of Paddy and Water Environment Engineering 2021 – notice: The International Society of Paddy and Water Environment Engineering 2021. |
| DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H95 L.G SOI |
| DOI | 10.1007/s10333-021-00839-6 |
| DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1611-2504 |
| EndPage | 393 |
| ExternalDocumentID | 10_1007_s10333_021_00839_6 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41907244; 41722209 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: China Postdoctoral Science Foundation grantid: 2019M653180 funderid: http://dx.doi.org/10.13039/501100002858 – fundername: Fundamental Research Funds for the Central University grantid: 19lgpy254 – fundername: National Key Research and Development Program of China grantid: 2018YFC1505104; 2018YFC1802303 – fundername: Department of Housing and Urban-Rural Development of Gansu Province grantid: JK2019-05 |
| GroupedDBID | -56 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5VS 67M 67Z 6NX 7X2 7XC 88I 8CJ 8FE 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG APEBS ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV L8X LAS LLZTM M0K M2P M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM PATMY PCBAR PF0 PQQKQ PROAC PT4 PYCSY Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT 7QH 7ST 7UA C1K F1W H95 L.G SOI |
| ID | FETCH-LOGICAL-c352t-e2562e12a5e0255cf3db8d0079544cff3eea66fac7e912f60dd69304276778f73 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000610042500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1611-2490 |
| IngestDate | Thu Sep 25 00:38:35 EDT 2025 Tue Nov 18 20:04:15 EST 2025 Sat Nov 29 02:33:30 EST 2025 Fri Feb 21 02:48:29 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Optical fibre Distributed fibre optic sensing (DFOS) Soil moisture Field soil moisture monitoring Loess Plateau |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-e2562e12a5e0255cf3db8d0079544cff3eea66fac7e912f60dd69304276778f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1312-0410 |
| PQID | 2548929897 |
| PQPubID | 54526 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2548929897 crossref_citationtrail_10_1007_s10333_021_00839_6 crossref_primary_10_1007_s10333_021_00839_6 springer_journals_10_1007_s10333_021_00839_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Dordrecht |
| PublicationTitle | Paddy and water environment |
| PublicationTitleAbbrev | Paddy Water Environ |
| PublicationYear | 2021 |
| Publisher | Springer Singapore Springer Nature B.V |
| Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V |
| References | Sayde, Gregory, Gil-Rodriguez, Tufillaro, Tyler, van de Giesen, English, Cuenca, Selker (CR18) 2010; 46 Steele-Dunne, Rutten, Krzeminska, Hausner, Tyler, Selker, Bogaard, van de Giesen (CR21) 2010; 46 Jonubi, Rezaverdinejad, Salemi (CR15) 2018; 16 Tan, Shao, Gu (CR24) 2018; 16 Cao, Shi, Zhu, Inyang, Wei, Zhang, Tang (CR6) 2019; 11 Dong, Steele-Dunne, Judge, van de Giesen (CR9) 2015; 83 Gil-Rodríguez, Rodríguez-Sinobas, Benítez-Buelga, Sánchez-Calvo (CR13) 2013; 120 Benítez-Buelga, Rodríguez-Sinobas, Sánchez Calvo, Gil-Rodríguez, Sayde, Selker (CR2) 2016; 52 Dong, Steele-Dunne, Ochsner, van de Giesen (CR10) 2016; 91 Zhang, Hu, Zhang, Li (CR25) 2015; 145 Ciocca, Lunati, Van de Giesen, Parlange (CR7) 2012; 11 Cao, Shi, Wei, Chen, Zhu (CR4) 2018; 123 Cao, Shi, Loheide, Gong, Zhu, Wei, Yang (CR5) 2018; 173 Striegl, Loheide (CR22) 2012; 50 Sayde, Buelga, Rodriguez-Sinobas, Khoury, English, van de Giesen, Selker (CR19) 2014; 50 Ramakrishna, Tam, Wani, Long (CR17) 2006; 95 Sourbeer, Loheide (CR20) 2016; 30 He, Wang, Cao, Dai, Li, Xue (CR14) 2018; 225 Benítez-Buelga, Sayde, Rodríguez-Sinobas, Selker (CR1) 2014; 13 Zhang, Zhao, Yang (CR26) 2019; 233 Bi, Qiu, Zhakypbek, Jiang, Cai, Sun (CR3) 2018; 201 Zubelzu, Rodriguez-Sinobas, Saa-Requejo, Benitez, Tarquis (CR27) 2019; 212 Dobriyal, Qureshi, Badola, Hussain (CR8) 2012; 458–459 Susha, Singh, Maryam (CR23) 2014; 54 Gadi, Garg, Manogaran, Sekharan, Zhu (CR12) 2020; 48 Dong, Steele-Dunne, Ochsner, van de Giesen (CR11) 2016; 52 Mohanty, Cosh, Lakshmi, Montzka (CR16) 2017; 16 C Sayde (839_CR19) 2014; 50 R Jonubi (839_CR15) 2018; 16 F Ciocca (839_CR7) 2012; 11 C Sayde (839_CR18) 2010; 46 JJ Sourbeer (839_CR20) 2016; 30 GS Zhang (839_CR25) 2015; 145 AM Striegl (839_CR22) 2012; 50 SC Steele-Dunne (839_CR21) 2010; 46 J Dong (839_CR11) 2016; 52 J Dong (839_CR9) 2015; 83 BP Mohanty (839_CR16) 2017; 16 LSU Susha (839_CR23) 2014; 54 XX Zhang (839_CR26) 2019; 233 DF Cao (839_CR5) 2018; 173 M Gil-Rodríguez (839_CR13) 2013; 120 J Benítez-Buelga (839_CR1) 2014; 13 DF Cao (839_CR4) 2018; 123 DF Cao (839_CR6) 2019; 11 VK Gadi (839_CR12) 2020; 48 S Zubelzu (839_CR27) 2019; 212 J Benítez-Buelga (839_CR2) 2016; 52 J Dong (839_CR10) 2016; 91 G He (839_CR14) 2018; 225 X Tan (839_CR24) 2018; 16 P Dobriyal (839_CR8) 2012; 458–459 Y Bi (839_CR3) 2018; 201 A Ramakrishna (839_CR17) 2006; 95 |
| References_xml | – volume: 16 start-page: 125 year: 2018 end-page: 141 ident: CR15 article-title: Enhancing field scale water productivity for several rice cultivars under limited water supply publication-title: Paddy Water Environ doi: 10.1007/s10333-017-0622-y – volume: 201 start-page: 278 year: 2018 end-page: 286 ident: CR3 article-title: Combination of plastic film mulching and AMF inoculation promotes maize growth, yield and water use efficiency in the semiarid region of Northwest China publication-title: Agric Water Manag doi: 10.1016/j.agwat.2017.12.008 – volume: 46 start-page: 2840 year: 2010 end-page: 2849 ident: CR18 article-title: Feasibility of soil moisture monitoring with heated fiber optics publication-title: Water Resour Res doi: 10.1029/2009WR007846 – volume: 50 start-page: 340 year: 2012 end-page: 347 ident: CR22 article-title: Heated distributed temperature sensing for field scale soil moisture monitoring publication-title: Groundwater doi: 10.1111/j.1745-6584.2012.00928.x – volume: 145 start-page: 111 year: 2015 end-page: 117 ident: CR25 article-title: Effects of plastic mulch and crop rotation on soil physical properties in rain-fed vegetable production in the mid-Yunnan plateau, China publication-title: Soil Tillage Res doi: 10.1016/j.still.2014.09.010 – volume: 123 start-page: 175 year: 2018 end-page: 184 ident: CR4 article-title: An improved distributed sensing method for monitoring soil moisture profile using heated carbon fibers publication-title: Measurement doi: 10.1016/j.measurement.2018.03.052 – volume: 83 start-page: 111 year: 2015 end-page: 122 ident: CR9 article-title: A particle batch smoother for soil moisture estimation using soil temperature observations publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2015.05.017 – volume: 50 start-page: 7302 year: 2014 end-page: 7317 ident: CR19 article-title: Mapping variability of soil water content and flux across 1–1000 m scales using the actively heated fiber optic method publication-title: Water Resour Res doi: 10.1002/2013WR014983 – volume: 11 start-page: 645 issue: 4 year: 2019 ident: CR6 article-title: Feasibility investigation of improving the modified Green–Ampt model for treatment of horizontal infiltration in soil publication-title: Water doi: 10.3390/w11040645 – volume: 30 start-page: 1017 year: 2016 end-page: 1035 ident: CR20 article-title: Obstacles to long-term soil moisture monitoring with heated distributed temperature sensing publication-title: Hydrol Process doi: 10.1002/hyp.10615 – volume: 458–459 start-page: 110 year: 2012 end-page: 117 ident: CR8 article-title: A review of the methods available for estimating soil moisture and its implications for water resource management publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.06.021 – volume: 52 start-page: 2985 year: 2016 end-page: 2995 ident: CR2 article-title: Calibration of soil moisture sensing with subsurface heated fiber optics using numerical simulation publication-title: Water Resour Res doi: 10.1002/2015WR017897 – volume: 91 start-page: 104 year: 2016 end-page: 116 ident: CR10 article-title: Estimating soil moisture and soil thermal and hydraulic properties by assimilating soil temperature using a particle batch smoother publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2016.03.008 – volume: 173 start-page: 239 year: 2018 end-page: 251 ident: CR5 article-title: Investigation of the influence of soil moisture on thermal response tests using active distributed temperature sensing (A-DTS) technology publication-title: Energy Build doi: 10.1016/j.enbuild.2018.01.022 – volume: 13 start-page: 1 year: 2014 end-page: 12 ident: CR1 article-title: Heated fiber optic distributed temperature sensing: a dual-probe heat-pulse approach publication-title: Vadose Zone J doi: 10.2136/vzj2014.02.0014 – volume: 95 start-page: 115 year: 2006 end-page: 125 ident: CR17 article-title: Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam publication-title: Field Crop Res doi: 10.1016/j.fcr.2005.01.030 – volume: 48 start-page: 4053 issue: 5 year: 2020 end-page: 4066 ident: CR12 article-title: Understanding soil surface water content using light reflection theory: a novel color analysis technique considering variability in light intensity publication-title: J Test Eval doi: 10.1520/JTE20180320 – volume: 225 start-page: 1 year: 2018 end-page: 8 ident: CR14 article-title: Year-round plastic film mulch to increase wheat yield and economic returns while reducing environmental risk in dryland of the Loess Plateau publication-title: Field Crop Res doi: 10.1016/j.fcr.2018.05.019 – volume: 46 start-page: 1 issue: W03535 year: 2010 end-page: 12 ident: CR21 article-title: Feasibility of soil moisture estimation using passive distributed temperature sensing publication-title: Water Resour Res doi: 10.1029/2009WR008272 – volume: 16 start-page: 1 year: 2017 end-page: 9 ident: CR16 article-title: Soil moisture remote sensing: state-of-the-science publication-title: Vadose Zone J doi: 10.2136/vzj2016.10.010 – volume: 16 start-page: 687 year: 2018 end-page: 698 ident: CR24 article-title: Effects of temperature and soil moisture on gross nitrification and denitrification rates of a Chinese lowland paddy field soil publication-title: Paddy Water Environ doi: 10.1007/s10333-018-0660-0 – volume: 212 start-page: 193 year: 2019 end-page: 202 ident: CR27 article-title: Assessing soil water content variability through active heat distributed fiber optic temperature sensing publication-title: Agric Water Manag doi: 10.1016/j.agwat.2018.08.008 – volume: 120 start-page: 72 year: 2013 end-page: 78 ident: CR13 article-title: Application of active heat pulse method with fiber optic temperature sensing for estimation of wetting bulbs and water distribution in drip emitters publication-title: Agric Water Manag doi: 10.1016/j.agwat.2012.10.012 – volume: 11 start-page: 1 issue: 4 year: 2012 end-page: 10 ident: CR7 article-title: Heated optical fiber for distributed soil-moisture measurements: a lysimeter experiment publication-title: Vadose Zone J doi: 10.2136/vzj2011.0199 – volume: 54 start-page: 92 year: 2014 end-page: 105 ident: CR23 article-title: A critical review of soil moisture measurement publication-title: Measurement doi: 10.1016/j.measurement.2014.04.007 – volume: 233 start-page: 121 year: 2019 end-page: 130 ident: CR26 article-title: Ridge-furrow mulching system regulates diurnal temperature amplitude and wetting-drying alternation behavior in soil to promote maize growth and water use in a semiarid region publication-title: Field Crop Res doi: 10.1016/j.fcr.2019.01.009 – volume: 52 start-page: 4280 year: 2016 end-page: 4300 ident: CR11 article-title: Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures publication-title: Water Resour Res doi: 10.1002/2015WR018425 – volume: 120 start-page: 72 year: 2013 ident: 839_CR13 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2012.10.012 – volume: 458–459 start-page: 110 year: 2012 ident: 839_CR8 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.06.021 – volume: 83 start-page: 111 year: 2015 ident: 839_CR9 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2015.05.017 – volume: 201 start-page: 278 year: 2018 ident: 839_CR3 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2017.12.008 – volume: 145 start-page: 111 year: 2015 ident: 839_CR25 publication-title: Soil Tillage Res doi: 10.1016/j.still.2014.09.010 – volume: 212 start-page: 193 year: 2019 ident: 839_CR27 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2018.08.008 – volume: 30 start-page: 1017 year: 2016 ident: 839_CR20 publication-title: Hydrol Process doi: 10.1002/hyp.10615 – volume: 11 start-page: 645 issue: 4 year: 2019 ident: 839_CR6 publication-title: Water doi: 10.3390/w11040645 – volume: 48 start-page: 4053 issue: 5 year: 2020 ident: 839_CR12 publication-title: J Test Eval doi: 10.1520/JTE20180320 – volume: 173 start-page: 239 year: 2018 ident: 839_CR5 publication-title: Energy Build doi: 10.1016/j.enbuild.2018.01.022 – volume: 225 start-page: 1 year: 2018 ident: 839_CR14 publication-title: Field Crop Res doi: 10.1016/j.fcr.2018.05.019 – volume: 16 start-page: 687 year: 2018 ident: 839_CR24 publication-title: Paddy Water Environ doi: 10.1007/s10333-018-0660-0 – volume: 123 start-page: 175 year: 2018 ident: 839_CR4 publication-title: Measurement doi: 10.1016/j.measurement.2018.03.052 – volume: 46 start-page: 2840 year: 2010 ident: 839_CR18 publication-title: Water Resour Res doi: 10.1029/2009WR007846 – volume: 50 start-page: 7302 year: 2014 ident: 839_CR19 publication-title: Water Resour Res doi: 10.1002/2013WR014983 – volume: 13 start-page: 1 year: 2014 ident: 839_CR1 publication-title: Vadose Zone J doi: 10.2136/vzj2014.02.0014 – volume: 16 start-page: 1 year: 2017 ident: 839_CR16 publication-title: Vadose Zone J doi: 10.2136/vzj2016.10.010 – volume: 54 start-page: 92 year: 2014 ident: 839_CR23 publication-title: Measurement doi: 10.1016/j.measurement.2014.04.007 – volume: 11 start-page: 1 issue: 4 year: 2012 ident: 839_CR7 publication-title: Vadose Zone J doi: 10.2136/vzj2011.0199 – volume: 46 start-page: 1 issue: W03535 year: 2010 ident: 839_CR21 publication-title: Water Resour Res doi: 10.1029/2009WR008272 – volume: 16 start-page: 125 year: 2018 ident: 839_CR15 publication-title: Paddy Water Environ doi: 10.1007/s10333-017-0622-y – volume: 50 start-page: 340 year: 2012 ident: 839_CR22 publication-title: Groundwater doi: 10.1111/j.1745-6584.2012.00928.x – volume: 95 start-page: 115 year: 2006 ident: 839_CR17 publication-title: Field Crop Res doi: 10.1016/j.fcr.2005.01.030 – volume: 233 start-page: 121 year: 2019 ident: 839_CR26 publication-title: Field Crop Res doi: 10.1016/j.fcr.2019.01.009 – volume: 52 start-page: 4280 year: 2016 ident: 839_CR11 publication-title: Water Resour Res doi: 10.1002/2015WR018425 – volume: 91 start-page: 104 year: 2016 ident: 839_CR10 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2016.03.008 – volume: 52 start-page: 2985 year: 2016 ident: 839_CR2 publication-title: Water Resour Res doi: 10.1002/2015WR017897 |
| SSID | ssj0027431 |
| Score | 2.2376971 |
| Snippet | A semi-empirical Boltzmann model is proposed to describe the relationship between the rate of temperature increase and soil moisture content, which can replace... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 383 |
| SubjectTerms | Agricultural land Agriculture Air temperature Biomedical and Life Sciences Ecotoxicology Field tests Geoecology/Natural Processes Hydrogeology Hydrology/Water Resources Iterative algorithms Iterative methods Land cover Life Sciences Mathematical analysis Moisture content Plastics Radiation Soil Soil conditions Soil moisture Soil Science & Conservation Soil temperature Solar radiation Technology Water content |
| Title | Passive distributed temperature sensing (PDTS)-based moisture content estimation in agricultural soils under different vegetative canopies |
| URI | https://link.springer.com/article/10.1007/s10333-021-00839-6 https://www.proquest.com/docview/2548929897 |
| Volume | 19 |
| WOSCitedRecordID | wos000610042500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1611-2504 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027431 issn: 1611-2490 databaseCode: RSV dateStart: 20030301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDI1gcIAD34jBQDlwAEGktVnT9jgBE6dp0gbarWoTZ5oE3bSO_Qh-NXbXbgMBEpyTJm3sxs-y_czYpVO3hFoDASo0ApXCEUHiagGJ8XyQGkw9yZtN-O120O-HnaIoLCuz3cuQZH5TrxS7SUkxR3R_ETeEQq2zDY_YZshH7z6vuFl5F0KEMo5A56JelMp8v8Znc7TEmF_Corm1ae3-7z332E6BLnlzrg77bA3SA7bdHEwKhg04ZO8dhMt4xXFDlLnU7QoMJ4Kqgl2ZZ5TSng74Vee-170WZOYMfx3hbBql1Ha0U5zIOeZVj3yY8nixA-6ejYYvGafitAkv-69M-QwGeWYj7ozSHI3RQz9iT62H3t2jKBoyCI04bSoA8ZELjht7QK6IttIkgcGPDr1GQ1srAWKlbKx9CB3Xqrox1Gmx4fpEU2d9ecwq6SiFE8YDGSc4pqynZENqP7GxtYmEJNAKZQpV5pRyiXTBVk5NM16iJc8ynXOE5xzl5xypKrtZPDOec3X8OrtWijsq_tssQnc5CImU3q-y21K8y-GfVzv92_QztuXmGkJ5vzVWmU7e4Jxt6tl0mE0ucn3-AH8_8ag |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xqEQ5AC2gLk8feqACS0mcdZIj4iEQdLUSC-IWJfZ4tRJk0WbLj-ivZiabsIBaJDjbsRPPxP5Gnvk-gJ--5xi1xhJ1YiU5hS_jPDASc9uOUBm0Xl6JTUSdTnx7m3TrorCyyXZvriSrnfpFsZtSfOdI4S_hhkTqWZgPWWaHY_SrmxdhVqVCSFDGlxRceHWpzL_HeH0cTTHmm2vR6rQ5Xf7ce67AUo0uxeHEHb7BDBbfYfGwP6oZNnAV_nYJLtMWJyxT5rLaFVrBBFU1u7IoOaW96Iu97nHv6pfkY86K-yH15lZObadzSjA5x6TqUQwKkT3PQLOXw8FdKbg4bSQa_ZWxeMR-ldlIM5M1hw8Uoa_B9elJ7-hM1oIM0hBOG0skfBSgH2Rt5FDEOGXz2NJHJ-0wNM4pxExrl5kIEz9w2rOWlRbDIGKaOhepdZgrhgX-ABGrLKc27dpahcpEucucyxXmsdFeEmEL_MYuqanZylk04y6d8izzOqe0zmm1zqluwf7zMw8Tro53e2815k7r_7ZMKVyOEyalj1pw0Jh32vz_0TY-1n0XFs56vy_Ty_POxSZ8DSpv4RzgLZgbj_7gNnwxj-NBOdqpfPsJ2r30jA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RQFV74FWqbnn5wAHUWiRx1kmOqHQFAq1WPCpuUWKPVytBdrVJ-RH91Z3JJuy2aitVnO3YjmcSf5888w3Aoe85Rq2xRJ1YSU7hyzgPjMTcdiNUBq2X18Umon4_vr9PBgtZ_HW0e3slOctpYJWmojqZWHeykPimFN8_EhUmDJFI_QpWQmIyHNR1ffNtgXLVFQkJ1viSiIbXpM38eYxfj6Y53vztirQ-eXrrL1_zBqw1qFOcztxkE5aw2IK3p8Npo7yB7-DHgGA0_fqEZSldroKFVrBwVaO6LEoOdS-G4mhwdntzLPn4s-JxTL25tVmLYNGOWTakGBUie56BZi_Ho4dScNLaVLR1WSrxhMM64pFmJiuPJ8Tct-Gu9_X2y7lsCjVIQ_itkki4KUA_yLrIFMU4ZfPY0ksn3TA0zinETGuXmQgTP3Das5YrMIZBxPJ1LlLvYbkYF_gBRKyynNq062oVKhPlLnMuV5jHRntJhB3wWxulplEx52IaD-lcf5n3OaV9Tut9TnUHPj0_M5lpePyz925r-rT5nsuUaHScsFh91IHPrannzX8f7eP_dT-A14OzXnp10b_cgTdB7SwcGrwLy9X0O-7BqnmqRuV0v3bznx5a_XA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passive+distributed+temperature+sensing+%28PDTS%29-based+moisture+content+estimation+in+agricultural+soils+under+different+vegetative+canopies&rft.jtitle=Paddy+and+water+environment&rft.au=Cao%2C+Ding-feng&rft.au=Zhu%2C+Hong-hu&rft.au=Guo%2C+Chengchao&rft.au=Wu%2C+Bing&rft.date=2021-07-01&rft.issn=1611-2490&rft.eissn=1611-2504&rft.volume=19&rft.issue=3&rft.spage=383&rft.epage=393&rft_id=info:doi/10.1007%2Fs10333-021-00839-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10333_021_00839_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1611-2490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1611-2490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1611-2490&client=summon |