Passive distributed temperature sensing (PDTS)-based moisture content estimation in agricultural soils under different vegetative canopies

A semi-empirical Boltzmann model is proposed to describe the relationship between the rate of temperature increase and soil moisture content, which can replace the existing complicated numerical iterative algorithm. The proposed method greatly simplifies the calculation process and improves the appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Paddy and water environment Jg. 19; H. 3; S. 383 - 393
Hauptverfasser: Cao, Ding-feng, Zhu, Hong-hu, Guo, Chengchao, Wu, Bing, Wang, Jiachen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Singapore Springer Singapore 01.07.2021
Springer Nature B.V
Schlagworte:
ISSN:1611-2490, 1611-2504
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A semi-empirical Boltzmann model is proposed to describe the relationship between the rate of temperature increase and soil moisture content, which can replace the existing complicated numerical iterative algorithm. The proposed method greatly simplifies the calculation process and improves the applicability of the passive distributed temperature sensing (PDTS) technology. A field test was performed in the Loess Plateau of China to validate the capability of this method. The field site has four typical land cover conditions: bare soil (G1), plastic mulch (G2), plastic mulch cover with potatoes (G3), and plastic much cover with maize (G4). The monitoring results indicate that for G1 and G2, the relationship between soil moisture content and the rate of temperature increase can be quantitatively described by the Boltzmann model with a root-mean-square error of 0.024 m 3 /m 3 . For G3, a linear relationship is found. In contrast, the PDTS technology is not applicable for G4 because a constant ground surface heat power from solar radiation and small air temperature fluctuations are preconditions of PDTS. If the coefficient of determination ( R 2 ) for fitting rate of temperature increase is larger than 0.9, the ground surface heat power by solar radiation can be considered as a constant.
AbstractList A semi-empirical Boltzmann model is proposed to describe the relationship between the rate of temperature increase and soil moisture content, which can replace the existing complicated numerical iterative algorithm. The proposed method greatly simplifies the calculation process and improves the applicability of the passive distributed temperature sensing (PDTS) technology. A field test was performed in the Loess Plateau of China to validate the capability of this method. The field site has four typical land cover conditions: bare soil (G1), plastic mulch (G2), plastic mulch cover with potatoes (G3), and plastic much cover with maize (G4). The monitoring results indicate that for G1 and G2, the relationship between soil moisture content and the rate of temperature increase can be quantitatively described by the Boltzmann model with a root-mean-square error of 0.024 m3/m3. For G3, a linear relationship is found. In contrast, the PDTS technology is not applicable for G4 because a constant ground surface heat power from solar radiation and small air temperature fluctuations are preconditions of PDTS. If the coefficient of determination (R2) for fitting rate of temperature increase is larger than 0.9, the ground surface heat power by solar radiation can be considered as a constant.
A semi-empirical Boltzmann model is proposed to describe the relationship between the rate of temperature increase and soil moisture content, which can replace the existing complicated numerical iterative algorithm. The proposed method greatly simplifies the calculation process and improves the applicability of the passive distributed temperature sensing (PDTS) technology. A field test was performed in the Loess Plateau of China to validate the capability of this method. The field site has four typical land cover conditions: bare soil (G1), plastic mulch (G2), plastic mulch cover with potatoes (G3), and plastic much cover with maize (G4). The monitoring results indicate that for G1 and G2, the relationship between soil moisture content and the rate of temperature increase can be quantitatively described by the Boltzmann model with a root-mean-square error of 0.024 m 3 /m 3 . For G3, a linear relationship is found. In contrast, the PDTS technology is not applicable for G4 because a constant ground surface heat power from solar radiation and small air temperature fluctuations are preconditions of PDTS. If the coefficient of determination ( R 2 ) for fitting rate of temperature increase is larger than 0.9, the ground surface heat power by solar radiation can be considered as a constant.
Author Zhu, Hong-hu
Wang, Jiachen
Cao, Ding-feng
Wu, Bing
Guo, Chengchao
Author_xml – sequence: 1
  givenname: Ding-feng
  surname: Cao
  fullname: Cao, Ding-feng
  organization: School of Civil Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Marine Civil Engineering
– sequence: 2
  givenname: Hong-hu
  orcidid: 0000-0002-1312-0410
  surname: Zhu
  fullname: Zhu, Hong-hu
  email: zhh@nju.edu.cn
  organization: School of Earth Sciences and Engineering, Nanjing University
– sequence: 3
  givenname: Chengchao
  surname: Guo
  fullname: Guo, Chengchao
  organization: School of Civil Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Marine Civil Engineering
– sequence: 4
  givenname: Bing
  surname: Wu
  fullname: Wu, Bing
  organization: School of Earth Sciences and Engineering, Nanjing University
– sequence: 5
  givenname: Jiachen
  surname: Wang
  fullname: Wang, Jiachen
  organization: School of Earth Sciences and Engineering, Nanjing University
BookMark eNp9kMtKJDEUhoMoeJsXmFXAjbMoJ5eqVNVSehwdEEawXYd06qSJVCdtTqrBV_CpJ92tCLNwlUC-L_85_yk5DDEAId85u-KMtT-RMyllxQSvGOtkX6kDcsIV55VoWH34ca97dkxOEZ8ZE20t-Ql5ezCIfgN08JiTX0wZBpphtYZk8pSAIgT0YUkvH37NH39UC4MFWMVCb19tDBlCpoDZr0z2MVAfqFkmb6exEGakGP2IdAoDpBLiHKStsIEl5CKUZGtCXHvAc3LkzIjw7f08I0-_b-azu-r-7-2f2fV9ZWUjcgWiUQK4MA0w0TTWyWHRDaWEvqlr65wEMEo5Y1vouXCKDYPqJatFq9q2c608Ixf7f9cpvkxlcv0cpxRKpBZN3fWi7_ot1e0pmyJiAqetz7sNczJ-1JzpbfN637wuzetd81oVVfynrlNpJ71-Lcm9hAUOS0ifU31h_QPWs5tP
CitedBy_id crossref_primary_10_1016_j_jhydrol_2023_129449
crossref_primary_10_1088_1755_1315_861_4_042042
crossref_primary_10_1007_s10333_022_00896_5
crossref_primary_10_1007_s10333_022_00900_y
Cites_doi 10.1007/s10333-017-0622-y
10.1016/j.agwat.2017.12.008
10.1029/2009WR007846
10.1111/j.1745-6584.2012.00928.x
10.1016/j.still.2014.09.010
10.1016/j.measurement.2018.03.052
10.1016/j.advwatres.2015.05.017
10.1002/2013WR014983
10.3390/w11040645
10.1002/hyp.10615
10.1016/j.jhydrol.2012.06.021
10.1002/2015WR017897
10.1016/j.advwatres.2016.03.008
10.1016/j.enbuild.2018.01.022
10.2136/vzj2014.02.0014
10.1016/j.fcr.2005.01.030
10.1520/JTE20180320
10.1016/j.fcr.2018.05.019
10.1029/2009WR008272
10.2136/vzj2016.10.010
10.1007/s10333-018-0660-0
10.1016/j.agwat.2018.08.008
10.1016/j.agwat.2012.10.012
10.2136/vzj2011.0199
10.1016/j.measurement.2014.04.007
10.1016/j.fcr.2019.01.009
10.1002/2015WR018425
ContentType Journal Article
Copyright The International Society of Paddy and Water Environment Engineering 2021
The International Society of Paddy and Water Environment Engineering 2021.
Copyright_xml – notice: The International Society of Paddy and Water Environment Engineering 2021
– notice: The International Society of Paddy and Water Environment Engineering 2021.
DBID AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H95
L.G
SOI
DOI 10.1007/s10333-021-00839-6
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1611-2504
EndPage 393
ExternalDocumentID 10_1007_s10333_021_00839_6
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41907244; 41722209
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: China Postdoctoral Science Foundation
  grantid: 2019M653180
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: Fundamental Research Funds for the Central University
  grantid: 19lgpy254
– fundername: National Key Research and Development Program of China
  grantid: 2018YFC1505104; 2018YFC1802303
– fundername: Department of Housing and Urban-Rural Development of Gansu Province
  grantid: JK2019-05
GroupedDBID -56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29O
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5VS
67M
67Z
6NX
7X2
7XC
88I
8CJ
8FE
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
L8X
LAS
LLZTM
M0K
M2P
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PYCSY
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
7QH
7ST
7UA
C1K
F1W
H95
L.G
SOI
ID FETCH-LOGICAL-c352t-e2562e12a5e0255cf3db8d0079544cff3eea66fac7e912f60dd69304276778f73
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000610042500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1611-2490
IngestDate Thu Sep 25 00:38:35 EDT 2025
Tue Nov 18 20:04:15 EST 2025
Sat Nov 29 02:33:30 EST 2025
Fri Feb 21 02:48:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Optical fibre
Distributed fibre optic sensing (DFOS)
Soil moisture
Field soil moisture monitoring
Loess Plateau
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-e2562e12a5e0255cf3db8d0079544cff3eea66fac7e912f60dd69304276778f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1312-0410
PQID 2548929897
PQPubID 54526
PageCount 11
ParticipantIDs proquest_journals_2548929897
crossref_citationtrail_10_1007_s10333_021_00839_6
crossref_primary_10_1007_s10333_021_00839_6
springer_journals_10_1007_s10333_021_00839_6
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Dordrecht
PublicationTitle Paddy and water environment
PublicationTitleAbbrev Paddy Water Environ
PublicationYear 2021
Publisher Springer Singapore
Springer Nature B.V
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
References Sayde, Gregory, Gil-Rodriguez, Tufillaro, Tyler, van de Giesen, English, Cuenca, Selker (CR18) 2010; 46
Steele-Dunne, Rutten, Krzeminska, Hausner, Tyler, Selker, Bogaard, van de Giesen (CR21) 2010; 46
Jonubi, Rezaverdinejad, Salemi (CR15) 2018; 16
Tan, Shao, Gu (CR24) 2018; 16
Cao, Shi, Zhu, Inyang, Wei, Zhang, Tang (CR6) 2019; 11
Dong, Steele-Dunne, Judge, van de Giesen (CR9) 2015; 83
Gil-Rodríguez, Rodríguez-Sinobas, Benítez-Buelga, Sánchez-Calvo (CR13) 2013; 120
Benítez-Buelga, Rodríguez-Sinobas, Sánchez Calvo, Gil-Rodríguez, Sayde, Selker (CR2) 2016; 52
Dong, Steele-Dunne, Ochsner, van de Giesen (CR10) 2016; 91
Zhang, Hu, Zhang, Li (CR25) 2015; 145
Ciocca, Lunati, Van de Giesen, Parlange (CR7) 2012; 11
Cao, Shi, Wei, Chen, Zhu (CR4) 2018; 123
Cao, Shi, Loheide, Gong, Zhu, Wei, Yang (CR5) 2018; 173
Striegl, Loheide (CR22) 2012; 50
Sayde, Buelga, Rodriguez-Sinobas, Khoury, English, van de Giesen, Selker (CR19) 2014; 50
Ramakrishna, Tam, Wani, Long (CR17) 2006; 95
Sourbeer, Loheide (CR20) 2016; 30
He, Wang, Cao, Dai, Li, Xue (CR14) 2018; 225
Benítez-Buelga, Sayde, Rodríguez-Sinobas, Selker (CR1) 2014; 13
Zhang, Zhao, Yang (CR26) 2019; 233
Bi, Qiu, Zhakypbek, Jiang, Cai, Sun (CR3) 2018; 201
Zubelzu, Rodriguez-Sinobas, Saa-Requejo, Benitez, Tarquis (CR27) 2019; 212
Dobriyal, Qureshi, Badola, Hussain (CR8) 2012; 458–459
Susha, Singh, Maryam (CR23) 2014; 54
Gadi, Garg, Manogaran, Sekharan, Zhu (CR12) 2020; 48
Dong, Steele-Dunne, Ochsner, van de Giesen (CR11) 2016; 52
Mohanty, Cosh, Lakshmi, Montzka (CR16) 2017; 16
C Sayde (839_CR19) 2014; 50
R Jonubi (839_CR15) 2018; 16
F Ciocca (839_CR7) 2012; 11
C Sayde (839_CR18) 2010; 46
JJ Sourbeer (839_CR20) 2016; 30
GS Zhang (839_CR25) 2015; 145
AM Striegl (839_CR22) 2012; 50
SC Steele-Dunne (839_CR21) 2010; 46
J Dong (839_CR11) 2016; 52
J Dong (839_CR9) 2015; 83
BP Mohanty (839_CR16) 2017; 16
LSU Susha (839_CR23) 2014; 54
XX Zhang (839_CR26) 2019; 233
DF Cao (839_CR5) 2018; 173
M Gil-Rodríguez (839_CR13) 2013; 120
J Benítez-Buelga (839_CR1) 2014; 13
DF Cao (839_CR4) 2018; 123
DF Cao (839_CR6) 2019; 11
VK Gadi (839_CR12) 2020; 48
S Zubelzu (839_CR27) 2019; 212
J Benítez-Buelga (839_CR2) 2016; 52
J Dong (839_CR10) 2016; 91
G He (839_CR14) 2018; 225
X Tan (839_CR24) 2018; 16
P Dobriyal (839_CR8) 2012; 458–459
Y Bi (839_CR3) 2018; 201
A Ramakrishna (839_CR17) 2006; 95
References_xml – volume: 16
  start-page: 125
  year: 2018
  end-page: 141
  ident: CR15
  article-title: Enhancing field scale water productivity for several rice cultivars under limited water supply
  publication-title: Paddy Water Environ
  doi: 10.1007/s10333-017-0622-y
– volume: 201
  start-page: 278
  year: 2018
  end-page: 286
  ident: CR3
  article-title: Combination of plastic film mulching and AMF inoculation promotes maize growth, yield and water use efficiency in the semiarid region of Northwest China
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2017.12.008
– volume: 46
  start-page: 2840
  year: 2010
  end-page: 2849
  ident: CR18
  article-title: Feasibility of soil moisture monitoring with heated fiber optics
  publication-title: Water Resour Res
  doi: 10.1029/2009WR007846
– volume: 50
  start-page: 340
  year: 2012
  end-page: 347
  ident: CR22
  article-title: Heated distributed temperature sensing for field scale soil moisture monitoring
  publication-title: Groundwater
  doi: 10.1111/j.1745-6584.2012.00928.x
– volume: 145
  start-page: 111
  year: 2015
  end-page: 117
  ident: CR25
  article-title: Effects of plastic mulch and crop rotation on soil physical properties in rain-fed vegetable production in the mid-Yunnan plateau, China
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2014.09.010
– volume: 123
  start-page: 175
  year: 2018
  end-page: 184
  ident: CR4
  article-title: An improved distributed sensing method for monitoring soil moisture profile using heated carbon fibers
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.03.052
– volume: 83
  start-page: 111
  year: 2015
  end-page: 122
  ident: CR9
  article-title: A particle batch smoother for soil moisture estimation using soil temperature observations
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2015.05.017
– volume: 50
  start-page: 7302
  year: 2014
  end-page: 7317
  ident: CR19
  article-title: Mapping variability of soil water content and flux across 1–1000 m scales using the actively heated fiber optic method
  publication-title: Water Resour Res
  doi: 10.1002/2013WR014983
– volume: 11
  start-page: 645
  issue: 4
  year: 2019
  ident: CR6
  article-title: Feasibility investigation of improving the modified Green–Ampt model for treatment of horizontal infiltration in soil
  publication-title: Water
  doi: 10.3390/w11040645
– volume: 30
  start-page: 1017
  year: 2016
  end-page: 1035
  ident: CR20
  article-title: Obstacles to long-term soil moisture monitoring with heated distributed temperature sensing
  publication-title: Hydrol Process
  doi: 10.1002/hyp.10615
– volume: 458–459
  start-page: 110
  year: 2012
  end-page: 117
  ident: CR8
  article-title: A review of the methods available for estimating soil moisture and its implications for water resource management
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2012.06.021
– volume: 52
  start-page: 2985
  year: 2016
  end-page: 2995
  ident: CR2
  article-title: Calibration of soil moisture sensing with subsurface heated fiber optics using numerical simulation
  publication-title: Water Resour Res
  doi: 10.1002/2015WR017897
– volume: 91
  start-page: 104
  year: 2016
  end-page: 116
  ident: CR10
  article-title: Estimating soil moisture and soil thermal and hydraulic properties by assimilating soil temperature using a particle batch smoother
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2016.03.008
– volume: 173
  start-page: 239
  year: 2018
  end-page: 251
  ident: CR5
  article-title: Investigation of the influence of soil moisture on thermal response tests using active distributed temperature sensing (A-DTS) technology
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2018.01.022
– volume: 13
  start-page: 1
  year: 2014
  end-page: 12
  ident: CR1
  article-title: Heated fiber optic distributed temperature sensing: a dual-probe heat-pulse approach
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2014.02.0014
– volume: 95
  start-page: 115
  year: 2006
  end-page: 125
  ident: CR17
  article-title: Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2005.01.030
– volume: 48
  start-page: 4053
  issue: 5
  year: 2020
  end-page: 4066
  ident: CR12
  article-title: Understanding soil surface water content using light reflection theory: a novel color analysis technique considering variability in light intensity
  publication-title: J Test Eval
  doi: 10.1520/JTE20180320
– volume: 225
  start-page: 1
  year: 2018
  end-page: 8
  ident: CR14
  article-title: Year-round plastic film mulch to increase wheat yield and economic returns while reducing environmental risk in dryland of the Loess Plateau
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2018.05.019
– volume: 46
  start-page: 1
  issue: W03535
  year: 2010
  end-page: 12
  ident: CR21
  article-title: Feasibility of soil moisture estimation using passive distributed temperature sensing
  publication-title: Water Resour Res
  doi: 10.1029/2009WR008272
– volume: 16
  start-page: 1
  year: 2017
  end-page: 9
  ident: CR16
  article-title: Soil moisture remote sensing: state-of-the-science
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2016.10.010
– volume: 16
  start-page: 687
  year: 2018
  end-page: 698
  ident: CR24
  article-title: Effects of temperature and soil moisture on gross nitrification and denitrification rates of a Chinese lowland paddy field soil
  publication-title: Paddy Water Environ
  doi: 10.1007/s10333-018-0660-0
– volume: 212
  start-page: 193
  year: 2019
  end-page: 202
  ident: CR27
  article-title: Assessing soil water content variability through active heat distributed fiber optic temperature sensing
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2018.08.008
– volume: 120
  start-page: 72
  year: 2013
  end-page: 78
  ident: CR13
  article-title: Application of active heat pulse method with fiber optic temperature sensing for estimation of wetting bulbs and water distribution in drip emitters
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2012.10.012
– volume: 11
  start-page: 1
  issue: 4
  year: 2012
  end-page: 10
  ident: CR7
  article-title: Heated optical fiber for distributed soil-moisture measurements: a lysimeter experiment
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2011.0199
– volume: 54
  start-page: 92
  year: 2014
  end-page: 105
  ident: CR23
  article-title: A critical review of soil moisture measurement
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.04.007
– volume: 233
  start-page: 121
  year: 2019
  end-page: 130
  ident: CR26
  article-title: Ridge-furrow mulching system regulates diurnal temperature amplitude and wetting-drying alternation behavior in soil to promote maize growth and water use in a semiarid region
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2019.01.009
– volume: 52
  start-page: 4280
  year: 2016
  end-page: 4300
  ident: CR11
  article-title: Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures
  publication-title: Water Resour Res
  doi: 10.1002/2015WR018425
– volume: 120
  start-page: 72
  year: 2013
  ident: 839_CR13
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2012.10.012
– volume: 458–459
  start-page: 110
  year: 2012
  ident: 839_CR8
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2012.06.021
– volume: 83
  start-page: 111
  year: 2015
  ident: 839_CR9
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2015.05.017
– volume: 201
  start-page: 278
  year: 2018
  ident: 839_CR3
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2017.12.008
– volume: 145
  start-page: 111
  year: 2015
  ident: 839_CR25
  publication-title: Soil Tillage Res
  doi: 10.1016/j.still.2014.09.010
– volume: 212
  start-page: 193
  year: 2019
  ident: 839_CR27
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2018.08.008
– volume: 30
  start-page: 1017
  year: 2016
  ident: 839_CR20
  publication-title: Hydrol Process
  doi: 10.1002/hyp.10615
– volume: 11
  start-page: 645
  issue: 4
  year: 2019
  ident: 839_CR6
  publication-title: Water
  doi: 10.3390/w11040645
– volume: 48
  start-page: 4053
  issue: 5
  year: 2020
  ident: 839_CR12
  publication-title: J Test Eval
  doi: 10.1520/JTE20180320
– volume: 173
  start-page: 239
  year: 2018
  ident: 839_CR5
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2018.01.022
– volume: 225
  start-page: 1
  year: 2018
  ident: 839_CR14
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2018.05.019
– volume: 16
  start-page: 687
  year: 2018
  ident: 839_CR24
  publication-title: Paddy Water Environ
  doi: 10.1007/s10333-018-0660-0
– volume: 123
  start-page: 175
  year: 2018
  ident: 839_CR4
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.03.052
– volume: 46
  start-page: 2840
  year: 2010
  ident: 839_CR18
  publication-title: Water Resour Res
  doi: 10.1029/2009WR007846
– volume: 50
  start-page: 7302
  year: 2014
  ident: 839_CR19
  publication-title: Water Resour Res
  doi: 10.1002/2013WR014983
– volume: 13
  start-page: 1
  year: 2014
  ident: 839_CR1
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2014.02.0014
– volume: 16
  start-page: 1
  year: 2017
  ident: 839_CR16
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2016.10.010
– volume: 54
  start-page: 92
  year: 2014
  ident: 839_CR23
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.04.007
– volume: 11
  start-page: 1
  issue: 4
  year: 2012
  ident: 839_CR7
  publication-title: Vadose Zone J
  doi: 10.2136/vzj2011.0199
– volume: 46
  start-page: 1
  issue: W03535
  year: 2010
  ident: 839_CR21
  publication-title: Water Resour Res
  doi: 10.1029/2009WR008272
– volume: 16
  start-page: 125
  year: 2018
  ident: 839_CR15
  publication-title: Paddy Water Environ
  doi: 10.1007/s10333-017-0622-y
– volume: 50
  start-page: 340
  year: 2012
  ident: 839_CR22
  publication-title: Groundwater
  doi: 10.1111/j.1745-6584.2012.00928.x
– volume: 95
  start-page: 115
  year: 2006
  ident: 839_CR17
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2005.01.030
– volume: 233
  start-page: 121
  year: 2019
  ident: 839_CR26
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2019.01.009
– volume: 52
  start-page: 4280
  year: 2016
  ident: 839_CR11
  publication-title: Water Resour Res
  doi: 10.1002/2015WR018425
– volume: 91
  start-page: 104
  year: 2016
  ident: 839_CR10
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2016.03.008
– volume: 52
  start-page: 2985
  year: 2016
  ident: 839_CR2
  publication-title: Water Resour Res
  doi: 10.1002/2015WR017897
SSID ssj0027431
Score 2.2376971
Snippet A semi-empirical Boltzmann model is proposed to describe the relationship between the rate of temperature increase and soil moisture content, which can replace...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 383
SubjectTerms Agricultural land
Agriculture
Air temperature
Biomedical and Life Sciences
Ecotoxicology
Field tests
Geoecology/Natural Processes
Hydrogeology
Hydrology/Water Resources
Iterative algorithms
Iterative methods
Land cover
Life Sciences
Mathematical analysis
Moisture content
Plastics
Radiation
Soil
Soil conditions
Soil moisture
Soil Science & Conservation
Soil temperature
Solar radiation
Technology
Water content
Title Passive distributed temperature sensing (PDTS)-based moisture content estimation in agricultural soils under different vegetative canopies
URI https://link.springer.com/article/10.1007/s10333-021-00839-6
https://www.proquest.com/docview/2548929897
Volume 19
WOSCitedRecordID wos000610042500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1611-2504
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027431
  issn: 1611-2490
  databaseCode: RSV
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDI1gcIAD34jBQDlwAEGktVnT9jgBE6dp0gbarWoTZ5oE3bSO_Qh-NXbXbgMBEpyTJm3sxs-y_czYpVO3hFoDASo0ApXCEUHiagGJ8XyQGkw9yZtN-O120O-HnaIoLCuz3cuQZH5TrxS7SUkxR3R_ETeEQq2zDY_YZshH7z6vuFl5F0KEMo5A56JelMp8v8Znc7TEmF_Corm1ae3-7z332E6BLnlzrg77bA3SA7bdHEwKhg04ZO8dhMt4xXFDlLnU7QoMJ4Kqgl2ZZ5TSng74Vee-170WZOYMfx3hbBql1Ha0U5zIOeZVj3yY8nixA-6ejYYvGafitAkv-69M-QwGeWYj7ozSHI3RQz9iT62H3t2jKBoyCI04bSoA8ZELjht7QK6IttIkgcGPDr1GQ1srAWKlbKx9CB3Xqrox1Gmx4fpEU2d9ecwq6SiFE8YDGSc4pqynZENqP7GxtYmEJNAKZQpV5pRyiXTBVk5NM16iJc8ynXOE5xzl5xypKrtZPDOec3X8OrtWijsq_tssQnc5CImU3q-y21K8y-GfVzv92_QztuXmGkJ5vzVWmU7e4Jxt6tl0mE0ucn3-AH8_8ag
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xqEQ5AC2gLk8feqACS0mcdZIj4iEQdLUSC-IWJfZ4tRJk0WbLj-ivZiabsIBaJDjbsRPPxP5Gnvk-gJ--5xi1xhJ1YiU5hS_jPDASc9uOUBm0Xl6JTUSdTnx7m3TrorCyyXZvriSrnfpFsZtSfOdI4S_hhkTqWZgPWWaHY_SrmxdhVqVCSFDGlxRceHWpzL_HeH0cTTHmm2vR6rQ5Xf7ce67AUo0uxeHEHb7BDBbfYfGwP6oZNnAV_nYJLtMWJyxT5rLaFVrBBFU1u7IoOaW96Iu97nHv6pfkY86K-yH15lZObadzSjA5x6TqUQwKkT3PQLOXw8FdKbg4bSQa_ZWxeMR-ldlIM5M1hw8Uoa_B9elJ7-hM1oIM0hBOG0skfBSgH2Rt5FDEOGXz2NJHJ-0wNM4pxExrl5kIEz9w2rOWlRbDIGKaOhepdZgrhgX-ABGrLKc27dpahcpEucucyxXmsdFeEmEL_MYuqanZylk04y6d8izzOqe0zmm1zqluwf7zMw8Tro53e2815k7r_7ZMKVyOEyalj1pw0Jh32vz_0TY-1n0XFs56vy_Ty_POxSZ8DSpv4RzgLZgbj_7gNnwxj-NBOdqpfPsJ2r30jA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RQFV74FWqbnn5wAHUWiRx1kmOqHQFAq1WPCpuUWKPVytBdrVJ-RH91Z3JJuy2aitVnO3YjmcSf5888w3Aoe85Rq2xRJ1YSU7hyzgPjMTcdiNUBq2X18Umon4_vr9PBgtZ_HW0e3slOctpYJWmojqZWHeykPimFN8_EhUmDJFI_QpWQmIyHNR1ffNtgXLVFQkJ1viSiIbXpM38eYxfj6Y53vztirQ-eXrrL1_zBqw1qFOcztxkE5aw2IK3p8Npo7yB7-DHgGA0_fqEZSldroKFVrBwVaO6LEoOdS-G4mhwdntzLPn4s-JxTL25tVmLYNGOWTakGBUie56BZi_Ho4dScNLaVLR1WSrxhMM64pFmJiuPJ8Tct-Gu9_X2y7lsCjVIQ_itkki4KUA_yLrIFMU4ZfPY0ksn3TA0zinETGuXmQgTP3Das5YrMIZBxPJ1LlLvYbkYF_gBRKyynNq062oVKhPlLnMuV5jHRntJhB3wWxulplEx52IaD-lcf5n3OaV9Tut9TnUHPj0_M5lpePyz925r-rT5nsuUaHScsFh91IHPrannzX8f7eP_dT-A14OzXnp10b_cgTdB7SwcGrwLy9X0O-7BqnmqRuV0v3bznx5a_XA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passive+distributed+temperature+sensing+%28PDTS%29-based+moisture+content+estimation+in+agricultural+soils+under+different+vegetative+canopies&rft.jtitle=Paddy+and+water+environment&rft.au=Cao%2C+Ding-feng&rft.au=Zhu%2C+Hong-hu&rft.au=Guo%2C+Chengchao&rft.au=Wu%2C+Bing&rft.date=2021-07-01&rft.issn=1611-2490&rft.eissn=1611-2504&rft.volume=19&rft.issue=3&rft.spage=383&rft.epage=393&rft_id=info:doi/10.1007%2Fs10333-021-00839-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10333_021_00839_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1611-2490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1611-2490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1611-2490&client=summon