Computability and Beltrami fields in Euclidean space

In this article, we pursue our investigation of the connections between the theory of computation and hydrodynamics. We prove the existence of stationary solutions of the Euler equations in Euclidean space, of Beltrami type, that can simulate a universal Turing machine. In particular, these solution...

Full description

Saved in:
Bibliographic Details
Published in:Journal de mathématiques pures et appliquées Vol. 169; pp. 50 - 81
Main Authors: Cardona, Robert, Miranda, Eva, Peralta-Salas, Daniel
Format: Journal Article
Language:English
Published: Elsevier Masson SAS 01.01.2023
Subjects:
ISSN:0021-7824
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this article, we pursue our investigation of the connections between the theory of computation and hydrodynamics. We prove the existence of stationary solutions of the Euler equations in Euclidean space, of Beltrami type, that can simulate a universal Turing machine. In particular, these solutions possess undecidable trajectories. Heretofore, the known Turing complete constructions of steady Euler flows in dimension 3 or higher were not associated to a prescribed metric. Our solutions do not have finite energy, and their construction makes crucial use of the non-compactness of R3, however they can be employed to show that an arbitrary tape-bounded Turing machine can be robustly simulated by a Beltrami flow on T3 (with the standard flat metric). This shows that there exist steady solutions to the Euler equations on the flat torus exhibiting dynamical phenomena of (robust) computational complexity as high as desired. We also quantify the energetic cost for a Beltrami field on T3 to simulate a tape-bounded Turing machine, thus providing additional support for the space-bounded Church-Turing thesis. Another implication of our construction is that a Gaussian random Beltrami field on Euclidean space exhibits arbitrarily high computational complexity with probability 1. Finally, our proof also yields Turing complete flows and diffeomorphisms on S2 with zero topological entropy, thus disclosing a certain degree of independence within different hierarchies of complexity. Dans cet article, on poursuit la recherche des liens entre la théorie de la computation et l'hydrodynamique. On démontre l'existence de solutions stationnaires des équations d'Euler dans l'espace euclidien, de type Beltrami, qui peuvent simuler une machine de Turing universelle. En particulier, ces solutions possèdent des trajectoires indécidables. Jusqu'à présent, les constructions Turing complètes connues des écoulements d'Euler stationnaires en dimension 3 ou supérieure n'étaient pas associées à une métrique prescrite. Nos solutions ne sont pas d'énergie finie, et leur construction utilise de manière essentielle la non-compacité de R3, même si elles peuvent être utilisées pour montrer qu'une machine de Turing arbitrairement bornée peut être simulée de manière robuste par un flot de Beltrami sur T3 (avec la métrique plate standard). Cela montre l'existence de solutions stationnaires aux équations d'Euler sur le tore plat présentant des phénomènes dynamiques à complexité computationnelle (robuste) arbitraire. On quantifie le coût énergétique d'un champ de Beltrami sur T3 pour simuler une machine de Turing avec une bande bornée, fournissant ainsi un support supplémentaire pour la thèse de Church-Turing à espace borné. Une autre conséquence de notre construction est qu'un champ de Beltrami gaussien aléatoire sur l'espace euclidien présente une complexité computationnelle arbitrairement élevée à probabilité 1. Enfin, notre preuve produit également des flots et des difféomorphismes complets de Turing sur S2 à entropie topologique nulle, révélant ainsi un certain degré d'indépendance entre les différentes hiérarchies de complexité.
AbstractList In this article, we pursue our investigation of the connections between the theory of computation and hydrodynamics. We prove the existence of stationary solutions of the Euler equations in Euclidean space, of Beltrami type, that can simulate a universal Turing machine. In particular, these solutions possess undecidable trajectories. Heretofore, the known Turing complete constructions of steady Euler flows in dimension 3 or higher were not associated to a prescribed metric. Our solutions do not have finite energy, and their construction makes crucial use of the non-compactness of R3, however they can be employed to show that an arbitrary tape-bounded Turing machine can be robustly simulated by a Beltrami flow on T3 (with the standard flat metric). This shows that there exist steady solutions to the Euler equations on the flat torus exhibiting dynamical phenomena of (robust) computational complexity as high as desired. We also quantify the energetic cost for a Beltrami field on T3 to simulate a tape-bounded Turing machine, thus providing additional support for the space-bounded Church-Turing thesis. Another implication of our construction is that a Gaussian random Beltrami field on Euclidean space exhibits arbitrarily high computational complexity with probability 1. Finally, our proof also yields Turing complete flows and diffeomorphisms on S2 with zero topological entropy, thus disclosing a certain degree of independence within different hierarchies of complexity. Dans cet article, on poursuit la recherche des liens entre la théorie de la computation et l'hydrodynamique. On démontre l'existence de solutions stationnaires des équations d'Euler dans l'espace euclidien, de type Beltrami, qui peuvent simuler une machine de Turing universelle. En particulier, ces solutions possèdent des trajectoires indécidables. Jusqu'à présent, les constructions Turing complètes connues des écoulements d'Euler stationnaires en dimension 3 ou supérieure n'étaient pas associées à une métrique prescrite. Nos solutions ne sont pas d'énergie finie, et leur construction utilise de manière essentielle la non-compacité de R3, même si elles peuvent être utilisées pour montrer qu'une machine de Turing arbitrairement bornée peut être simulée de manière robuste par un flot de Beltrami sur T3 (avec la métrique plate standard). Cela montre l'existence de solutions stationnaires aux équations d'Euler sur le tore plat présentant des phénomènes dynamiques à complexité computationnelle (robuste) arbitraire. On quantifie le coût énergétique d'un champ de Beltrami sur T3 pour simuler une machine de Turing avec une bande bornée, fournissant ainsi un support supplémentaire pour la thèse de Church-Turing à espace borné. Une autre conséquence de notre construction est qu'un champ de Beltrami gaussien aléatoire sur l'espace euclidien présente une complexité computationnelle arbitrairement élevée à probabilité 1. Enfin, notre preuve produit également des flots et des difféomorphismes complets de Turing sur S2 à entropie topologique nulle, révélant ainsi un certain degré d'indépendance entre les différentes hiérarchies de complexité.
Author Cardona, Robert
Miranda, Eva
Peralta-Salas, Daniel
Author_xml – sequence: 1
  givenname: Robert
  surname: Cardona
  fullname: Cardona, Robert
  organization: Laboratory of Geometry and Dynamical Systems, Universitat Politècnica de Catalunya, Av. Dr Marañon, 44-50, Barcelona, 08028, Spain
– sequence: 2
  givenname: Eva
  surname: Miranda
  fullname: Miranda, Eva
  organization: Laboratory of Geometry and Dynamical Systems, Universitat Politècnica de Catalunya and Institut de Matemàtiques de la UPC-IMTech, Av. Dr Marañon, 44-50, Barcelona, 08028, Spain
– sequence: 3
  givenname: Daniel
  surname: Peralta-Salas
  fullname: Peralta-Salas, Daniel
  email: dperalta@icmat.es
  organization: Instituto de Ciencias Matemáticas ICMAT-Consejo Superior de Investigaciones Científicas, C. Nicolás Cabrera 13-15, Madrid, 28049, Spain
BookMark eNqFz71OwzAQwHEPRaIF3oAhL5Dgi-04YUCCqnxIlVhgtlz7Il2VL9kuUt-eVGVigFtu-p_ut2KLYRyQsVvgBXCo7vZFb9N0CEXJy7IAKDjXC7bkvIRc16W8ZKsY93yepqqWTK7Hfjoku6OO0jGzg8-esEvB9pS1hJ2PGQ3Z5uA68miHLE7W4TW7aG0X8eZnX7HP583H-jXfvr-8rR-3uROqTLlHLerGSl-LSqGEndKaYyNUKz1oi27-oKm0rWsHDQjlJCpfyVog7kA0Slwxeb7rwhhjwNZMgXobjga4OWnN3py15qQ1AGbWztn9r8xRsonGYXZR91_8cI5xhn0RBhMd4eDQU0CXjB_p7wPfABp2pA
CitedBy_id crossref_primary_10_1007_s10208_025_09699_6
crossref_primary_10_1017_etds_2024_135
crossref_primary_10_1016_j_aim_2023_109142
crossref_primary_10_1016_j_physd_2023_133655
crossref_primary_10_1016_j_physrep_2025_06_004
crossref_primary_10_1134_S1560354724020011
crossref_primary_10_1007_s00220_023_04660_6
Cites_doi 10.1016/j.aam.2007.02.003
10.1007/s00222-021-01089-3
10.1088/0951-7715/4/2/002
10.1016/j.jcss.2013.01.025
10.24033/asens.2337
10.1016/0022-0396(81)90013-9
10.1073/pnas.2026818118
10.1016/j.tcs.2004.02.018
10.1007/s00039-014-0281-8
10.1103/PhysRevLett.115.098701
10.4007/annals.2012.175.1.9
10.4310/DPDE.2017.v14.n3.a1
10.1016/0040-9383(77)90053-2
10.1038/s42254-019-0068-9
10.1016/0304-3975(94)90229-1
10.1070/SM8884
10.1103/PhysRevLett.64.2354
10.3934/dcds.2018064
10.4153/CMB-1988-071-1
ContentType Journal Article
Copyright 2022 Elsevier Masson SAS
Copyright_xml – notice: 2022 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.matpur.2022.11.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 81
ExternalDocumentID 10_1016_j_matpur_2022_11_007
S0021782422001507
GrantInformation_xml – fundername: Spanish State Research Agency
  grantid: PID2019-103849GB-I00; CEX2020-001084-M; CEX2019-000904-S; RED2018-102650-T; EUR2019-103821; PID2019-106715GB GB-C21
  funderid: https://doi.org/10.13039/501100011033
– fundername: Ministry of Economy and Competitiveness
  grantid: MDM-2014-0445
  funderid: https://doi.org/10.13039/501100003329
– fundername: Fundación BBVA
  funderid: https://doi.org/10.13039/100007406
– fundername: Catalan Institution for Research and Advanced Studies
  grantid: ICREA Academia Prize 2016; ICREA Academia Prize 2021
  funderid: https://doi.org/10.13039/501100003741
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1~.
1~5
29J
2WC
4.4
457
4G.
5VS
692
6I.
6TJ
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYJJ
ABAOU
ABCQX
ABEFU
ABFNM
ABJNI
ABLJU
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACKIV
ACNCT
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FRP
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
L7B
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RGL
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
VH1
XOL
YQT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c352t-de7389a4d8365e41b5770e935f4d17aec966967a88c19135c4e5d6483eeb13953
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000976684000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-7824
IngestDate Sat Nov 29 07:30:17 EST 2025
Tue Nov 18 21:28:53 EST 2025
Fri Feb 23 02:40:24 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 68Q04
68Q15
37B40
Turing machines
35A10
58C40
35Q31
Euler equations
Beltrami fields
Computational complexity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-de7389a4d8365e41b5770e935f4d17aec966967a88c19135c4e5d6483eeb13953
OpenAccessLink http://hdl.handle.net/2117/365660
PageCount 32
ParticipantIDs crossref_primary_10_1016_j_matpur_2022_11_007
crossref_citationtrail_10_1016_j_matpur_2022_11_007
elsevier_sciencedirect_doi_10_1016_j_matpur_2022_11_007
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Journal de mathématiques pures et appliquées
PublicationYear 2023
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Koiran (br0180) 2001; 4
Graça, Zhong (br0170) 2021
Braverman, Rojas, Schneider (br0020) 2017; 208
Delvenne, Kůrka, Blondel (br0090) 2004
Braverman, Schneider, Rojas (br0030) 2015; 115
Koiran, Cosnard, Garzon (br0190) 1994; 132
Torres de Lizaur (br0290) 2022; 228
Enciso, Peralta-Salas, Torres de Lizaur (br0110) 2017; 50
Enciso, Peralta-Salas, Romaniega (br0120) 2020
Delvenne, Blondel (br0080) 2004; 319
Tao (br0250) 2017; 14
Weihrauch (br0300) 2000
Cardona, Miranda, Peralta-Salas (br0050) 2021
Tao (br0280) 2020; 5
Krantz, Parks (br0200) 1981; 40
Moore (br0210) 1990; 64
Cardona, Miranda, Peralta-Salas, Presas (br0060) 2019
Braverman, Yampolsky (br0040) 2006
Gajardo, Ollinger, Torres-Avilés (br0140) 2015; 17
Moore (br0220) 1991; 4
Frih, Gauthier (br0130) 1988; 31
Bournez, Graça, Hainry (br0010) 2013; 79
Cardona, Miranda, Peralta-Salas, Presas (br0070) 2021; 118
Young (br0310) 1977; 16
Graça, Campagnolo, Buescu (br0160) 2008; 40
Pongérard, Wagschal (br0240) 1996; 75
Enciso, Peralta-Salas (br0100) 2012
Graça, Campagnolo, Buescu (br0150) 2005
Nadirashvili (br0230) 2014; 3
Tao (br0270) 2019; 1
Tao (br0260) 2018; 38
Tao (10.1016/j.matpur.2022.11.007_br0250) 2017; 14
Braverman (10.1016/j.matpur.2022.11.007_br0040) 2006
Bournez (10.1016/j.matpur.2022.11.007_br0010) 2013; 79
Torres de Lizaur (10.1016/j.matpur.2022.11.007_br0290) 2022; 228
Nadirashvili (10.1016/j.matpur.2022.11.007_br0230) 2014; 3
Enciso (10.1016/j.matpur.2022.11.007_br0110) 2017; 50
Tao (10.1016/j.matpur.2022.11.007_br0280) 2020; 5
Delvenne (10.1016/j.matpur.2022.11.007_br0090) 2004
Enciso (10.1016/j.matpur.2022.11.007_br0100) 2012
Koiran (10.1016/j.matpur.2022.11.007_br0180) 2001; 4
Pongérard (10.1016/j.matpur.2022.11.007_br0240) 1996; 75
Young (10.1016/j.matpur.2022.11.007_br0310) 1977; 16
Tao (10.1016/j.matpur.2022.11.007_br0260) 2018; 38
Delvenne (10.1016/j.matpur.2022.11.007_br0080) 2004; 319
Cardona (10.1016/j.matpur.2022.11.007_br0070) 2021; 118
Enciso (10.1016/j.matpur.2022.11.007_br0120)
Frih (10.1016/j.matpur.2022.11.007_br0130) 1988; 31
Graça (10.1016/j.matpur.2022.11.007_br0160) 2008; 40
Moore (10.1016/j.matpur.2022.11.007_br0220) 1991; 4
Tao (10.1016/j.matpur.2022.11.007_br0270) 2019; 1
Braverman (10.1016/j.matpur.2022.11.007_br0030) 2015; 115
Cardona (10.1016/j.matpur.2022.11.007_br0050) 2021
Koiran (10.1016/j.matpur.2022.11.007_br0190) 1994; 132
Cardona (10.1016/j.matpur.2022.11.007_br0060)
Weihrauch (10.1016/j.matpur.2022.11.007_br0300) 2000
Gajardo (10.1016/j.matpur.2022.11.007_br0140) 2015; 17
Braverman (10.1016/j.matpur.2022.11.007_br0020) 2017; 208
Krantz (10.1016/j.matpur.2022.11.007_br0200) 1981; 40
Moore (10.1016/j.matpur.2022.11.007_br0210) 1990; 64
Graça (10.1016/j.matpur.2022.11.007_br0150) 2005
Graça (10.1016/j.matpur.2022.11.007_br0170)
References_xml – start-page: 345
  year: 2012
  end-page: 367
  ident: br0100
  article-title: Knots and links in steady solutions of the Euler equation
  publication-title: Ann. Math.
– start-page: 551
  year: 2006
  end-page: 578
  ident: br0040
  article-title: Non-computable Julia sets
  publication-title: J. Am. Math. Soc.
– volume: 40
  start-page: 116
  year: 1981
  end-page: 120
  ident: br0200
  article-title: Distance to
  publication-title: J. Differ. Equ.
– start-page: 104
  year: 2004
  end-page: 115
  ident: br0090
  article-title: Computational universality in symbolic dynamical systems
  publication-title: International Conference on Machines, Computations, and Universality
– start-page: 169
  year: 2005
  end-page: 179
  ident: br0150
  article-title: Robust simulations of Turing machines with analytic maps and flows
  publication-title: Conference on Computability in Europe
– year: 2021
  ident: br0170
  article-title: Analytic one-dimensional maps and two-dimensional ordinary differential equations can robustly simulate Turing machines
– volume: 132
  start-page: 113
  year: 1994
  end-page: 128
  ident: br0190
  article-title: Computability with low-dimensional dynamical systems
  publication-title: Theor. Comput. Sci.
– volume: 319
  start-page: 127
  year: 2004
  end-page: 143
  ident: br0080
  article-title: Quasi-periodic configurations and undecidable dynamics for tilings, infinite words and Turing machines
  publication-title: Theor. Comput. Sci.
– volume: 1
  start-page: 418
  year: 2019
  end-page: 419
  ident: br0270
  article-title: Searching for singularities in the Navier–Stokes equations
  publication-title: Nat. Rev. Phys.
– volume: 79
  start-page: 714
  year: 2013
  end-page: 724
  ident: br0010
  article-title: Computation with perturbed dynamical systems
  publication-title: J. Comput. Syst. Sci.
– volume: 228
  start-page: 687
  year: 2022
  end-page: 715
  ident: br0290
  article-title: Chaos in the incompressible Euler equation on manifolds of high dimension
  publication-title: Invent. Math.
– volume: 4
  start-page: 199
  year: 1991
  ident: br0220
  article-title: Generalized shifts: unpredictability and undecidability in dynamical systems
  publication-title: Nonlinearity
– year: 2019
  ident: br0060
  article-title: Universality of Euler flows and flexibility of Reeb embeddings
– volume: 64
  start-page: 2354
  year: 1990
  ident: br0210
  article-title: Unpredictability and undecidability in dynamical systems
  publication-title: Phys. Rev. Lett.
– volume: 118
  year: 2021
  ident: br0070
  article-title: Constructing Turing complete Euler flows in dimension 3
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2000
  ident: br0300
  article-title: Computable Analysis: An Introduction
– volume: 75
  start-page: 409
  year: 1996
  end-page: 418
  ident: br0240
  article-title: Problème de Cauchy dans des espaces de fonctions entieres
  publication-title: J. Math. Pures Appl.
– volume: 5
  start-page: 1425
  year: 2020
  end-page: 1443
  ident: br0280
  article-title: On the universality of the incompressible Euler equation on compact manifolds, II. Non-rigidity of Euler flows
  publication-title: J. Pure Appl. Funct. Anal.
– volume: 3
  start-page: 916
  year: 2014
  end-page: 921
  ident: br0230
  article-title: Liouville theorem for Beltrami flow
  publication-title: Geom. Funct. Anal.
– volume: 208
  start-page: 1758
  year: 2017
  ident: br0020
  article-title: Tight space-noise tradeoffs in computing the ergodic measure
  publication-title: Sb. Math.
– volume: 115
  year: 2015
  ident: br0030
  article-title: Space-bounded Church-Turing thesis and computational tractability of closed systems
  publication-title: Phys. Rev. Lett.
– year: 2021
  ident: br0050
  article-title: Turing universality of the incompressible Euler equations and a conjecture of Moore
  publication-title: Int. Math. Res. Not.
– year: 2020
  ident: br0120
  article-title: Beltrami fields exhibit knots and chaos almost surely
– volume: 16
  start-page: 469
  year: 1977
  end-page: 471
  ident: br0310
  article-title: Entropy of continuous flows on compact 2-manifolds
  publication-title: Topology
– volume: 14
  start-page: 219
  year: 2017
  end-page: 238
  ident: br0250
  article-title: On the universality of potential well dynamics
  publication-title: Dyn. Partial Differ. Equ.
– volume: 31
  start-page: 495
  year: 1988
  end-page: 499
  ident: br0130
  article-title: Approximation of a function and its derivatives by entire functions of several variables
  publication-title: Can. Math. Bull.
– volume: 4
  year: 2001
  ident: br0180
  article-title: The topological entropy of iterated piecewise affine maps is uncomputable
  publication-title: Discret. Math. Theor. Comput. Sci.
– volume: 40
  start-page: 330
  year: 2008
  end-page: 349
  ident: br0160
  article-title: Computability with polynomial differential equations
  publication-title: Adv. Appl. Math.
– volume: 50
  start-page: 995
  year: 2017
  end-page: 1016
  ident: br0110
  article-title: Knotted structures in high-energy Beltrami fields on the torus and the sphere
  publication-title: Ann. Sci. Éc. Norm. Supér.
– volume: 17
  start-page: 267
  year: 2015
  end-page: 284
  ident: br0140
  article-title: Some undecidable problems about the trace-subshift associated to a Turing machine
  publication-title: Discret. Math. Theor. Comput. Sci.
– volume: 38
  start-page: 1553
  year: 2018
  ident: br0260
  article-title: On the universality of the incompressible Euler equation on compact manifolds
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 40
  start-page: 330
  year: 2008
  ident: 10.1016/j.matpur.2022.11.007_br0160
  article-title: Computability with polynomial differential equations
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2007.02.003
– volume: 228
  start-page: 687
  year: 2022
  ident: 10.1016/j.matpur.2022.11.007_br0290
  article-title: Chaos in the incompressible Euler equation on manifolds of high dimension
  publication-title: Invent. Math.
  doi: 10.1007/s00222-021-01089-3
– volume: 4
  start-page: 199
  year: 1991
  ident: 10.1016/j.matpur.2022.11.007_br0220
  article-title: Generalized shifts: unpredictability and undecidability in dynamical systems
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/4/2/002
– volume: 79
  start-page: 714
  year: 2013
  ident: 10.1016/j.matpur.2022.11.007_br0010
  article-title: Computation with perturbed dynamical systems
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2013.01.025
– volume: 75
  start-page: 409
  year: 1996
  ident: 10.1016/j.matpur.2022.11.007_br0240
  article-title: Problème de Cauchy dans des espaces de fonctions entieres
  publication-title: J. Math. Pures Appl.
– volume: 50
  start-page: 995
  year: 2017
  ident: 10.1016/j.matpur.2022.11.007_br0110
  article-title: Knotted structures in high-energy Beltrami fields on the torus and the sphere
  publication-title: Ann. Sci. Éc. Norm. Supér.
  doi: 10.24033/asens.2337
– volume: 40
  start-page: 116
  year: 1981
  ident: 10.1016/j.matpur.2022.11.007_br0200
  article-title: Distance to ck hypersurfaces
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(81)90013-9
– volume: 118
  year: 2021
  ident: 10.1016/j.matpur.2022.11.007_br0070
  article-title: Constructing Turing complete Euler flows in dimension 3
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2026818118
– volume: 319
  start-page: 127
  year: 2004
  ident: 10.1016/j.matpur.2022.11.007_br0080
  article-title: Quasi-periodic configurations and undecidable dynamics for tilings, infinite words and Turing machines
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2004.02.018
– year: 2000
  ident: 10.1016/j.matpur.2022.11.007_br0300
– volume: 3
  start-page: 916
  year: 2014
  ident: 10.1016/j.matpur.2022.11.007_br0230
  article-title: Liouville theorem for Beltrami flow
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s00039-014-0281-8
– volume: 5
  start-page: 1425
  year: 2020
  ident: 10.1016/j.matpur.2022.11.007_br0280
  article-title: On the universality of the incompressible Euler equation on compact manifolds, II. Non-rigidity of Euler flows
  publication-title: J. Pure Appl. Funct. Anal.
– year: 2021
  ident: 10.1016/j.matpur.2022.11.007_br0050
  article-title: Turing universality of the incompressible Euler equations and a conjecture of Moore
  publication-title: Int. Math. Res. Not.
– start-page: 104
  year: 2004
  ident: 10.1016/j.matpur.2022.11.007_br0090
  article-title: Computational universality in symbolic dynamical systems
– volume: 115
  year: 2015
  ident: 10.1016/j.matpur.2022.11.007_br0030
  article-title: Space-bounded Church-Turing thesis and computational tractability of closed systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.098701
– start-page: 345
  year: 2012
  ident: 10.1016/j.matpur.2022.11.007_br0100
  article-title: Knots and links in steady solutions of the Euler equation
  publication-title: Ann. Math.
  doi: 10.4007/annals.2012.175.1.9
– volume: 4
  year: 2001
  ident: 10.1016/j.matpur.2022.11.007_br0180
  article-title: The topological entropy of iterated piecewise affine maps is uncomputable
  publication-title: Discret. Math. Theor. Comput. Sci.
– volume: 14
  start-page: 219
  year: 2017
  ident: 10.1016/j.matpur.2022.11.007_br0250
  article-title: On the universality of potential well dynamics
  publication-title: Dyn. Partial Differ. Equ.
  doi: 10.4310/DPDE.2017.v14.n3.a1
– volume: 16
  start-page: 469
  year: 1977
  ident: 10.1016/j.matpur.2022.11.007_br0310
  article-title: Entropy of continuous flows on compact 2-manifolds
  publication-title: Topology
  doi: 10.1016/0040-9383(77)90053-2
– volume: 1
  start-page: 418
  year: 2019
  ident: 10.1016/j.matpur.2022.11.007_br0270
  article-title: Searching for singularities in the Navier–Stokes equations
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0068-9
– volume: 132
  start-page: 113
  year: 1994
  ident: 10.1016/j.matpur.2022.11.007_br0190
  article-title: Computability with low-dimensional dynamical systems
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(94)90229-1
– volume: 208
  start-page: 1758
  year: 2017
  ident: 10.1016/j.matpur.2022.11.007_br0020
  article-title: Tight space-noise tradeoffs in computing the ergodic measure
  publication-title: Sb. Math.
  doi: 10.1070/SM8884
– ident: 10.1016/j.matpur.2022.11.007_br0120
– volume: 64
  start-page: 2354
  year: 1990
  ident: 10.1016/j.matpur.2022.11.007_br0210
  article-title: Unpredictability and undecidability in dynamical systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.2354
– start-page: 169
  year: 2005
  ident: 10.1016/j.matpur.2022.11.007_br0150
  article-title: Robust simulations of Turing machines with analytic maps and flows
– volume: 38
  start-page: 1553
  year: 2018
  ident: 10.1016/j.matpur.2022.11.007_br0260
  article-title: On the universality of the incompressible Euler equation on compact manifolds
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2018064
– volume: 17
  start-page: 267
  year: 2015
  ident: 10.1016/j.matpur.2022.11.007_br0140
  article-title: Some undecidable problems about the trace-subshift associated to a Turing machine
  publication-title: Discret. Math. Theor. Comput. Sci.
– start-page: 551
  year: 2006
  ident: 10.1016/j.matpur.2022.11.007_br0040
  article-title: Non-computable Julia sets
  publication-title: J. Am. Math. Soc.
– volume: 31
  start-page: 495
  year: 1988
  ident: 10.1016/j.matpur.2022.11.007_br0130
  article-title: Approximation of a function and its derivatives by entire functions of several variables
  publication-title: Can. Math. Bull.
  doi: 10.4153/CMB-1988-071-1
– ident: 10.1016/j.matpur.2022.11.007_br0060
– ident: 10.1016/j.matpur.2022.11.007_br0170
SSID ssj0000966
Score 2.4277222
Snippet In this article, we pursue our investigation of the connections between the theory of computation and hydrodynamics. We prove the existence of stationary...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 50
SubjectTerms Beltrami fields
Computational complexity
Euler equations
Turing machines
Title Computability and Beltrami fields in Euclidean space
URI https://dx.doi.org/10.1016/j.matpur.2022.11.007
Volume 169
WOSCitedRecordID wos000976684000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0021-7824
  databaseCode: AIEXJ
  dateStart: 20211211
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000966
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELe2sofxgNiXxteUh71VRk1sx_FjQUUwDTSpDPUtcmyjBWWhSlPEn8_ZzkfLEPuQ9hJVbt3Evp_Od5e73yH02XKwCwXgtVTfmMpE4iwzFLNrrbTRjDHXvu3qK7-4SGYz8a0JZS9cOwFelsn9vZj_V1HDGAjbls7-hbi7P4UB-AxChyuIHa5_JHjfp8HTb3typSNT1JX8mQ9duppLgJ0sVZFrG4UHjaLW04EaE9WlttY__Jt0a9faE2Q4X4J_PjSOjLyAIf91n4h4DIi79XVmPmm7k2he2aCF0713stfIlSxqiae2nLMveV-NRUTkUSyiK5I5B8PfqrvxdFX3RiEGe4Su6V7fp6XRnp6Ctj2Hwyc1vA823BzCumHF4OBH0aGlYfW9cx9xZ0-dywX3jCLHpchfoo2IM5EM0Mb4bDL70h_awr_Wbh-yrbJ0qYC_3utpK2bFMrncRluNvIKxh8Ib9MKUb9HmecfHu3iH6BooAhBE0IIi8KAI8jLoQBE4ULxH308ml8enuOmXgRWY0TXWhoP5KalOSMwMDTPG-cgIwq6pDrk0CtYoYi6TRIGXTpiihumYJsTAgU0EIx_QoLwtzUcUhCYSIyljx91DYM4oFqHIVKYVI4yMdhBp15-qhkze9jQp0jZr8Cb1u5baXQM_M4Vd20G4mzX3ZCq_-T1vtzZtDEJv6KWAhmdn7v7zzD30ukf2PhrU1dIcoFfqrs4X1acGNg_kYIVT
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computability+and+Beltrami+fields+in+Euclidean+space&rft.jtitle=Journal+de+math%C3%A9matiques+pures+et+appliqu%C3%A9es&rft.au=Cardona%2C+Robert&rft.au=Miranda%2C+Eva&rft.au=Peralta-Salas%2C+Daniel&rft.date=2023-01-01&rft.pub=Elsevier+Masson+SAS&rft.issn=0021-7824&rft.volume=169&rft.spage=50&rft.epage=81&rft_id=info:doi/10.1016%2Fj.matpur.2022.11.007&rft.externalDocID=S0021782422001507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-7824&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-7824&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-7824&client=summon