Day-ahead forecasting of residential electric power consumption for energy management using Long Short-Term Memory encoder–decoder model

Energy management in smart buildings and energy communities needs short-term load demand forecasting for optimization-based scheduling, dispatch, and real-time operation. However, producing accurate forecasting for individual residential households is more challenging compared to the forecasting of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics and computers in simulation Ročník 224; s. 63 - 75
Hlavní autoři: La Tona, G., Luna, M., Di Piazza, M.C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2024
Témata:
ISSN:0378-4754, 1872-7166
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Energy management in smart buildings and energy communities needs short-term load demand forecasting for optimization-based scheduling, dispatch, and real-time operation. However, producing accurate forecasting for individual residential households is more challenging compared to the forecasting of load demand at the distribution level, which is smoother and benefits from statistical compensation of errors. This paper presents a day-ahead forecasting technique for individual residential load demand that is based on the Long Short-Term Memory encoder–decoder architecture, which is extended to consider possibly differing sets of past and future exogenous variables. A novel focus is posed on the validation of the proposed approach considering that it is tailored for use by energy management systems. A publicly available dataset was used for validation, and the approach was compared with three other methods, resulting in a reduction of the Mean Absolute Scaled Error by up to 8%.
AbstractList Energy management in smart buildings and energy communities needs short-term load demand forecasting for optimization-based scheduling, dispatch, and real-time operation. However, producing accurate forecasting for individual residential households is more challenging compared to the forecasting of load demand at the distribution level, which is smoother and benefits from statistical compensation of errors. This paper presents a day-ahead forecasting technique for individual residential load demand that is based on the Long Short-Term Memory encoder–decoder architecture, which is extended to consider possibly differing sets of past and future exogenous variables. A novel focus is posed on the validation of the proposed approach considering that it is tailored for use by energy management systems. A publicly available dataset was used for validation, and the approach was compared with three other methods, resulting in a reduction of the Mean Absolute Scaled Error by up to 8%.
Author La Tona, G.
Di Piazza, M.C.
Luna, M.
Author_xml – sequence: 1
  givenname: G.
  orcidid: 0000-0002-9097-6626
  surname: La Tona
  fullname: La Tona, G.
  email: giuseppe.latona@cnr.it
– sequence: 2
  givenname: M.
  orcidid: 0000-0001-8900-9367
  surname: Luna
  fullname: Luna, M.
– sequence: 3
  givenname: M.C.
  surname: Di Piazza
  fullname: Di Piazza, M.C.
BookMark eNqFkLtOJDEQRS0EEsPjDwj8A91r99MQrLTiLQ0iAGKr2q4ePGq3R7YBTUZMyh_yJbgZIgI2qaqgzpXu2SPboxuRkCPOcs5482eZW4jK2bxgRZmzJme83SIzLtoia3nTbJMZK1uRVW1d7ZK9EJaMsXTXM_J2BusMHhE07Z1HBSGacUFdTz0Go3GMBgaKA6rojaIr94KeKjeGJ7uKxo0TRXFEv1hTCyMs0CaGPoUpZe7SuHt0Pmb36C29Qev8Or0rp9F_vL5r_LqoTXM4IDs9DAEPv_c-ebg4vz-9yua3l9en_-aZKusiZlprVYEQmtW6groGPBadOC77VFdhxzkrQHWdFqKuylarhiNvhda8Fh2UAsp9crLJVd6F4LGXykSYykQPZpCcycmqXMqNVTlZlayRyWqCqx_wyhsLfv0_7O8Gw1Ts2aCXQZnkAbVJ0qPUzvwe8AmelZuJ
CitedBy_id crossref_primary_10_1016_j_enbuild_2025_115951
crossref_primary_10_1016_j_matcom_2025_04_044
crossref_primary_10_1016_j_apenergy_2024_122722
crossref_primary_10_1016_j_aei_2025_103754
crossref_primary_10_1109_ACCESS_2024_3521010
Cites_doi 10.1109/ACCESS.2019.2963045
10.1109/INDIN.2018.8471953
10.1109/TSG.2017.2686012
10.1109/TNNLS.2016.2582924
10.1109/IECON.2016.7793413
10.1109/ICIOT.2019.00029
10.1016/j.ijforecast.2006.03.001
10.1016/j.segan.2016.02.005
10.3390/en14061598
10.3390/app9102120
10.3390/app9204237
10.1109/ICSCAN53069.2021.9526485
10.1016/j.egypro.2017.12.423
10.1109/TSG.2017.2753802
10.1016/j.matcom.2020.05.010
10.1109/ACCESS.2020.3009537
10.1016/j.ijforecast.2015.11.011
10.1109/PTC.2019.8810899
10.1109/IECON.2019.8926801
10.1016/j.energy.2019.05.230
10.1109/EAIT.2018.8470406
10.1109/ACCESS.2020.3028281
10.1109/EEEIC/ICPSEurope49358.2020.9160650
10.1016/j.apenergy.2017.12.051
10.1016/j.solener.2012.03.006
10.1109/ISIE.2017.8001465
10.1016/j.ijforecast.2019.04.014
10.1016/j.ijepes.2021.107023
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.matcom.2023.06.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7166
EndPage 75
ExternalDocumentID 10_1016_j_matcom_2023_06_017
S0378475423002720
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
63O
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c352t-dddc4a88d05d4a55ae98b893f187ceb1102acbbd885437dc61e178dd158ba38a3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001322504500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-4754
IngestDate Sat Nov 29 05:44:56 EST 2025
Tue Nov 18 22:26:24 EST 2025
Sat Jun 29 15:30:58 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Residential electrical consumption
LSTM
Forecasting
Energy management
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-dddc4a88d05d4a55ae98b893f187ceb1102acbbd885437dc61e178dd158ba38a3
ORCID 0000-0001-8900-9367
0000-0002-9097-6626
OpenAccessLink https://dx.doi.org/10.1016/j.matcom.2023.06.017
PageCount 13
ParticipantIDs crossref_citationtrail_10_1016_j_matcom_2023_06_017
crossref_primary_10_1016_j_matcom_2023_06_017
elsevier_sciencedirect_doi_10_1016_j_matcom_2023_06_017
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Mathematics and computers in simulation
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References A. Vaswani, et al., Attention is all you need, in: Advances in neural information processing systems, 2017, pp. 5998–6008.
L. Sehovac, C. Nesen, K. Grolinger, Forecasting Building Energy Consumption with Deep Learning: A Sequence to Sequence Approach, in: 2019 IEEE International Congress on Internet of Things (ICIOT), 2019, pp. 108–116
Shi, Xu, Li (b32) 2018; 9
LeCun, Bottou, Orr, Müller, BackProp (b22) 2012; vol. 7700
Oreshkin, Carpov, Chapados, Bengio (b27) 2019
Makridakis, Spiliotis, Assimakopoulos, Competition (b23) 2020; 36
Shi, Xu, Ma, Zhang, Li, Li (b33) 2017; 142
O’Malley (b26) 2019
Khan, Haq, Khan, Rho, Lee, Baik (b14) 2021; 133
Kong, Dong, Jia, Hill, Xu, Zhang (b16) 2019; 10
Hebrail, Berards (b8) 2012
Chollet (b4) 2015
Hong, Fan (b10) 2016; 32
Rahman, Srikumar, Smith (b28) 2018; 212
La Tona, Luna, Di Piazza, Di Piazza (b20) 2019; 9
Hyndman, Athanasopoulos (b12) 2021
S. Kumar, L. Hussain, S. Banarjee, M. Reza, Energy Load Forecasting using Deep Learning Approach-LSTM and GRU in Spark Cluster, in: 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT), 2018, pp. 1–4
Hinton, Srivastava, Krizhevsky, Sutskever, Salakhutdinov (b9) 2012
D.L. Marino, K. Amarasinghe, M. Manic, Building energy load forecasting using Deep Neural Networks, in: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 7046–7051
Huld, Müller, Gambardella (b11) 2012; 86
G. La Tona, M. Luna, A. Di Piazza, M.C. Di Piazza, Development of a Forecasting Module based on Tensorflow for Use in Energy Management Systems, in: IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, 2019, pp. 3063–3068
Kim, Cho (b15) 2019; 182
Di Piazza, Di Piazza, La Tona, Luna (b6) 2021; 184
Sajjad others (b30) 2020; 8
Sutskever, Vinyals, Le (b35) 2014; 4
Hyndman, Koehler (b13) 2006; 22
M. Suresh, M.S. Anbarasi, J. Divyabharathi, D. Harshavardeni, S. Meena, Household Electricity Power Consumption Prediction Using CNN-GRU Techniques, in: 2021 International Conference on System Computation, Automation and Networking, ICSCAN, 2021
H. Wilms, M. Cupelli, A. Monti, Combining auto-regression with exogenous variables in sequence-to-sequence recurrent neural networks for short-term load forecasting, in: 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), 2018, pp. 673–679
.
Ullah, Ullah, Haq, Rho, Baik (b36) 2020; 8
Le, Vo, Vo, Hwang, Rho, Baik (b21) 2019; 9
K. Amarasinghe, D.L. Marino, M. Manic, Deep neural networks for energy load forecasting, in: 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), 2017, pp. 1483–1488
Greff, Srivastava, Koutnik, Steunebrink, Schmidhuber (b7) 2017; 28
R. Rajabi, A. Estebsari, Deep learning based forecasting of individual residential loads using recurrence plots, in: 2019 IEEE Milan PowerTech PowerTech 2019, 2019
Alhussein, Aurangzeb, Haider (b2) 2020; 8
Mocanu, Nguyen, Gibescu, Kling (b25) 2016; 6
Abadi (b1) 2015
La Tona, Di Piazza, Luna (b18) 2021; 14
G. Di Lorenzo, L. Martirano, R. Araneo, G. Petrone, Modeling and Design of a Residential Energy Community with PV Sharing, in: Proceedings - 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe, EEEIC/ I and CPS Europe 2020, 2020
10.1016/j.matcom.2023.06.017_b5
Ullah (10.1016/j.matcom.2023.06.017_b36) 2020; 8
La Tona (10.1016/j.matcom.2023.06.017_b18) 2021; 14
10.1016/j.matcom.2023.06.017_b3
Shi (10.1016/j.matcom.2023.06.017_b32) 2018; 9
Alhussein (10.1016/j.matcom.2023.06.017_b2) 2020; 8
Rahman (10.1016/j.matcom.2023.06.017_b28) 2018; 212
Hinton (10.1016/j.matcom.2023.06.017_b9) 2012
Chollet (10.1016/j.matcom.2023.06.017_b4) 2015
Huld (10.1016/j.matcom.2023.06.017_b11) 2012; 86
Kim (10.1016/j.matcom.2023.06.017_b15) 2019; 182
Mocanu (10.1016/j.matcom.2023.06.017_b25) 2016; 6
10.1016/j.matcom.2023.06.017_b31
Di Piazza (10.1016/j.matcom.2023.06.017_b6) 2021; 184
Khan (10.1016/j.matcom.2023.06.017_b14) 2021; 133
10.1016/j.matcom.2023.06.017_b34
10.1016/j.matcom.2023.06.017_b37
10.1016/j.matcom.2023.06.017_b17
Makridakis (10.1016/j.matcom.2023.06.017_b23) 2020; 36
LeCun (10.1016/j.matcom.2023.06.017_b22) 2012; vol. 7700
10.1016/j.matcom.2023.06.017_b38
10.1016/j.matcom.2023.06.017_b19
Sutskever (10.1016/j.matcom.2023.06.017_b35) 2014; 4
La Tona (10.1016/j.matcom.2023.06.017_b20) 2019; 9
Shi (10.1016/j.matcom.2023.06.017_b33) 2017; 142
Hyndman (10.1016/j.matcom.2023.06.017_b12) 2021
Greff (10.1016/j.matcom.2023.06.017_b7) 2017; 28
Hong (10.1016/j.matcom.2023.06.017_b10) 2016; 32
Kong (10.1016/j.matcom.2023.06.017_b16) 2019; 10
O’Malley (10.1016/j.matcom.2023.06.017_b26) 2019
Oreshkin (10.1016/j.matcom.2023.06.017_b27) 2019
Sajjad others (10.1016/j.matcom.2023.06.017_b30) 2020; 8
Le (10.1016/j.matcom.2023.06.017_b21) 2019; 9
Hyndman (10.1016/j.matcom.2023.06.017_b13) 2006; 22
Abadi (10.1016/j.matcom.2023.06.017_b1) 2015
10.1016/j.matcom.2023.06.017_b24
10.1016/j.matcom.2023.06.017_b29
Hebrail (10.1016/j.matcom.2023.06.017_b8) 2012
References_xml – volume: 32
  start-page: 914
  year: 2016
  end-page: 938
  ident: b10
  article-title: Probabilistic electric load forecasting: A tutorial review
  publication-title: Int. J. Forecast.
– volume: 28
  start-page: 2222
  year: 2017
  end-page: 2232
  ident: b7
  article-title: LSTM: A search space odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: S. Kumar, L. Hussain, S. Banarjee, M. Reza, Energy Load Forecasting using Deep Learning Approach-LSTM and GRU in Spark Cluster, in: 2018 Fifth International Conference on Emerging Applications of Information Technology (EAIT), 2018, pp. 1–4,
– year: 2021
  ident: b12
  article-title: Forecasting: principles and practice
– year: 2012
  ident: b8
  article-title: Individual household electric power consumption data set. UCI machine learning repository
– volume: 8
  start-page: 143759
  year: 2020
  end-page: 143768
  ident: b30
  article-title: A novel CNN-GRU-based hybrid approach for short-term residential load forecasting
  publication-title: IEEE Access
– reference: M. Suresh, M.S. Anbarasi, J. Divyabharathi, D. Harshavardeni, S. Meena, Household Electricity Power Consumption Prediction Using CNN-GRU Techniques, in: 2021 International Conference on System Computation, Automation and Networking, ICSCAN, 2021,
– volume: 184
  start-page: 294
  year: 2021
  end-page: 305
  ident: b6
  article-title: An artificial neural network-based forecasting model of energy-related time series for electrical grid management
  publication-title: Math. Comput. Simulation
– start-page: 1
  year: 2012
  end-page: 18
  ident: b9
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
– volume: 36
  start-page: 54
  year: 2020
  end-page: 74
  ident: b23
  article-title: 100000 Time series and 61 forecasting methods
  publication-title: Int. J. Forecasting
– volume: 182
  start-page: 72
  year: 2019
  end-page: 81
  ident: b15
  article-title: Predicting residential energy consumption using CNN-LSTM neural networks
  publication-title: Energy
– volume: 22
  start-page: 679
  year: 2006
  end-page: 688
  ident: b13
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
– reference: D.L. Marino, K. Amarasinghe, M. Manic, Building energy load forecasting using Deep Neural Networks, in: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 7046–7051,
– volume: 8
  start-page: 123369
  year: 2020
  end-page: 123380
  ident: b36
  article-title: Short-term prediction of residential power energy consumption via CNN and multi-layer bi-directional LSTM networks
  publication-title: IEEE Access
– reference: K. Amarasinghe, D.L. Marino, M. Manic, Deep neural networks for energy load forecasting, in: 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), 2017, pp. 1483–1488,
– volume: 8
  start-page: 180544
  year: 2020
  end-page: 180557
  ident: b2
  article-title: Hybrid CNN-LSTM model for short-term individual household load forecasting
  publication-title: IEEE Access
– year: 2019
  ident: b26
  article-title: “Kerastuner.”
– reference: L. Sehovac, C. Nesen, K. Grolinger, Forecasting Building Energy Consumption with Deep Learning: A Sequence to Sequence Approach, in: 2019 IEEE International Congress on Internet of Things (ICIOT), 2019, pp. 108–116,
– volume: 4
  start-page: 3104
  year: 2014
  end-page: 3112
  ident: b35
  article-title: Sequence to sequence learning with neural networks
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 86
  start-page: 1803
  year: 2012
  end-page: 1815
  ident: b11
  article-title: A new solar radiation database for estimating PV performance in Europe and Africa
  publication-title: Sol. Energy
– reference: G. Di Lorenzo, L. Martirano, R. Araneo, G. Petrone, Modeling and Design of a Residential Energy Community with PV Sharing, in: Proceedings - 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe, EEEIC/ I and CPS Europe 2020, 2020,
– volume: 9
  start-page: 5271
  year: 2018
  end-page: 5280
  ident: b32
  article-title: Deep learning for household load forecasting—A novel pooling deep RNN
  publication-title: IEEE Trans. Smart Grid
– volume: 133
  year: 2021
  ident: b14
  article-title: DB-Net: A novel dilated CNN based multi-step forecasting model for power consumption in integrated local energy systems
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: vol. 7700
  start-page: 9
  year: 2012
  end-page: 48
  ident: b22
  article-title: Efficient backprop
  publication-title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics
– volume: 6
  start-page: 91
  year: 2016
  end-page: 99
  ident: b25
  article-title: Deep learning for estimating building energy consumption
  publication-title: Sustain. Energy Grids Netw.
– reference: R. Rajabi, A. Estebsari, Deep learning based forecasting of individual residential loads using recurrence plots, in: 2019 IEEE Milan PowerTech PowerTech 2019, 2019,
– reference: .
– reference: G. La Tona, M. Luna, A. Di Piazza, M.C. Di Piazza, Development of a Forecasting Module based on Tensorflow for Use in Energy Management Systems, in: IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, 2019, pp. 3063–3068,
– year: 2015
  ident: b4
  article-title: Keras
– volume: 9
  start-page: 4237
  year: 2019
  ident: b21
  article-title: Improving electric energy consumption prediction using CNN and bi-LSTM
  publication-title: Appl. Sci.
– reference: A. Vaswani, et al., Attention is all you need, in: Advances in neural information processing systems, 2017, pp. 5998–6008.
– year: 2015
  ident: b1
  article-title: TensorFlow: large-scale machine learning on heterogeneous systems
– volume: 142
  start-page: 2791
  year: 2017
  end-page: 2796
  ident: b33
  article-title: A whole system assessment of novel deep learning approach on short-term load forecasting
  publication-title: Energy Procedia
– reference: H. Wilms, M. Cupelli, A. Monti, Combining auto-regression with exogenous variables in sequence-to-sequence recurrent neural networks for short-term load forecasting, in: 2018 IEEE 16th International Conference on Industrial Informatics (INDIN), 2018, pp. 673–679,
– start-page: 1
  year: 2019
  end-page: 31
  ident: b27
  article-title: N-BEATS: Neural basis expansion analysis for interpretable time series forecasting
– volume: 14
  start-page: 1598
  year: 2021
  ident: b18
  article-title: Effect of daily forecasting frequency on rolling-horizon-based EMS reducing electrical demand uncertainty in microgrids
  publication-title: Energies
– volume: 9
  start-page: 2120
  year: 2019
  ident: b20
  article-title: Towards the real-world deployment of a smart home EMS: A DP implementation on the raspberry Pi
  publication-title: Appl. Sci.
– volume: 10
  start-page: 841
  year: 2019
  end-page: 851
  ident: b16
  article-title: Short-term residential load forecasting based on LSTM recurrent neural network
  publication-title: IEEE Trans. Smart Grid
– volume: 212
  start-page: 372
  year: 2018
  end-page: 385
  ident: b28
  article-title: Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks
  publication-title: Appl. Energy
– volume: 8
  start-page: 123369
  year: 2020
  ident: 10.1016/j.matcom.2023.06.017_b36
  article-title: Short-term prediction of residential power energy consumption via CNN and multi-layer bi-directional LSTM networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963045
– ident: 10.1016/j.matcom.2023.06.017_b38
  doi: 10.1109/INDIN.2018.8471953
– volume: 9
  start-page: 5271
  issue: 5
  year: 2018
  ident: 10.1016/j.matcom.2023.06.017_b32
  article-title: Deep learning for household load forecasting—A novel pooling deep RNN
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2686012
– volume: 4
  start-page: 3104
  issue: January
  year: 2014
  ident: 10.1016/j.matcom.2023.06.017_b35
  article-title: Sequence to sequence learning with neural networks
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 28
  start-page: 2222
  issue: 10
  year: 2017
  ident: 10.1016/j.matcom.2023.06.017_b7
  article-title: LSTM: A search space odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582924
– year: 2019
  ident: 10.1016/j.matcom.2023.06.017_b26
– ident: 10.1016/j.matcom.2023.06.017_b24
  doi: 10.1109/IECON.2016.7793413
– ident: 10.1016/j.matcom.2023.06.017_b31
  doi: 10.1109/ICIOT.2019.00029
– volume: 22
  start-page: 679
  issue: 4
  year: 2006
  ident: 10.1016/j.matcom.2023.06.017_b13
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2006.03.001
– year: 2012
  ident: 10.1016/j.matcom.2023.06.017_b8
– volume: 6
  start-page: 91
  year: 2016
  ident: 10.1016/j.matcom.2023.06.017_b25
  article-title: Deep learning for estimating building energy consumption
  publication-title: Sustain. Energy Grids Netw.
  doi: 10.1016/j.segan.2016.02.005
– volume: 14
  start-page: 1598
  issue: 6
  year: 2021
  ident: 10.1016/j.matcom.2023.06.017_b18
  article-title: Effect of daily forecasting frequency on rolling-horizon-based EMS reducing electrical demand uncertainty in microgrids
  publication-title: Energies
  doi: 10.3390/en14061598
– volume: 9
  start-page: 2120
  issue: 10
  year: 2019
  ident: 10.1016/j.matcom.2023.06.017_b20
  article-title: Towards the real-world deployment of a smart home EMS: A DP implementation on the raspberry Pi
  publication-title: Appl. Sci.
  doi: 10.3390/app9102120
– volume: 9
  start-page: 4237
  issue: 20
  year: 2019
  ident: 10.1016/j.matcom.2023.06.017_b21
  article-title: Improving electric energy consumption prediction using CNN and bi-LSTM
  publication-title: Appl. Sci.
  doi: 10.3390/app9204237
– ident: 10.1016/j.matcom.2023.06.017_b34
  doi: 10.1109/ICSCAN53069.2021.9526485
– volume: 142
  start-page: 2791
  year: 2017
  ident: 10.1016/j.matcom.2023.06.017_b33
  article-title: A whole system assessment of novel deep learning approach on short-term load forecasting
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.12.423
– volume: 10
  start-page: 841
  issue: 1
  year: 2019
  ident: 10.1016/j.matcom.2023.06.017_b16
  article-title: Short-term residential load forecasting based on LSTM recurrent neural network
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2753802
– volume: 184
  start-page: 294
  year: 2021
  ident: 10.1016/j.matcom.2023.06.017_b6
  article-title: An artificial neural network-based forecasting model of energy-related time series for electrical grid management
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2020.05.010
– volume: vol. 7700
  start-page: 9
  year: 2012
  ident: 10.1016/j.matcom.2023.06.017_b22
  article-title: Efficient backprop
– volume: 8
  start-page: 143759
  year: 2020
  ident: 10.1016/j.matcom.2023.06.017_b30
  article-title: A novel CNN-GRU-based hybrid approach for short-term residential load forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3009537
– volume: 32
  start-page: 914
  issue: 3
  year: 2016
  ident: 10.1016/j.matcom.2023.06.017_b10
  article-title: Probabilistic electric load forecasting: A tutorial review
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2015.11.011
– ident: 10.1016/j.matcom.2023.06.017_b29
  doi: 10.1109/PTC.2019.8810899
– ident: 10.1016/j.matcom.2023.06.017_b19
  doi: 10.1109/IECON.2019.8926801
– volume: 182
  start-page: 72
  year: 2019
  ident: 10.1016/j.matcom.2023.06.017_b15
  article-title: Predicting residential energy consumption using CNN-LSTM neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.230
– ident: 10.1016/j.matcom.2023.06.017_b17
  doi: 10.1109/EAIT.2018.8470406
– year: 2021
  ident: 10.1016/j.matcom.2023.06.017_b12
– volume: 8
  start-page: 180544
  year: 2020
  ident: 10.1016/j.matcom.2023.06.017_b2
  article-title: Hybrid CNN-LSTM model for short-term individual household load forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3028281
– ident: 10.1016/j.matcom.2023.06.017_b5
  doi: 10.1109/EEEIC/ICPSEurope49358.2020.9160650
– volume: 212
  start-page: 372
  year: 2018
  ident: 10.1016/j.matcom.2023.06.017_b28
  article-title: Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.12.051
– volume: 86
  start-page: 1803
  issue: 6
  year: 2012
  ident: 10.1016/j.matcom.2023.06.017_b11
  article-title: A new solar radiation database for estimating PV performance in Europe and Africa
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.03.006
– start-page: 1
  year: 2019
  ident: 10.1016/j.matcom.2023.06.017_b27
– ident: 10.1016/j.matcom.2023.06.017_b3
  doi: 10.1109/ISIE.2017.8001465
– start-page: 1
  year: 2012
  ident: 10.1016/j.matcom.2023.06.017_b9
– volume: 36
  start-page: 54
  issue: 1
  year: 2020
  ident: 10.1016/j.matcom.2023.06.017_b23
  article-title: 100000 Time series and 61 forecasting methods
  publication-title: Int. J. Forecasting
  doi: 10.1016/j.ijforecast.2019.04.014
– ident: 10.1016/j.matcom.2023.06.017_b37
– year: 2015
  ident: 10.1016/j.matcom.2023.06.017_b1
– volume: 133
  year: 2021
  ident: 10.1016/j.matcom.2023.06.017_b14
  article-title: DB-Net: A novel dilated CNN based multi-step forecasting model for power consumption in integrated local energy systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.107023
– year: 2015
  ident: 10.1016/j.matcom.2023.06.017_b4
SSID ssj0007545
Score 2.430401
Snippet Energy management in smart buildings and energy communities needs short-term load demand forecasting for optimization-based scheduling, dispatch, and real-time...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 63
SubjectTerms Energy management
Forecasting
LSTM
Residential electrical consumption
Title Day-ahead forecasting of residential electric power consumption for energy management using Long Short-Term Memory encoder–decoder model
URI https://dx.doi.org/10.1016/j.matcom.2023.06.017
Volume 224
WOSCitedRecordID wos001322504500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7166
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007545
  issn: 0378-4754
  databaseCode: AIEXJ
  dateStart: 19950501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIdeuhdN0xY89CbQsCUxpI5Bkm6ogwBxAd8ELhKqIJGN2A6SnHrOtZ_SP-qXdLhaqItuQC-CPRBt2vM8HNJv5iH0Kit2lKqpIELzAcmF1ESmVBKqlBoImUnGpBWbYIeHfDIpjnq9r6EW5uKUtS2_vCxm_9XVYANnm9LZv3B3fFEwwGNwOlzB7XD9I8fviysiIMRqwyCslJgHYjNsrBtblgteceo3jUpmRiXNcM9hirPIO6xcReBZ5MYkS3um8MEoEx1_gpSdjCGkJyPD071KTDNM04jEEycyXdnnTmanm_6OYpPYeSios5oSlpQ7b868llhkCYlkPHVFa2_60bh0llG07DfJUSOur715r989ykjzSIrz52trNTaurouZ8z_XarpfuTDNGewLhk6vJcTxNM07kdiHTbemO3GWtdXCHVyc9OFzG-qQUZK3zVxdNekPfbiPzUTMPGDTNjD_Xt9CmymjBYTSzd13B5P3MQGAeyxzNkw8VGxaWuH6e_08I-pkOeP76K7fnuBdB6sHqFe1D9G9IP2B_UrwCN1ElOEOyvC0xh2U4YAybFGGOygzo7BDGV6hDFuUYYMyvEIZdijDHmXfPn_x-MIWX4_Rx9cH4723xMt6EAXZ_oJorVUuONcDqnNBqagKLiFtrsGrClIHSHmFklJzTvOMabUzrIaMaz2kXIqMi-wJ2minbfUU4bqmVFZCCElhMdKC13VeS52qXJp9QLGFsvDVlsr3vDfSK6dlIDeelM4hpXFIaTieQ7aFSBw1cz1ffnM_C14rfd7q8tESgPbLkc_-eeQ2urP6BT1HG4vzZfUC3VYXi2Z-_tIj8jvgTcb5
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Day-ahead+forecasting+of+residential+electric+power+consumption+for+energy+management+using+Long+Short-Term+Memory+encoder%E2%80%93decoder+model&rft.jtitle=Mathematics+and+computers+in+simulation&rft.au=La+Tona%2C+G.&rft.au=Luna%2C+M.&rft.au=Di+Piazza%2C+M.C.&rft.date=2024-10-01&rft.pub=Elsevier+B.V&rft.issn=0378-4754&rft.eissn=1872-7166&rft.volume=224&rft.spage=63&rft.epage=75&rft_id=info:doi/10.1016%2Fj.matcom.2023.06.017&rft.externalDocID=S0378475423002720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4754&client=summon