Edge-Guided Single Depth Image Super Resolution

Recently, consumer depth cameras have gained significant popularity due to their affordable cost. However, the limited resolution and the quality of the depth map generated by these cameras are still problematic for several applications. In this paper, a novel framework for the single depth image su...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing Vol. 25; no. 1; pp. 428 - 438
Main Authors: Jun Xie, Feris, Rogerio Schmidt, Ming-Ting Sun
Format: Journal Article
Language:English
Published: United States IEEE 01.01.2016
Subjects:
ISSN:1057-7149, 1941-0042, 1941-0042
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, consumer depth cameras have gained significant popularity due to their affordable cost. However, the limited resolution and the quality of the depth map generated by these cameras are still problematic for several applications. In this paper, a novel framework for the single depth image superresolution is proposed. In our framework, the upscaling of a single depth image is guided by a high-resolution edge map, which is constructed from the edges of the low-resolution depth image through a Markov random field optimization in a patch synthesis based manner. We also explore the self-similarity of patches during the edge construction stage, when limited training data are available. With the guidance of the high-resolution edge map, we propose upsampling the high-resolution depth image through a modified joint bilateral filter. The edge-based guidance not only helps avoiding artifacts introduced by direct texture prediction, but also reduces jagged artifacts and preserves the sharp edges. Experimental results demonstrate the effectiveness of our method both qualitatively and quantitatively compared with the state-of-the-art methods.
AbstractList Recently, consumer depth cameras have gained significant popularity due to their affordable cost. However, the limited resolution and the quality of the depth map generated by these cameras are still problematic for several applications. In this paper, a novel framework for the single depth image superresolution is proposed. In our framework, the upscaling of a single depth image is guided by a high-resolution edge map, which is constructed from the edges of the low-resolution depth image through a Markov random field optimization in a patch synthesis based manner. We also explore the self-similarity of patches during the edge construction stage, when limited training data are available. With the guidance of the high-resolution edge map, we propose upsampling the high-resolution depth image through a modified joint bilateral filter. The edge-based guidance not only helps avoiding artifacts introduced by direct texture prediction, but also reduces jagged artifacts and preserves the sharp edges. Experimental results demonstrate the effectiveness of our method both qualitatively and quantitatively compared with the state-of-the-art methods.
Recently, consumer depth cameras have gained significant popularity due to their affordable cost. However, the limited resolution and the quality of the depth map generated by these cameras are still problematic for several applications. In this paper, a novel framework for the single depth image superresolution is proposed. In our framework, the upscaling of a single depth image is guided by a high-resolution edge map, which is constructed from the edges of the low-resolution depth image through a Markov random field optimization in a patch synthesis based manner. We also explore the self-similarity of patches during the edge construction stage, when limited training data are available. With the guidance of the high-resolution edge map, we propose upsampling the high-resolution depth image through a modified joint bilateral filter. The edge-based guidance not only helps avoiding artifacts introduced by direct texture prediction, but also reduces jagged artifacts and preserves the sharp edges. Experimental results demonstrate the effectiveness of our method both qualitatively and quantitatively compared with the state-of-the-art methods.Recently, consumer depth cameras have gained significant popularity due to their affordable cost. However, the limited resolution and the quality of the depth map generated by these cameras are still problematic for several applications. In this paper, a novel framework for the single depth image superresolution is proposed. In our framework, the upscaling of a single depth image is guided by a high-resolution edge map, which is constructed from the edges of the low-resolution depth image through a Markov random field optimization in a patch synthesis based manner. We also explore the self-similarity of patches during the edge construction stage, when limited training data are available. With the guidance of the high-resolution edge map, we propose upsampling the high-resolution depth image through a modified joint bilateral filter. The edge-based guidance not only helps avoiding artifacts introduced by direct texture prediction, but also reduces jagged artifacts and preserves the sharp edges. Experimental results demonstrate the effectiveness of our method both qualitatively and quantitatively compared with the state-of-the-art methods.
Author Jun Xie
Ming-Ting Sun
Feris, Rogerio Schmidt
Author_xml – sequence: 1
  surname: Jun Xie
  fullname: Jun Xie
  email: junx@uw.edu
  organization: Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA
– sequence: 2
  givenname: Rogerio Schmidt
  surname: Feris
  fullname: Feris, Rogerio Schmidt
  email: rsferis@us.ibm.com
  organization: IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA
– sequence: 3
  surname: Ming-Ting Sun
  fullname: Ming-Ting Sun
  email: mts@uw.edu
  organization: Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26599968$$D View this record in MEDLINE/PubMed
BookMark eNqNkLtPwzAQhy0EglLYkZBQRpaUO8ePZEQ8KyGBKMyWE19LUB4lTgb-e1zaMjAgJp983-909x2y3aZtiLEThAkiZBcv06cJB5QTLgG1yHbYCDOBMYDgu6EGqWONIjtgh96_A6CQqPbZAVcyyzKVjtjFjVtQfDeUjlw0K5tFRdE1Lfu3aFrbBUWzYUld9Ey-rYa-bJsjtje3lafjzTtmr7c3L1f38cPj3fTq8iEuEsn72NlcWS3J8SLXvEBNDlKboy4STCWGNmgnALQACt9KicCHzVOVzyHPbTJm5-u5y679GMj3pi59QVVlG2oHb1Dr9Ptk8R-Up0miEAN6tkGHvCZnll1Z2-7TbH0EQK2Bomu972huirK3q8P7zpaVQTAr8SaINyvxZiM-BOFXcDv7j8jpOlIS0Q-uk4RrJZMvMTOLIA
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_patcog_2022_109260
crossref_primary_10_1109_JSEN_2022_3176669
crossref_primary_10_1109_TPAMI_2020_2984244
crossref_primary_10_1016_j_image_2017_04_011
crossref_primary_10_1109_TIP_2021_3106812
crossref_primary_10_1016_j_neucom_2019_08_074
crossref_primary_10_1016_j_ijleo_2018_03_103
crossref_primary_10_1016_j_neucom_2019_04_051
crossref_primary_10_1109_TMM_2021_3100766
crossref_primary_10_1109_TIP_2016_2621410
crossref_primary_10_1007_s00371_021_02057_x
crossref_primary_10_1016_j_ins_2018_09_018
crossref_primary_10_1109_TIP_2019_2960589
crossref_primary_10_1109_ACCESS_2017_2715981
crossref_primary_10_1016_j_displa_2023_102418
crossref_primary_10_1016_j_patcog_2025_112392
crossref_primary_10_1049_iet_ipr_2019_0074
crossref_primary_10_1049_iet_cvi_2016_0373
crossref_primary_10_1109_TCYB_2016_2638856
crossref_primary_10_1109_ACCESS_2019_2942394
crossref_primary_10_1049_cvi2_12024
crossref_primary_10_1109_ACCESS_2024_3435504
crossref_primary_10_1109_ACCESS_2020_3022910
crossref_primary_10_1016_j_dsp_2018_07_005
crossref_primary_10_1109_ACCESS_2019_2914065
crossref_primary_10_1109_TIP_2020_2973769
crossref_primary_10_1007_s11227_019_03066_3
crossref_primary_10_1016_j_patrec_2018_07_023
crossref_primary_10_1186_s13634_017_0487_7
crossref_primary_10_1016_j_image_2023_117064
crossref_primary_10_1109_TIP_2020_3040528
crossref_primary_10_3390_photonics11090821
crossref_primary_10_1109_TIM_2023_3256467
crossref_primary_10_3390_electronics14081671
crossref_primary_10_1007_s13319_018_0208_5
crossref_primary_10_1109_TIP_2017_2789323
crossref_primary_10_1109_TIP_2019_2944270
crossref_primary_10_3390_s23063066
crossref_primary_10_3390_s22030926
crossref_primary_10_1007_s00371_019_01748_w
crossref_primary_10_1007_s11042_022_12253_z
crossref_primary_10_1109_TVCG_2016_2621763
crossref_primary_10_1049_ell2_12129
crossref_primary_10_1109_TIP_2016_2619265
crossref_primary_10_1109_ACCESS_2021_3076853
crossref_primary_10_3390_e25060836
crossref_primary_10_1109_ACCESS_2020_2977201
crossref_primary_10_1109_TCSVT_2019_2923901
crossref_primary_10_1109_TIP_2017_2656463
crossref_primary_10_1007_s00371_018_1611_x
crossref_primary_10_1016_j_sigpro_2021_108375
crossref_primary_10_1109_TNNLS_2020_3016321
crossref_primary_10_1109_TIM_2024_3381168
crossref_primary_10_1109_TIP_2018_2874285
crossref_primary_10_3390_math11214556
crossref_primary_10_1098_rsos_181074
crossref_primary_10_1109_ACCESS_2019_2959800
crossref_primary_10_1109_ACCESS_2022_3215546
crossref_primary_10_1016_j_aei_2019_100999
crossref_primary_10_1109_ACCESS_2020_3007667
crossref_primary_10_1016_j_patcog_2020_107513
crossref_primary_10_1109_ACCESS_2024_3387981
crossref_primary_10_1109_TIP_2020_3002664
crossref_primary_10_3390_app9224874
crossref_primary_10_3390_app12062935
crossref_primary_10_1109_TCSVT_2016_2609438
crossref_primary_10_1109_TMM_2023_3301238
crossref_primary_10_1109_JSEN_2021_3124325
crossref_primary_10_1109_TPAMI_2019_2923621
crossref_primary_10_1109_JSTARS_2024_3483991
crossref_primary_10_1109_TGRS_2023_3272473
crossref_primary_10_3390_electronics13163330
crossref_primary_10_1109_TIP_2018_2828335
crossref_primary_10_1109_TMI_2023_3280217
crossref_primary_10_1364_AO_549610
crossref_primary_10_1016_j_image_2016_11_001
crossref_primary_10_3390_info16060501
crossref_primary_10_1016_j_image_2020_116040
crossref_primary_10_1088_2057_1976_adc935
crossref_primary_10_1109_TCSVT_2021_3104151
crossref_primary_10_1109_ACCESS_2025_3532610
crossref_primary_10_1007_s11042_021_11429_3
crossref_primary_10_1109_ACCESS_2025_3582793
crossref_primary_10_1109_JBHI_2022_3156548
crossref_primary_10_1109_TIM_2024_3417544
crossref_primary_10_1049_iet_ipr_2019_1623
crossref_primary_10_3390_app13148270
crossref_primary_10_1109_TIP_2018_2866959
crossref_primary_10_1109_TIM_2025_3584149
crossref_primary_10_1109_TCSVT_2023_3321668
crossref_primary_10_1109_ACCESS_2023_3241852
crossref_primary_10_1007_s11042_021_11392_z
crossref_primary_10_1109_TIP_2023_3242144
crossref_primary_10_1109_TIP_2020_3042064
crossref_primary_10_1016_j_patcog_2018_11_028
crossref_primary_10_1109_TMM_2021_3118282
crossref_primary_10_1109_TIP_2018_2806089
crossref_primary_10_3390_s20061560
crossref_primary_10_1016_j_neucom_2021_04_096
crossref_primary_10_1109_LSP_2021_3066125
crossref_primary_10_1007_s10845_023_02299_7
crossref_primary_10_3390_electronics10141641
crossref_primary_10_1109_TCSVT_2018_2866399
crossref_primary_10_1016_j_image_2022_116649
crossref_primary_10_1016_j_ins_2019_05_003
crossref_primary_10_1109_TIP_2021_3130538
crossref_primary_10_3390_app8020298
crossref_primary_10_1016_j_patcog_2020_107274
crossref_primary_10_1109_TGRS_2023_3234058
crossref_primary_10_1109_TIP_2018_2887029
crossref_primary_10_1007_s42979_020_00269_x
crossref_primary_10_1109_TNNLS_2022_3208330
crossref_primary_10_1016_j_jvcir_2016_11_009
Cites_doi 10.1109/TPAMI.2006.200
10.1109/TIP.2014.2329766
10.1109/TMM.2012.2232646
10.1109/CVPR.2010.5540206
10.1023/A:1014573219977
10.1109/ICCV.2013.127
10.1109/TPAMI.2004.47
10.1145/2047196.2047270
10.1109/ICCV.2009.5459271
10.1109/ICME.2012.30
10.1109/ICCV.2011.6126423
10.1109/CVPR.2011.5995401
10.1109/ICCPHOT.2010.5585097
10.1109/CVPR.2007.383211
10.1109/CVPR.2013.149
10.1007/978-3-319-11752-2_3
10.1109/CVPR.2014.431
10.1109/VCIP.2013.6706444
10.1109/TPAMI.2010.161
10.1109/ICIP.2014.7025766
10.1109/ICASSP.2011.5946547
10.1109/TIP.2010.2050625
10.1109/TMM.2015.2457678
10.1109/ICME.2014.6890325
10.1109/CVPR.2009.5206804
10.1109/38.988747
10.1109/TPAMI.2010.25
10.1145/1276377.1276497
10.1109/CVPR.2012.6248074
10.1145/1531326.1531330
10.1109/CVPR.2015.7299156
10.1109/CVPR.2013.29
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TIP.2015.2501749
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList PubMed
MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 438
ExternalDocumentID 26599968
10_1109_TIP_2015_2501749
7332765
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
RIG
7X8
7SC
7SP
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c352t-dab6a75ed2cb72c17ed08ab17c31851dab07d400740eab1664b6a94186bf0bba3
IEDL.DBID RIE
ISICitedReferencesCount 180
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000366558900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sun Sep 28 07:35:49 EDT 2025
Sun Sep 28 05:03:21 EDT 2025
Thu Apr 03 06:56:13 EDT 2025
Sat Nov 29 07:50:18 EST 2025
Tue Nov 18 21:39:51 EST 2025
Tue Aug 26 16:43:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords super resolution
Markov random field
Single depth image
joint bilateral up-sampling
edge-guided
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-dab6a75ed2cb72c17ed08ab17c31851dab07d400740eab1664b6a94186bf0bba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26599968
PQID 1772833611
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1778017494
crossref_citationtrail_10_1109_TIP_2015_2501749
ieee_primary_7332765
proquest_miscellaneous_1772833611
pubmed_primary_26599968
crossref_primary_10_1109_TIP_2015_2501749
PublicationCentury 2000
PublicationDate 2016-Jan.
2016-1-00
2016-Jan
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-Jan.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref12
ref37
ref15
ref31
ref30
rajagopalan (ref17) 2008
ref33
ref11
ref32
ref10
ref2
ref1
ref39
zeyde (ref5) 2010
ref16
ref19
barnes (ref36) 2009; 28
ref18
dong (ref9) 2014
felzenszwalb (ref34) 2004
diebel (ref27) 2005
aodha (ref26) 2012
ref24
ref23
ref25
ref20
ref22
scharstein (ref38) 2014
ref21
kim (ref7) 2010; 32
ref28
ref29
ref8
ref4
ref3
tai (ref14) 2006
wang (ref6) 2012
ref40
References_xml – ident: ref35
  doi: 10.1109/TPAMI.2006.200
– ident: ref25
  doi: 10.1109/TIP.2014.2329766
– ident: ref8
  doi: 10.1109/TMM.2012.2232646
– ident: ref13
  doi: 10.1109/CVPR.2010.5540206
– ident: ref37
  doi: 10.1023/A:1014573219977
– ident: ref23
  doi: 10.1109/ICCV.2013.127
– start-page: 304
  year: 2008
  ident: ref17
  article-title: Resolution enhancement of PMD range maps
  publication-title: Proc 30th DAGM Symp Pattern Recognit
– ident: ref32
  doi: 10.1109/TPAMI.2004.47
– ident: ref18
  doi: 10.1145/2047196.2047270
– ident: ref11
  doi: 10.1109/ICCV.2009.5459271
– ident: ref3
  doi: 10.1109/ICME.2012.30
– ident: ref24
  doi: 10.1109/ICCV.2011.6126423
– start-page: 291
  year: 2005
  ident: ref27
  article-title: An application of Markov random fields to range sensing
  publication-title: Proc NIPS
– ident: ref10
  doi: 10.1109/CVPR.2011.5995401
– start-page: 71
  year: 2012
  ident: ref26
  article-title: Patch based synthesis for single depth image super-resolution
  publication-title: Proc 12th Eur Conf Comput Vis (ECCV)
– ident: ref15
  doi: 10.1109/ICCPHOT.2010.5585097
– ident: ref19
  doi: 10.1109/CVPR.2007.383211
– ident: ref28
  doi: 10.1109/CVPR.2013.149
– start-page: 1948
  year: 2006
  ident: ref14
  article-title: Perceptually-inspired and edge-directed color image super-resolution
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– start-page: 31
  year: 2014
  ident: ref38
  article-title: High-resolution stereo datasets with subpixel-accurate ground truth
  publication-title: Proc German Conf Pattern Recognit
  doi: 10.1007/978-3-319-11752-2_3
– ident: ref29
  doi: 10.1109/CVPR.2014.431
– ident: ref20
  doi: 10.1109/VCIP.2013.6706444
– ident: ref33
  doi: 10.1109/TPAMI.2010.161
– ident: ref1
  doi: 10.1109/ICIP.2014.7025766
– ident: ref40
  doi: 10.1109/ICASSP.2011.5946547
– start-page: 184
  year: 2014
  ident: ref9
  article-title: Learning a deep convolutional network for image super-resolution
  publication-title: Proc 12th Eur Conf Comput Vis (ECCV)
– ident: ref4
  doi: 10.1109/TIP.2010.2050625
– ident: ref31
  doi: 10.1109/TMM.2015.2457678
– start-page: 711
  year: 2010
  ident: ref5
  article-title: On single image scale-up using sparse-representations
  publication-title: Proc 7th Int Conf Curves Surf
– ident: ref30
  doi: 10.1109/ICME.2014.6890325
– ident: ref16
  doi: 10.1109/CVPR.2009.5206804
– ident: ref2
  doi: 10.1109/38.988747
– volume: 32
  start-page: 1127
  year: 2010
  ident: ref7
  article-title: Single-image super-resolution using sparse regression and natural image prior
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.25
– year: 2004
  ident: ref34
  article-title: Distance transforms of sampled functions
– start-page: 2216
  year: 2012
  ident: ref6
  article-title: Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)
– ident: ref21
  doi: 10.1145/1276377.1276497
– ident: ref39
  doi: 10.1109/CVPR.2012.6248074
– volume: 28
  year: 2009
  ident: ref36
  article-title: PatchMatch: A randomized correspondence algorithm for structural image editing
  publication-title: ACM Trans Graph
  doi: 10.1145/1531326.1531330
– ident: ref12
  doi: 10.1109/CVPR.2015.7299156
– ident: ref22
  doi: 10.1109/CVPR.2013.29
SSID ssj0014516
Score 2.576939
Snippet Recently, consumer depth cameras have gained significant popularity due to their affordable cost. However, the limited resolution and the quality of the depth...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 428
SubjectTerms Cameras
Color
Construction
Edge- Guided
Image edge detection
Image processing
Image reconstruction
Image resolution
Joint Bilateral Up-sampling
Joints
Markov Random Field
Preserves
Single Depth Image
Super Resolution
Surface layer
Texture
Training
Title Edge-Guided Single Depth Image Super Resolution
URI https://ieeexplore.ieee.org/document/7332765
https://www.ncbi.nlm.nih.gov/pubmed/26599968
https://www.proquest.com/docview/1772833611
https://www.proquest.com/docview/1778017494
Volume 25
WOSCitedRecordID wos000366558900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8g8UEfRMEP_CAz8cXEwca6dXs0CsoLIRET3pauPZQEgQDz7_fajUUTJfFt6a5rc3fd_drr3QHcSLJSEWPcHqNwbBa4wo7GitaVz6USjKkwkqbYBO_3w9EoGpTgroiFQURz-Qyb-tH48tVcpvqorMU9r80Dfwd2OOdZrFbhMdAFZ41n0-c2J9i_cUk6UWvYG-g7XH6TzD0BcJ0otB34GumHP6yRKa_yN9I0Fqdb-d9cD-EgR5bWfaYKR1DCWRUqOcq08jW8qsL-txSENWh11BvaT-lEaSJqmqL1iIv1u9X7oF-N9ZIucGnpQ_5MRY_htdsZPjzbeREFWxK2WttKJIHgPqq2THhbuhyVE4rE5VLHTbv02uFKF0dnDlJzEDCij5gbBsnYSRLhnUB5Np_hGViJJCguOW3RmGQKCZw5itACgUiReERbh9aGmbHMM4zrQhfT2Ow0nCgmScRaEnEuiTrcFj0WWXaNLbQ1zeWCLmdwHa438oppZWh3h5jhPF3FLs029LzAdbfShObrrA6nmbCLATY6cv77wBewR9PLj2MuobxepngFu_JzPVktG6Sio7BhVPQLvy_d-Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mB6gPfn_Mzwq-CNY1bdq0j6JThzoEJ_hW0uSmgm5jW_37vaRdUVDBt5JemnB36f2Sy90BHCmyUgnnwu2i9FweMekmXU3rKhRKS851nChbbEK02_HTU3Jfg5MqFgYR7eUzPDWP1pev-yo3R2UNEQS-iMIpmAk591kRrVX5DEzJWevbDIUrCPhPnJJe0ui07s0trvCUDD5BcJMq1I9Cg_Xjb_bIFlj5HWtam3O59L_ZLsNiiS2ds0IZVqCGvVVYKnGmU67i0SosfElCuAaNpn5G9yp_1YaImt7QucDB-MVpvdPPxnnIBzh0zDF_oaTr8HjZ7Jxfu2UZBVcRuhq7WmaRFCFqX2XCV0yg9mKZMaFM5DSj157Qpjw695Cao4gTfcJZHGVdL8tksAHTvX4Pt8DJFIFxJWiTxhXXSPDM04QXCEbKLCDaOjQmzExVmWPclLp4S-1ew0tSkkRqJJGWkqjDcdVjUOTX-IN2zXC5oisZXIfDibxSWhvG4SF72M9HKaPZxkEQMfYnTWy_zuuwWQi7GmCiI9s_D3wAc9edu9v0ttW-2YF5mmp5OLML0-Nhjnswqz7Gr6PhvlXUTznW4Fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge-Guided+Single+Depth+Image+Super+Resolution&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Jun+Xie&rft.au=Feris%2C+Rogerio+Schmidt&rft.au=Ming-Ting+Sun&rft.date=2016-01-01&rft.eissn=1941-0042&rft.volume=25&rft.issue=1&rft.spage=428&rft_id=info:doi/10.1109%2FTIP.2015.2501749&rft_id=info%3Apmid%2F26599968&rft.externalDocID=26599968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon