Edge-Guided Single Depth Image Super Resolution
Recently, consumer depth cameras have gained significant popularity due to their affordable cost. However, the limited resolution and the quality of the depth map generated by these cameras are still problematic for several applications. In this paper, a novel framework for the single depth image su...
Uloženo v:
| Vydáno v: | IEEE transactions on image processing Ročník 25; číslo 1; s. 428 - 438 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.01.2016
|
| Témata: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently, consumer depth cameras have gained significant popularity due to their affordable cost. However, the limited resolution and the quality of the depth map generated by these cameras are still problematic for several applications. In this paper, a novel framework for the single depth image superresolution is proposed. In our framework, the upscaling of a single depth image is guided by a high-resolution edge map, which is constructed from the edges of the low-resolution depth image through a Markov random field optimization in a patch synthesis based manner. We also explore the self-similarity of patches during the edge construction stage, when limited training data are available. With the guidance of the high-resolution edge map, we propose upsampling the high-resolution depth image through a modified joint bilateral filter. The edge-based guidance not only helps avoiding artifacts introduced by direct texture prediction, but also reduces jagged artifacts and preserves the sharp edges. Experimental results demonstrate the effectiveness of our method both qualitatively and quantitatively compared with the state-of-the-art methods. |
|---|---|
| AbstractList | Recently, consumer depth cameras have gained significant popularity due to their affordable cost. However, the limited resolution and the quality of the depth map generated by these cameras are still problematic for several applications. In this paper, a novel framework for the single depth image superresolution is proposed. In our framework, the upscaling of a single depth image is guided by a high-resolution edge map, which is constructed from the edges of the low-resolution depth image through a Markov random field optimization in a patch synthesis based manner. We also explore the self-similarity of patches during the edge construction stage, when limited training data are available. With the guidance of the high-resolution edge map, we propose upsampling the high-resolution depth image through a modified joint bilateral filter. The edge-based guidance not only helps avoiding artifacts introduced by direct texture prediction, but also reduces jagged artifacts and preserves the sharp edges. Experimental results demonstrate the effectiveness of our method both qualitatively and quantitatively compared with the state-of-the-art methods. Recently, consumer depth cameras have gained significant popularity due to their affordable cost. However, the limited resolution and the quality of the depth map generated by these cameras are still problematic for several applications. In this paper, a novel framework for the single depth image superresolution is proposed. In our framework, the upscaling of a single depth image is guided by a high-resolution edge map, which is constructed from the edges of the low-resolution depth image through a Markov random field optimization in a patch synthesis based manner. We also explore the self-similarity of patches during the edge construction stage, when limited training data are available. With the guidance of the high-resolution edge map, we propose upsampling the high-resolution depth image through a modified joint bilateral filter. The edge-based guidance not only helps avoiding artifacts introduced by direct texture prediction, but also reduces jagged artifacts and preserves the sharp edges. Experimental results demonstrate the effectiveness of our method both qualitatively and quantitatively compared with the state-of-the-art methods.Recently, consumer depth cameras have gained significant popularity due to their affordable cost. However, the limited resolution and the quality of the depth map generated by these cameras are still problematic for several applications. In this paper, a novel framework for the single depth image superresolution is proposed. In our framework, the upscaling of a single depth image is guided by a high-resolution edge map, which is constructed from the edges of the low-resolution depth image through a Markov random field optimization in a patch synthesis based manner. We also explore the self-similarity of patches during the edge construction stage, when limited training data are available. With the guidance of the high-resolution edge map, we propose upsampling the high-resolution depth image through a modified joint bilateral filter. The edge-based guidance not only helps avoiding artifacts introduced by direct texture prediction, but also reduces jagged artifacts and preserves the sharp edges. Experimental results demonstrate the effectiveness of our method both qualitatively and quantitatively compared with the state-of-the-art methods. |
| Author | Jun Xie Ming-Ting Sun Feris, Rogerio Schmidt |
| Author_xml | – sequence: 1 surname: Jun Xie fullname: Jun Xie email: junx@uw.edu organization: Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA – sequence: 2 givenname: Rogerio Schmidt surname: Feris fullname: Feris, Rogerio Schmidt email: rsferis@us.ibm.com organization: IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA – sequence: 3 surname: Ming-Ting Sun fullname: Ming-Ting Sun email: mts@uw.edu organization: Dept. of Electr. Eng., Univ. of Washington, Seattle, WA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26599968$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkLtPwzAQhy0EglLYkZBQRpaUO8ePZEQ8KyGBKMyWE19LUB4lTgb-e1zaMjAgJp983-909x2y3aZtiLEThAkiZBcv06cJB5QTLgG1yHbYCDOBMYDgu6EGqWONIjtgh96_A6CQqPbZAVcyyzKVjtjFjVtQfDeUjlw0K5tFRdE1Lfu3aFrbBUWzYUld9Ey-rYa-bJsjtje3lafjzTtmr7c3L1f38cPj3fTq8iEuEsn72NlcWS3J8SLXvEBNDlKboy4STCWGNmgnALQACt9KicCHzVOVzyHPbTJm5-u5y679GMj3pi59QVVlG2oHb1Dr9Ptk8R-Up0miEAN6tkGHvCZnll1Z2-7TbH0EQK2Bomu972huirK3q8P7zpaVQTAr8SaINyvxZiM-BOFXcDv7j8jpOlIS0Q-uk4RrJZMvMTOLIA |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1016_j_patcog_2022_109260 crossref_primary_10_1109_JSEN_2022_3176669 crossref_primary_10_1109_TPAMI_2020_2984244 crossref_primary_10_1016_j_image_2017_04_011 crossref_primary_10_1109_TIP_2021_3106812 crossref_primary_10_1016_j_neucom_2019_08_074 crossref_primary_10_1016_j_ijleo_2018_03_103 crossref_primary_10_1016_j_neucom_2019_04_051 crossref_primary_10_1109_TMM_2021_3100766 crossref_primary_10_1109_TIP_2016_2621410 crossref_primary_10_1007_s00371_021_02057_x crossref_primary_10_1016_j_ins_2018_09_018 crossref_primary_10_1109_TIP_2019_2960589 crossref_primary_10_1109_ACCESS_2017_2715981 crossref_primary_10_1016_j_displa_2023_102418 crossref_primary_10_1016_j_patcog_2025_112392 crossref_primary_10_1049_iet_ipr_2019_0074 crossref_primary_10_1049_iet_cvi_2016_0373 crossref_primary_10_1109_TCYB_2016_2638856 crossref_primary_10_1109_ACCESS_2019_2942394 crossref_primary_10_1049_cvi2_12024 crossref_primary_10_1109_ACCESS_2024_3435504 crossref_primary_10_1109_ACCESS_2020_3022910 crossref_primary_10_1016_j_dsp_2018_07_005 crossref_primary_10_1109_ACCESS_2019_2914065 crossref_primary_10_1109_TIP_2020_2973769 crossref_primary_10_1007_s11227_019_03066_3 crossref_primary_10_1016_j_patrec_2018_07_023 crossref_primary_10_1186_s13634_017_0487_7 crossref_primary_10_1016_j_image_2023_117064 crossref_primary_10_1109_TIP_2020_3040528 crossref_primary_10_3390_photonics11090821 crossref_primary_10_1109_TIM_2023_3256467 crossref_primary_10_3390_electronics14081671 crossref_primary_10_1007_s13319_018_0208_5 crossref_primary_10_1109_TIP_2017_2789323 crossref_primary_10_1109_TIP_2019_2944270 crossref_primary_10_3390_s23063066 crossref_primary_10_3390_s22030926 crossref_primary_10_1007_s00371_019_01748_w crossref_primary_10_1007_s11042_022_12253_z crossref_primary_10_1109_TVCG_2016_2621763 crossref_primary_10_1049_ell2_12129 crossref_primary_10_1109_TIP_2016_2619265 crossref_primary_10_1109_ACCESS_2021_3076853 crossref_primary_10_3390_e25060836 crossref_primary_10_1109_ACCESS_2020_2977201 crossref_primary_10_1109_TCSVT_2019_2923901 crossref_primary_10_1109_TIP_2017_2656463 crossref_primary_10_1007_s00371_018_1611_x crossref_primary_10_1016_j_sigpro_2021_108375 crossref_primary_10_1109_TNNLS_2020_3016321 crossref_primary_10_1109_TIM_2024_3381168 crossref_primary_10_1109_TIP_2018_2874285 crossref_primary_10_3390_math11214556 crossref_primary_10_1098_rsos_181074 crossref_primary_10_1109_ACCESS_2019_2959800 crossref_primary_10_1109_ACCESS_2022_3215546 crossref_primary_10_1016_j_aei_2019_100999 crossref_primary_10_1109_ACCESS_2020_3007667 crossref_primary_10_1016_j_patcog_2020_107513 crossref_primary_10_1109_ACCESS_2024_3387981 crossref_primary_10_1109_TIP_2020_3002664 crossref_primary_10_3390_app9224874 crossref_primary_10_3390_app12062935 crossref_primary_10_1109_TCSVT_2016_2609438 crossref_primary_10_1109_TMM_2023_3301238 crossref_primary_10_1109_JSEN_2021_3124325 crossref_primary_10_1109_TPAMI_2019_2923621 crossref_primary_10_1109_JSTARS_2024_3483991 crossref_primary_10_1109_TGRS_2023_3272473 crossref_primary_10_3390_electronics13163330 crossref_primary_10_1109_TIP_2018_2828335 crossref_primary_10_1109_TMI_2023_3280217 crossref_primary_10_1364_AO_549610 crossref_primary_10_1016_j_image_2016_11_001 crossref_primary_10_3390_info16060501 crossref_primary_10_1016_j_image_2020_116040 crossref_primary_10_1088_2057_1976_adc935 crossref_primary_10_1109_TCSVT_2021_3104151 crossref_primary_10_1109_ACCESS_2025_3532610 crossref_primary_10_1007_s11042_021_11429_3 crossref_primary_10_1109_ACCESS_2025_3582793 crossref_primary_10_1109_JBHI_2022_3156548 crossref_primary_10_1109_TIM_2024_3417544 crossref_primary_10_1049_iet_ipr_2019_1623 crossref_primary_10_3390_app13148270 crossref_primary_10_1109_TIP_2018_2866959 crossref_primary_10_1109_TIM_2025_3584149 crossref_primary_10_1109_TCSVT_2023_3321668 crossref_primary_10_1109_ACCESS_2023_3241852 crossref_primary_10_1007_s11042_021_11392_z crossref_primary_10_1109_TIP_2023_3242144 crossref_primary_10_1109_TIP_2020_3042064 crossref_primary_10_1016_j_patcog_2018_11_028 crossref_primary_10_1109_TMM_2021_3118282 crossref_primary_10_1109_TIP_2018_2806089 crossref_primary_10_3390_s20061560 crossref_primary_10_1016_j_neucom_2021_04_096 crossref_primary_10_1109_LSP_2021_3066125 crossref_primary_10_1007_s10845_023_02299_7 crossref_primary_10_3390_electronics10141641 crossref_primary_10_1109_TCSVT_2018_2866399 crossref_primary_10_1016_j_image_2022_116649 crossref_primary_10_1016_j_ins_2019_05_003 crossref_primary_10_1109_TIP_2021_3130538 crossref_primary_10_3390_app8020298 crossref_primary_10_1016_j_patcog_2020_107274 crossref_primary_10_1109_TGRS_2023_3234058 crossref_primary_10_1109_TIP_2018_2887029 crossref_primary_10_1007_s42979_020_00269_x crossref_primary_10_1109_TNNLS_2022_3208330 crossref_primary_10_1016_j_jvcir_2016_11_009 |
| Cites_doi | 10.1109/TPAMI.2006.200 10.1109/TIP.2014.2329766 10.1109/TMM.2012.2232646 10.1109/CVPR.2010.5540206 10.1023/A:1014573219977 10.1109/ICCV.2013.127 10.1109/TPAMI.2004.47 10.1145/2047196.2047270 10.1109/ICCV.2009.5459271 10.1109/ICME.2012.30 10.1109/ICCV.2011.6126423 10.1109/CVPR.2011.5995401 10.1109/ICCPHOT.2010.5585097 10.1109/CVPR.2007.383211 10.1109/CVPR.2013.149 10.1007/978-3-319-11752-2_3 10.1109/CVPR.2014.431 10.1109/VCIP.2013.6706444 10.1109/TPAMI.2010.161 10.1109/ICIP.2014.7025766 10.1109/ICASSP.2011.5946547 10.1109/TIP.2010.2050625 10.1109/TMM.2015.2457678 10.1109/ICME.2014.6890325 10.1109/CVPR.2009.5206804 10.1109/38.988747 10.1109/TPAMI.2010.25 10.1145/1276377.1276497 10.1109/CVPR.2012.6248074 10.1145/1531326.1531330 10.1109/CVPR.2015.7299156 10.1109/CVPR.2013.29 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TIP.2015.2501749 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 438 |
| ExternalDocumentID | 26599968 10_1109_TIP_2015_2501749 7332765 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION AAYOK NPM RIG 7X8 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c352t-dab6a75ed2cb72c17ed08ab17c31851dab07d400740eab1664b6a94186bf0bba3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 180 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000366558900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Sun Sep 28 07:35:49 EDT 2025 Sun Sep 28 05:03:21 EDT 2025 Thu Apr 03 06:56:13 EDT 2025 Sat Nov 29 07:50:18 EST 2025 Tue Nov 18 21:39:51 EST 2025 Tue Aug 26 16:43:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | super resolution Markov random field Single depth image joint bilateral up-sampling edge-guided |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-dab6a75ed2cb72c17ed08ab17c31851dab07d400740eab1664b6a94186bf0bba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 26599968 |
| PQID | 1772833611 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1778017494 crossref_citationtrail_10_1109_TIP_2015_2501749 ieee_primary_7332765 proquest_miscellaneous_1772833611 pubmed_primary_26599968 crossref_primary_10_1109_TIP_2015_2501749 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Jan. 2016-1-00 2016-Jan 20160101 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-Jan. |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref35 ref13 ref12 ref37 ref15 ref31 ref30 rajagopalan (ref17) 2008 ref33 ref11 ref32 ref10 ref2 ref1 ref39 zeyde (ref5) 2010 ref16 ref19 barnes (ref36) 2009; 28 ref18 dong (ref9) 2014 felzenszwalb (ref34) 2004 diebel (ref27) 2005 aodha (ref26) 2012 ref24 ref23 ref25 ref20 ref22 scharstein (ref38) 2014 ref21 kim (ref7) 2010; 32 ref28 ref29 ref8 ref4 ref3 tai (ref14) 2006 wang (ref6) 2012 ref40 |
| References_xml | – ident: ref35 doi: 10.1109/TPAMI.2006.200 – ident: ref25 doi: 10.1109/TIP.2014.2329766 – ident: ref8 doi: 10.1109/TMM.2012.2232646 – ident: ref13 doi: 10.1109/CVPR.2010.5540206 – ident: ref37 doi: 10.1023/A:1014573219977 – ident: ref23 doi: 10.1109/ICCV.2013.127 – start-page: 304 year: 2008 ident: ref17 article-title: Resolution enhancement of PMD range maps publication-title: Proc 30th DAGM Symp Pattern Recognit – ident: ref32 doi: 10.1109/TPAMI.2004.47 – ident: ref18 doi: 10.1145/2047196.2047270 – ident: ref11 doi: 10.1109/ICCV.2009.5459271 – ident: ref3 doi: 10.1109/ICME.2012.30 – ident: ref24 doi: 10.1109/ICCV.2011.6126423 – start-page: 291 year: 2005 ident: ref27 article-title: An application of Markov random fields to range sensing publication-title: Proc NIPS – ident: ref10 doi: 10.1109/CVPR.2011.5995401 – start-page: 71 year: 2012 ident: ref26 article-title: Patch based synthesis for single depth image super-resolution publication-title: Proc 12th Eur Conf Comput Vis (ECCV) – ident: ref15 doi: 10.1109/ICCPHOT.2010.5585097 – ident: ref19 doi: 10.1109/CVPR.2007.383211 – ident: ref28 doi: 10.1109/CVPR.2013.149 – start-page: 1948 year: 2006 ident: ref14 article-title: Perceptually-inspired and edge-directed color image super-resolution publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – start-page: 31 year: 2014 ident: ref38 article-title: High-resolution stereo datasets with subpixel-accurate ground truth publication-title: Proc German Conf Pattern Recognit doi: 10.1007/978-3-319-11752-2_3 – ident: ref29 doi: 10.1109/CVPR.2014.431 – ident: ref20 doi: 10.1109/VCIP.2013.6706444 – ident: ref33 doi: 10.1109/TPAMI.2010.161 – ident: ref1 doi: 10.1109/ICIP.2014.7025766 – ident: ref40 doi: 10.1109/ICASSP.2011.5946547 – start-page: 184 year: 2014 ident: ref9 article-title: Learning a deep convolutional network for image super-resolution publication-title: Proc 12th Eur Conf Comput Vis (ECCV) – ident: ref4 doi: 10.1109/TIP.2010.2050625 – ident: ref31 doi: 10.1109/TMM.2015.2457678 – start-page: 711 year: 2010 ident: ref5 article-title: On single image scale-up using sparse-representations publication-title: Proc 7th Int Conf Curves Surf – ident: ref30 doi: 10.1109/ICME.2014.6890325 – ident: ref16 doi: 10.1109/CVPR.2009.5206804 – ident: ref2 doi: 10.1109/38.988747 – volume: 32 start-page: 1127 year: 2010 ident: ref7 article-title: Single-image super-resolution using sparse regression and natural image prior publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.25 – year: 2004 ident: ref34 article-title: Distance transforms of sampled functions – start-page: 2216 year: 2012 ident: ref6 article-title: Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) – ident: ref21 doi: 10.1145/1276377.1276497 – ident: ref39 doi: 10.1109/CVPR.2012.6248074 – volume: 28 year: 2009 ident: ref36 article-title: PatchMatch: A randomized correspondence algorithm for structural image editing publication-title: ACM Trans Graph doi: 10.1145/1531326.1531330 – ident: ref12 doi: 10.1109/CVPR.2015.7299156 – ident: ref22 doi: 10.1109/CVPR.2013.29 |
| SSID | ssj0014516 |
| Score | 2.576939 |
| Snippet | Recently, consumer depth cameras have gained significant popularity due to their affordable cost. However, the limited resolution and the quality of the depth... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 428 |
| SubjectTerms | Cameras Color Construction Edge- Guided Image edge detection Image processing Image reconstruction Image resolution Joint Bilateral Up-sampling Joints Markov Random Field Preserves Single Depth Image Super Resolution Surface layer Texture Training |
| Title | Edge-Guided Single Depth Image Super Resolution |
| URI | https://ieeexplore.ieee.org/document/7332765 https://www.ncbi.nlm.nih.gov/pubmed/26599968 https://www.proquest.com/docview/1772833611 https://www.proquest.com/docview/1778017494 |
| Volume | 25 |
| WOSCitedRecordID | wos000366558900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8VtAd4GBsfW_dRBYkXJELjOPHH47TB1pcKCZD6Fjn2BZBYW7UNfz9nJ41AAiReosi5xJbvnPudz3cHcJSXlSYgz-PEKhNnjGFsLE_p4lBkLtOlMqHYhByP1WSiL3pw0sXCIGI4fIan_jb48t3M1n6rbCg5T6XIN2BDStnEanUeA19wNng2cxlLgv1rl2Sih1ejC3-GKz8ldU8A3CcKTUXukb56po1CeZXXkWbQOOc77xvrJ_jYIsvoVyMKn6GH013YaVFm1K7h5S5sP0lBuAfDM3eD8d_6znkiarrH6A_OV7fR6D_9aqLLeo6LyG_yNyK6D9fnZ1e__8VtEYXYErZaxc6UwsgcXWpLmVom0SXKlExaHzfN6HEinS-OniVIzUJkRK8zpkRZJWVp-AFsTmdT_AqREk6bTHMnyGjjxpnKCFSOo6gqrpXuw3A9mYVtM4z7Qhf3RbA0El0QJwrPiaLlRB-OuzfmTXaNN2j3_Cx3dO0E9-Fwza-CVoZ3d5gpzuplwchwUJwLxt6kUeHrWR--NMzuOljLyLeXO_4OWzS8djvmB2yuFjX-hA_2YXW3XAxIRCdqEET0ETWI3s8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xQBo8wPguGyOTeEEiNI4dfzxOG4xqUCFRJN4ix74AErRV2-zvn-2k0ZAAaS9R5Fxiy3fO_c7nuwM4yopSOSBP48RIHTNCMNaGpu5ikTPLVCF1KDYh-n15d6euF-CkjYVBxHD4DE_9bfDl25Gp_FZZV1CaCp59gKWMsZTU0Vqtz8CXnA2-zUzEwgH_uVMyUd1B79qf4spOncJ3ENynCk155rG-fKGPQoGVt7Fm0Dnn6_832k-w1mDL6HstDBuwgMNNWG9wZtSs4ukmrP6ThHALumf2HuNf1aP1RK7pCaOfOJ49RL1n97OJbqoxTiK_zV8L6Tbcnp8NflzETRmF2Dh0NYutLrgWGdrUFCI1RKBNpC6IMD5ymrjHibC-PDpL0DVzzhy9YkTyokyKQtMdWByOhrgHkeRWaaao5c5so9rqUnOUliIvS6qk6kB3Ppm5aXKM-1IXT3mwNRKVO07knhN5w4kOHLdvjOv8Gu_QbvlZbumaCe7Atzm_crc2vMNDD3FUTXPiTAdJKSfkXRoZvs46sFszu-1gLiP7r3d8CB8vBleX-WWv__szrLihNpszX2BxNqnwAJbNn9njdPI1COpftbLhLg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge-Guided+Single+Depth+Image+Super+Resolution&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Jun+Xie&rft.au=Feris%2C+Rogerio+Schmidt&rft.au=Ming-Ting+Sun&rft.date=2016-01-01&rft.pub=IEEE&rft.issn=1057-7149&rft.volume=25&rft.issue=1&rft.spage=428&rft.epage=438&rft_id=info:doi/10.1109%2FTIP.2015.2501749&rft_id=info%3Apmid%2F26599968&rft.externalDocID=7332765 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |