Wild patterns: Ten years after the rise of adversarial machine learning
•We provide a detailed review of the evolution of adversarial machine learning over the last ten years.•We start from pioneering work up to more recent work aimed at understanding the security properties of deep learning algorithms.•We review work in the context of different applications.•We highlig...
Saved in:
| Published in: | Pattern recognition Vol. 84; pp. 317 - 331 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.12.2018
|
| Subjects: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •We provide a detailed review of the evolution of adversarial machine learning over the last ten years.•We start from pioneering work up to more recent work aimed at understanding the security properties of deep learning algorithms.•We review work in the context of different applications.•We highlight common misconceptions related to the evaluation of the security of machinelearning and pattern recognition algorithms.•We discuss the main limitations of current work, along with the corresponding future research paths towards designing more secure learning algorithms.
Learning-based pattern classifiers, including deep networks, have shown impressive performance in several application domains, ranging from computer vision to cybersecurity. However, it has also been shown that adversarial input perturbations carefully crafted either at training or at test time can easily subvert their predictions. The vulnerability of machine learning to such wild patterns (also referred to as adversarial examples), along with the design of suitable countermeasures, have been investigated in the research field of adversarial machine learning. In this work, we provide a thorough overview of the evolution of this research area over the last ten years and beyond, starting from pioneering, earlier work on the security of non-deep learning algorithms up to more recent work aimed to understand the security properties of deep learning algorithms, in the context of computer vision and cybersecurity tasks. We report interesting connections between these apparently-different lines of work, highlighting common misconceptions related to the security evaluation of machine-learning algorithms. We review the main threat models and attacks defined to this end, and discuss the main limitations of current work, along with the corresponding future challenges towards the design of more secure learning algorithms. |
|---|---|
| AbstractList | •We provide a detailed review of the evolution of adversarial machine learning over the last ten years.•We start from pioneering work up to more recent work aimed at understanding the security properties of deep learning algorithms.•We review work in the context of different applications.•We highlight common misconceptions related to the evaluation of the security of machinelearning and pattern recognition algorithms.•We discuss the main limitations of current work, along with the corresponding future research paths towards designing more secure learning algorithms.
Learning-based pattern classifiers, including deep networks, have shown impressive performance in several application domains, ranging from computer vision to cybersecurity. However, it has also been shown that adversarial input perturbations carefully crafted either at training or at test time can easily subvert their predictions. The vulnerability of machine learning to such wild patterns (also referred to as adversarial examples), along with the design of suitable countermeasures, have been investigated in the research field of adversarial machine learning. In this work, we provide a thorough overview of the evolution of this research area over the last ten years and beyond, starting from pioneering, earlier work on the security of non-deep learning algorithms up to more recent work aimed to understand the security properties of deep learning algorithms, in the context of computer vision and cybersecurity tasks. We report interesting connections between these apparently-different lines of work, highlighting common misconceptions related to the security evaluation of machine-learning algorithms. We review the main threat models and attacks defined to this end, and discuss the main limitations of current work, along with the corresponding future challenges towards the design of more secure learning algorithms. |
| Author | Biggio, Battista Roli, Fabio |
| Author_xml | – sequence: 1 givenname: Battista orcidid: 0000-0001-7752-509X surname: Biggio fullname: Biggio, Battista email: battista.biggio@diee.unica.it organization: Department of Electrical and Electronic Engineering, University of Cagliari, Italy – sequence: 2 givenname: Fabio surname: Roli fullname: Roli, Fabio email: roli@diee.unica.it organization: Department of Electrical and Electronic Engineering, University of Cagliari, Italy |
| BookMark | eNqFkMFKAzEQhoMo2FbfwENeYNcku5tdexCkaBUKXioew2wyaVO22ZKEQt_eSD150NPAzP_9MN-UXPrRIyF3nJWccXm_Kw-Q9LgpBeNdydqSieqCTHjXVkXDa3FJJoxVvKgEq67JNMYdY7zNhwlZfrrB0IwnDD7O6Ro9PSGESMHmFU1bpMFFpKOlYI4YIgQHA92D3jqPdMhZ7_zmhlxZGCLe_swZ-Xh5Xi9ei9X78m3xtCp01YhUGMm6XhsJKKB5MJWRsum5Fl1tJbNSYl-D6avOtNrWMkcEY2gbYcAg9PmfGZmfe3UYYwxolXYJkht9CuAGxZn6VqJ26qxEfStRrFVZSYbrX_AhuD2E03_Y4xnD_NjRYVBRO_QajQuokzKj-7vgC95ygMo |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2987435 crossref_primary_10_1109_TPAMI_2022_3160350 crossref_primary_10_1145_3447822 crossref_primary_10_1016_j_ins_2023_03_085 crossref_primary_10_1016_j_cose_2021_102259 crossref_primary_10_1109_TIFS_2021_3087332 crossref_primary_10_1016_j_procs_2024_04_251 crossref_primary_10_1007_s11633_022_1375_7 crossref_primary_10_3233_JCS_191411 crossref_primary_10_1109_ACCESS_2022_3162588 crossref_primary_10_1109_TIFS_2024_3411936 crossref_primary_10_1155_2021_4907754 crossref_primary_10_1007_s44163_024_00151_2 crossref_primary_10_3390_e23030275 crossref_primary_10_1016_j_cose_2022_102783 crossref_primary_10_1016_j_ijmedinf_2021_104658 crossref_primary_10_1016_j_neunet_2020_06_006 crossref_primary_10_3390_info12020057 crossref_primary_10_1016_j_compeleceng_2022_108374 crossref_primary_10_3233_JCS_210133 crossref_primary_10_1155_2020_8841233 crossref_primary_10_1145_3592597 crossref_primary_10_3390_a18030157 crossref_primary_10_1016_j_media_2021_102141 crossref_primary_10_1109_ACCESS_2022_3229124 crossref_primary_10_1007_s44244_023_00005_3 crossref_primary_10_1016_j_ejrad_2023_111085 crossref_primary_10_1016_j_patcog_2024_111071 crossref_primary_10_1109_TETCI_2020_2968933 crossref_primary_10_37394_23209_2025_22_44 crossref_primary_10_1145_3613244 crossref_primary_10_1145_3626314 crossref_primary_10_1109_JETCAS_2021_3084400 crossref_primary_10_1145_3624010 crossref_primary_10_1103_PhysRevResearch_2_033212 crossref_primary_10_1016_j_asoc_2021_107252 crossref_primary_10_3390_info12100394 crossref_primary_10_1145_3538707 crossref_primary_10_1016_j_cose_2019_06_012 crossref_primary_10_1007_s43681_024_00495_6 crossref_primary_10_1016_j_cose_2022_102643 crossref_primary_10_1016_j_cose_2020_101901 crossref_primary_10_38124_ijsrmt_v3i12_644 crossref_primary_10_3390_fi15020062 crossref_primary_10_1016_j_patcog_2025_112441 crossref_primary_10_1145_3533378 crossref_primary_10_3390_electronics12051092 crossref_primary_10_1186_s13635_021_00127_0 crossref_primary_10_1016_j_cose_2019_06_004 crossref_primary_10_1016_j_patcog_2025_111788 crossref_primary_10_1109_COMST_2022_3205184 crossref_primary_10_30658_hmc_2_8 crossref_primary_10_1016_j_patcog_2021_108098 crossref_primary_10_1186_s42400_021_00102_9 crossref_primary_10_1016_j_neunet_2020_05_018 crossref_primary_10_1109_TPAMI_2022_3229593 crossref_primary_10_1002_asmb_2674 crossref_primary_10_3390_electronics12234806 crossref_primary_10_1016_j_patcog_2024_111263 crossref_primary_10_1109_TNNLS_2019_2933524 crossref_primary_10_1016_j_cose_2021_102280 crossref_primary_10_1016_j_procs_2024_11_112 crossref_primary_10_1371_journal_pone_0271970 crossref_primary_10_3390_bdcc9050114 crossref_primary_10_1007_s10462_021_10125_w crossref_primary_10_1109_TCSS_2022_3218743 crossref_primary_10_1109_LSP_2025_3571398 crossref_primary_10_1155_2021_1476043 crossref_primary_10_1109_TCYB_2022_3209175 crossref_primary_10_1109_TITS_2023_3294349 crossref_primary_10_1109_TIFS_2025_3583234 crossref_primary_10_1016_j_procs_2024_09_653 crossref_primary_10_1109_TCYB_2020_3022673 crossref_primary_10_1016_j_ins_2021_05_049 crossref_primary_10_1109_TETC_2022_3184408 crossref_primary_10_3390_info15110740 crossref_primary_10_1016_j_jisa_2022_103341 crossref_primary_10_1109_ACCESS_2023_3304541 crossref_primary_10_3390_jcp3020010 crossref_primary_10_1109_ACCESS_2024_3489776 crossref_primary_10_1007_s10994_025_06833_x crossref_primary_10_1016_j_jisa_2023_103502 crossref_primary_10_1016_j_bdr_2022_100359 crossref_primary_10_1109_ACCESS_2024_3488204 crossref_primary_10_1016_j_cor_2020_105185 crossref_primary_10_1088_2632_2153_ac338d crossref_primary_10_3390_jmse11061179 crossref_primary_10_1109_ACCESS_2021_3136889 crossref_primary_10_3390_app11146488 crossref_primary_10_1109_ACCESS_2021_3124309 crossref_primary_10_1108_IDD_01_2024_0003 crossref_primary_10_1016_j_infsof_2022_106982 crossref_primary_10_1109_JIOT_2021_3111024 crossref_primary_10_3390_app13106001 crossref_primary_10_1038_s41928_020_0372_5 crossref_primary_10_1109_TSP_2022_3198169 crossref_primary_10_1017_S0140525X23001668 crossref_primary_10_1002_asmb_2765 crossref_primary_10_1109_ACCESS_2022_3174259 crossref_primary_10_1038_s41467_019_08931_6 crossref_primary_10_1002_wics_1511 crossref_primary_10_1109_ACCESS_2022_3206367 crossref_primary_10_1016_j_patcog_2022_109140 crossref_primary_10_1371_journal_pone_0219004 crossref_primary_10_1016_j_neunet_2024_106490 crossref_primary_10_1016_j_jisa_2022_103121 crossref_primary_10_1109_TSC_2021_3090771 crossref_primary_10_1016_j_neucom_2022_04_072 crossref_primary_10_1016_j_patcog_2019_107184 crossref_primary_10_1016_j_jnca_2020_102834 crossref_primary_10_1109_TCAD_2020_3024780 crossref_primary_10_1007_s11042_023_17394_3 crossref_primary_10_1109_TAI_2024_3383407 crossref_primary_10_1007_s11023_021_09580_9 crossref_primary_10_1016_j_future_2019_10_022 crossref_primary_10_1145_3544792 crossref_primary_10_1109_JPROC_2022_3223186 crossref_primary_10_1002_spe_2971 crossref_primary_10_1007_s10844_022_00753_1 crossref_primary_10_1007_s10916_020_01646_y crossref_primary_10_1109_TNSM_2020_3031843 crossref_primary_10_1145_3317611 crossref_primary_10_1016_j_neunet_2020_04_015 crossref_primary_10_1145_3398394 crossref_primary_10_1109_OJCS_2025_3572244 crossref_primary_10_1016_j_cosrev_2019_100199 crossref_primary_10_1145_3477403 crossref_primary_10_1007_s12243_023_00951_0 crossref_primary_10_1016_j_patcog_2024_110356 crossref_primary_10_1109_TIFS_2025_3531143 crossref_primary_10_1016_j_cam_2024_116201 crossref_primary_10_1109_JIOT_2022_3227162 crossref_primary_10_1109_TDSC_2022_3233519 crossref_primary_10_1016_j_cose_2020_101743 crossref_primary_10_1016_j_patcog_2022_109286 crossref_primary_10_1155_2020_6535834 crossref_primary_10_1007_s11366_025_09907_8 crossref_primary_10_1109_TMM_2023_3255742 crossref_primary_10_1016_j_knosys_2021_106967 crossref_primary_10_3390_math12060834 crossref_primary_10_1109_ACCESS_2025_3589777 crossref_primary_10_1109_TMM_2024_3394677 crossref_primary_10_1109_TPAMI_2021_3137564 crossref_primary_10_1109_ACCESS_2021_3138338 crossref_primary_10_3389_fdata_2020_00023 crossref_primary_10_1016_j_ijar_2019_07_003 crossref_primary_10_1016_j_compeleceng_2022_107903 crossref_primary_10_1016_j_patcog_2022_109054 crossref_primary_10_1109_COMST_2023_3344808 crossref_primary_10_1109_ACCESS_2019_2962525 crossref_primary_10_1109_JIOT_2022_3215188 crossref_primary_10_1002_adts_202400479 crossref_primary_10_1007_s10664_021_10064_8 crossref_primary_10_1109_JSYST_2022_3215014 crossref_primary_10_1007_s10462_025_11167_0 crossref_primary_10_1016_j_cose_2024_103929 crossref_primary_10_1145_3511887 crossref_primary_10_1162_neco_a_01376 crossref_primary_10_1016_j_patcog_2022_109182 crossref_primary_10_1016_j_cageo_2024_105534 crossref_primary_10_1016_j_jisa_2021_102916 crossref_primary_10_1109_ACCESS_2025_3574016 crossref_primary_10_1186_s42400_023_00162_z crossref_primary_10_1109_ACCESS_2022_3222531 crossref_primary_10_1145_3638531 crossref_primary_10_1016_j_jisa_2022_103398 crossref_primary_10_1007_s11042_024_18563_8 crossref_primary_10_1049_rpg2_12334 crossref_primary_10_1016_j_jnca_2020_102808 crossref_primary_10_1109_ACCESS_2024_3423323 crossref_primary_10_1016_j_cose_2023_103654 crossref_primary_10_1002_smr_2386 crossref_primary_10_1016_j_compeleceng_2021_107542 crossref_primary_10_1109_TVCG_2019_2934631 crossref_primary_10_1145_3545574 crossref_primary_10_5604_01_3001_0054_0092 crossref_primary_10_1016_j_pmcj_2023_101801 crossref_primary_10_1016_j_ins_2023_119701 crossref_primary_10_1145_3332184 crossref_primary_10_1088_1361_6560_ac3842 crossref_primary_10_1016_j_neucom_2024_128918 crossref_primary_10_1259_bjr_20190855 crossref_primary_10_1016_j_cose_2022_103006 crossref_primary_10_1007_s10994_020_05916_1 crossref_primary_10_3390_app10020518 crossref_primary_10_1016_j_jisa_2020_102722 crossref_primary_10_1080_01621459_2023_2183129 crossref_primary_10_3390_a17010047 crossref_primary_10_1016_j_neucom_2023_126227 crossref_primary_10_3390_app10217673 crossref_primary_10_1007_s13347_025_00894_5 crossref_primary_10_1016_j_engappai_2022_105461 crossref_primary_10_1016_j_patcog_2020_107309 crossref_primary_10_1109_JIOT_2025_3580286 crossref_primary_10_1109_TNSM_2022_3157344 crossref_primary_10_1109_TSP_2025_3564842 crossref_primary_10_1109_TIFS_2021_3080522 crossref_primary_10_3390_sym12040653 crossref_primary_10_3390_electronics13101991 crossref_primary_10_1126_science_aaw4399 crossref_primary_10_1007_s10462_023_10415_5 crossref_primary_10_1109_JBHI_2022_3181823 crossref_primary_10_1609_aaai_12028 crossref_primary_10_1007_s11786_021_00502_7 crossref_primary_10_1016_j_patrec_2024_07_020 crossref_primary_10_1088_1757_899X_1022_1_012037 crossref_primary_10_1016_j_neunet_2020_04_030 crossref_primary_10_1002_bimj_202200222 crossref_primary_10_1016_j_neucom_2021_10_082 crossref_primary_10_1109_TIFS_2023_3295942 crossref_primary_10_1109_TIFS_2024_3379829 crossref_primary_10_1016_j_patrec_2024_01_023 crossref_primary_10_1007_s11416_021_00390_2 crossref_primary_10_32628_CSEIT23564522 crossref_primary_10_1145_3585385 crossref_primary_10_22399_ijcesen_3793 crossref_primary_10_3389_frai_2021_780843 crossref_primary_10_3390_jcp2010010 crossref_primary_10_3390_en16135206 crossref_primary_10_1016_j_ejor_2025_06_011 crossref_primary_10_1109_ACCESS_2024_3519524 crossref_primary_10_1109_TDSC_2022_3210029 crossref_primary_10_3390_s22176662 crossref_primary_10_1016_j_engappai_2022_105660 crossref_primary_10_3389_fcomp_2020_00036 crossref_primary_10_1016_j_cose_2023_103459 crossref_primary_10_1007_s44206_025_00181_y crossref_primary_10_1007_s42979_023_02556_9 crossref_primary_10_1007_s10207_025_01067_3 crossref_primary_10_1016_j_ins_2023_119093 crossref_primary_10_1007_s10462_023_10499_z crossref_primary_10_32604_jcs_2024_056164 crossref_primary_10_1109_ACCESS_2024_3391021 crossref_primary_10_1145_3704724 crossref_primary_10_1007_s11943_023_00333_x crossref_primary_10_1007_s10462_025_11147_4 crossref_primary_10_3390_fi16010032 crossref_primary_10_1007_s11277_021_08284_8 crossref_primary_10_1088_1361_648X_ac1e49 crossref_primary_10_1109_TDSC_2025_3542237 crossref_primary_10_1016_j_jnca_2019_102526 crossref_primary_10_1016_j_patcog_2020_107584 crossref_primary_10_1109_TIFS_2020_2991876 crossref_primary_10_1016_j_patrec_2021_03_011 crossref_primary_10_1109_JAS_2021_1004261 crossref_primary_10_1016_j_cor_2023_106478 crossref_primary_10_1007_s11241_025_09446_8 crossref_primary_10_1109_COMST_2024_3437248 crossref_primary_10_1016_j_neunet_2025_107801 crossref_primary_10_1145_3589766 crossref_primary_10_1016_j_bprint_2023_e00321 crossref_primary_10_1002_int_22889 crossref_primary_10_3390_e23081047 crossref_primary_10_1109_TDSC_2022_3166671 crossref_primary_10_1109_MNET_011_1900450 crossref_primary_10_3390_app121910166 crossref_primary_10_3390_s22197162 crossref_primary_10_1109_TCAD_2020_3033749 crossref_primary_10_1088_1742_6596_2037_1_012025 crossref_primary_10_1007_s10462_020_09942_2 crossref_primary_10_3390_sym15020535 crossref_primary_10_1109_TIFS_2023_3251842 crossref_primary_10_1002_mp_15869 crossref_primary_10_3390_su14095211 crossref_primary_10_1109_TIFS_2021_3082330 crossref_primary_10_1007_s00259_020_04879_8 crossref_primary_10_1145_3587470 crossref_primary_10_1007_s00446_022_00427_9 crossref_primary_10_1007_s10726_022_09800_2 crossref_primary_10_3390_s20072084 crossref_primary_10_1109_OJCOMS_2024_3430823 crossref_primary_10_1002_jocb_559 crossref_primary_10_1007_s12046_022_02014_x crossref_primary_10_1109_TCAD_2021_3099084 crossref_primary_10_1145_3656474 crossref_primary_10_1016_j_jss_2020_110574 crossref_primary_10_1038_s42256_023_00646_0 crossref_primary_10_1016_j_csl_2019_05_005 crossref_primary_10_1016_j_jisa_2021_102879 crossref_primary_10_1051_e3sconf_202122901004 crossref_primary_10_1016_j_jspi_2024_106182 crossref_primary_10_1007_s11280_020_00813_y crossref_primary_10_1007_s10676_024_09800_7 crossref_primary_10_1109_JSTSP_2020_3002101 crossref_primary_10_1186_s40900_022_00363_9 crossref_primary_10_1007_s10489_021_02523_y crossref_primary_10_1109_ACCESS_2021_3118642 crossref_primary_10_1109_TIFS_2018_2890808 crossref_primary_10_1007_s00354_024_00283_0 crossref_primary_10_1016_j_cose_2023_103250 crossref_primary_10_1016_j_cosrev_2021_100452 crossref_primary_10_1109_TIP_2024_3458858 crossref_primary_10_1109_TDSC_2022_3192671 crossref_primary_10_1016_j_patcog_2022_108824 crossref_primary_10_1215_00382876_8007665 crossref_primary_10_1145_3468507_3468513 crossref_primary_10_1097_ICU_0000000000000846 crossref_primary_10_1016_j_ijhydene_2023_08_284 crossref_primary_10_1287_ijoc_2023_1297 crossref_primary_10_1145_3595292 crossref_primary_10_1016_j_digbus_2025_100130 crossref_primary_10_3390_math8111957 crossref_primary_10_3390_make5040087 crossref_primary_10_1109_JIOT_2024_3439440 crossref_primary_10_1007_s12652_020_02642_3 crossref_primary_10_1016_j_neucom_2024_127798 crossref_primary_10_2478_amns_2024_2480 crossref_primary_10_1109_TAC_2024_3351555 crossref_primary_10_1109_TIFS_2024_3350911 crossref_primary_10_1109_ACCESS_2022_3204995 crossref_primary_10_1007_s13042_020_01159_7 crossref_primary_10_1016_j_patcog_2023_109435 crossref_primary_10_1109_COMST_2020_3036778 crossref_primary_10_3390_ai2010007 crossref_primary_10_3390_ijms24010804 crossref_primary_10_1109_TII_2020_2964154 crossref_primary_10_1016_j_patcog_2021_108306 crossref_primary_10_1007_s10462_022_10195_4 crossref_primary_10_12968_S1361_3723_23_70007_9 crossref_primary_10_1007_s10664_020_09915_7 crossref_primary_10_3389_fenrg_2025_1531655 crossref_primary_10_3390_app13179928 crossref_primary_10_1016_j_cviu_2020_102988 crossref_primary_10_1093_comjnl_bxz121 crossref_primary_10_1109_TAI_2023_3340982 crossref_primary_10_1109_TKDE_2021_3117608 crossref_primary_10_1016_j_autcon_2022_104298 crossref_primary_10_1080_1206212X_2021_1940744 crossref_primary_10_1145_3446331 crossref_primary_10_1080_0960085X_2022_2073278 crossref_primary_10_1109_MC_2021_3057686 crossref_primary_10_1007_s44214_023_00043_z crossref_primary_10_1038_s41467_022_32611_7 crossref_primary_10_1109_COMST_2020_2975048 crossref_primary_10_1038_s41467_024_55631_x crossref_primary_10_3390_iot1020013 crossref_primary_10_1109_ACCESS_2022_3204696 crossref_primary_10_1016_j_ejor_2023_04_009 crossref_primary_10_1587_transinf_2019EDP7188 crossref_primary_10_1007_s10462_019_09717_4 crossref_primary_10_1016_j_cose_2023_103297 crossref_primary_10_1007_s10618_020_00694_9 crossref_primary_10_1007_s10994_022_06177_w crossref_primary_10_3389_fnins_2022_1068193 crossref_primary_10_1111_itor_70049 crossref_primary_10_1109_ACCESS_2024_3497011 crossref_primary_10_1109_JPROC_2021_3052449 crossref_primary_10_1016_j_asoc_2023_110173 crossref_primary_10_1007_s10994_022_06269_7 crossref_primary_10_1093_cybsec_tyad011 crossref_primary_10_3389_fbioe_2020_591980 crossref_primary_10_1016_j_trc_2024_104750 crossref_primary_10_1016_j_cose_2022_102814 crossref_primary_10_1145_3627817 crossref_primary_10_1016_j_knosys_2025_112954 crossref_primary_10_1016_j_neucom_2019_11_113 crossref_primary_10_1109_TIFS_2019_2894031 crossref_primary_10_1016_j_ins_2025_121905 crossref_primary_10_1016_j_patcog_2023_109760 crossref_primary_10_1109_ACCESS_2021_3083421 crossref_primary_10_1109_TNSM_2022_3188930 crossref_primary_10_1109_ACCESS_2022_3197299 crossref_primary_10_1109_ACCESS_2022_3176367 crossref_primary_10_3390_e21050513 crossref_primary_10_25300_MISQ_2021_1578 crossref_primary_10_1016_j_cose_2022_102901 crossref_primary_10_32604_cmc_2021_017199 crossref_primary_10_1007_s00146_021_01284_z crossref_primary_10_1016_j_fss_2018_11_004 crossref_primary_10_1103_PhysRevResearch_6_023020 crossref_primary_10_1177_1548512920951275 crossref_primary_10_1007_s40747_024_01704_9 crossref_primary_10_1371_journal_pcbi_1010718 crossref_primary_10_1109_TDSC_2021_3050101 crossref_primary_10_1007_s11433_021_1793_6 crossref_primary_10_1109_TPAMI_2024_3386985 crossref_primary_10_1109_JPROC_2021_3050042 crossref_primary_10_1093_imamat_hxad027 crossref_primary_10_1145_3559104 crossref_primary_10_1109_COMST_2022_3202047 crossref_primary_10_1145_3506734 crossref_primary_10_57197_JDR_2024_0101 crossref_primary_10_1214_24_STS922 crossref_primary_10_1007_s42519_021_00171_6 crossref_primary_10_1016_j_patcog_2022_108889 crossref_primary_10_1016_j_procir_2020_05_097 crossref_primary_10_1155_2022_6458488 crossref_primary_10_1016_j_neucom_2022_07_010 crossref_primary_10_1109_ACCESS_2019_2948912 crossref_primary_10_1007_s13042_021_01393_7 crossref_primary_10_1016_j_ins_2023_02_086 crossref_primary_10_1145_3469659 crossref_primary_10_1038_s42256_019_0109_1 crossref_primary_10_1109_MDAT_2020_2971217 crossref_primary_10_1109_TCCN_2022_3186331 crossref_primary_10_1145_3412357 crossref_primary_10_1155_2020_8882494 crossref_primary_10_3390_technologies13050202 crossref_primary_10_1016_j_coisb_2020_04_001 crossref_primary_10_1145_3491220 crossref_primary_10_1007_s10994_022_06178_9 crossref_primary_10_1016_j_neucom_2021_05_109 crossref_primary_10_3390_en14051380 crossref_primary_10_1109_COMST_2023_3264680 crossref_primary_10_1109_MNET_001_1900197 crossref_primary_10_1186_s13635_020_00105_y crossref_primary_10_1145_3643563 crossref_primary_10_1109_TEM_2021_3059664 crossref_primary_10_1109_TIFS_2020_3003571 crossref_primary_10_1109_ACCESS_2020_3048319 crossref_primary_10_1016_j_patcog_2021_108279 crossref_primary_10_1109_ACCESS_2024_3395976 crossref_primary_10_1145_3374217 crossref_primary_10_1016_j_cose_2022_102830 crossref_primary_10_1007_s42979_025_03814_8 crossref_primary_10_1007_s10207_025_01016_0 crossref_primary_10_1186_s42400_023_00145_0 crossref_primary_10_1109_TCYB_2021_3105637 crossref_primary_10_3390_jimaging8120324 crossref_primary_10_1109_TPAMI_2023_3331087 crossref_primary_10_3390_math10122030 crossref_primary_10_1103_PhysRevA_103_042427 crossref_primary_10_1016_j_inffus_2024_102303 crossref_primary_10_1002_widm_1456 crossref_primary_10_1109_TIFS_2020_3023274 crossref_primary_10_1145_3717607 crossref_primary_10_1145_3442181 crossref_primary_10_1016_j_procs_2022_12_170 crossref_primary_10_1002_widm_1340 crossref_primary_10_1109_TIFS_2021_3117075 crossref_primary_10_1016_j_sasc_2023_200050 crossref_primary_10_1007_s44206_023_00039_1 crossref_primary_10_1093_eurpub_ckz160 crossref_primary_10_1038_s41598_025_93824_6 crossref_primary_10_1007_s11063_022_11056_5 |
| Cites_doi | 10.1016/j.patcog.2011.06.019 10.1007/s13042-010-0007-7 10.1016/j.patcog.2008.12.018 10.1007/s10462-011-9280-4 10.1016/j.patrec.2011.04.005 10.1007/s10994-010-5188-5 10.1109/TCYB.2015.2415032 10.1016/j.patcog.2014.05.007 10.1109/MSP.2012.75 10.1016/j.patcog.2012.06.019 10.1016/j.patcog.2017.10.013 10.1016/j.patcog.2009.08.022 10.1109/TPAMI.2016.2558154 10.1109/TDSC.2017.2700270 10.1016/j.patcog.2015.08.007 10.1109/TKDE.2013.57 10.1109/TSP.2017.2708039 10.1109/TDSC.2011.42 10.1007/s10994-010-5199-2 10.1109/MSP.2015.2426728 10.1109/TNNLS.2016.2593488 10.1142/S0218001414600027 10.1016/j.ins.2013.03.022 10.1016/j.patrec.2011.03.022 10.1016/j.patcog.2013.01.035 10.1016/j.patcog.2016.09.045 10.1007/s10994-010-5207-6 10.1109/MSP.2016.51 10.1007/s10994-009-5124-8 10.1016/j.patcog.2005.01.019 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2018.07.023 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| EndPage | 331 |
| ExternalDocumentID | 10_1016_j_patcog_2018_07_023 S0031320318302565 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c352t-d608bcd6ae2a59d3d665b1c284f60f66eb4adb38d7cf46a59200ef52dadeab873 |
| ISICitedReferencesCount | 784 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444659200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Tue Nov 18 22:14:16 EST 2025 Sat Nov 29 07:26:44 EST 2025 Fri Feb 23 02:48:19 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Evasion attacks Adversarial examples Adversarial machine learning Secure learning Poisoning attacks |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c352t-d608bcd6ae2a59d3d665b1c284f60f66eb4adb38d7cf46a59200ef52dadeab873 |
| ORCID | 0000-0001-7752-509X |
| OpenAccessLink | http://hdl.handle.net/11584/249332 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2018_07_023 crossref_primary_10_1016_j_patcog_2018_07_023 elsevier_sciencedirect_doi_10_1016_j_patcog_2018_07_023 |
| PublicationCentury | 2000 |
| PublicationDate | December 2018 2018-12-00 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Biggio, Corona, He, Chan, Giacinto, Yeung, Roli (bib0105) 2015; 9132 noz González, Biggio, Demontis, Paudice, Wongrassamee, Lupu, Roli (bib0033) 2018 Kolcz, Teo (bib0044) 2009 Kloft, Laskov (bib0027) 2010 Biggio, Corona, Fumera, Giacinto, Roli (bib0111) 2011; Vol. 6713 Wooldridge (bib0096) 2012; 27 Lipton (bib0125) 2016 Mei, Zhu (bib0031) 2015 Barth, Rubinstein, Sundararajan, Mitchell, Song, Bartlett (bib0091) 2012; 9 Bulò, Biggio, Pillai, Pelillo, Roli (bib0047) 2017; 28 Laskov, Lippmann (bib0050) 2010; 81 Xu, Cao, Hu, Principe (bib0120) 2017; 63 Kuncheva (bib0092) 2008 Lu, Issaranon, Forsyth (bib0009) 2017 2017. Wild, Radu, Chen, Ferryman (bib0109) 2016; 50 Han, Kheir, Balzarotti (bib0055) 2016 Zantedeschi, Nicolae, Rawat (bib0112) 2017 Nelson, Rubinstein, Huang, Joseph, Lee, Rao, Tygar (bib0070) 2012; 13 Dang, Huang, Chang (bib0069) 2017 Biggio, Fumera, Roli (bib0082) 2010; 1 Kantchelian, Tygar, Joseph (bib0079) 2016; 48 Joseph, Nelson, Rubinstein, Tygar (bib0053) 2018 Biggio, Pillai, Bulò, Ariu, Pelillo, Roli (bib0062) 2013 . Huang, Joseph, Nelson, Rubinstein, Tygar (bib0061) 2011 Koh, Liang (bib0032) 2017 T. Gu, B. Dolan-Gavitt, S. Garg, BadNets: identifying vulnerabilities in the machine learning model supply chain, in: Proceedings of the NIPS Workshop on Mach. Learn. and Comp. Sec. X. Chen, C. Liu, B. Li, K. Lu, D. Song, Targeted backdoor attacks on deep learning systems using data poisoning, ArXiv e-prints Dekel, Shamir, Xiao (bib0037) 2010; 81 Biggio, Fumera, Russu, Didaci, Roli (bib0043) 2015; 32 Zhang, Chan, Biggio, Yeung, Roli (bib0065) 2016; 46 Dong, Liao, Pang, Hu, Zhu (bib0087) 2018 Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus (bib0002) 2014 Joseph, Laskov, Roli, Tygar, Nelson (bib0051) 2013; 3 Qi, Tian, Shi (bib0098) 2013; 46 Fumera, Pillai, Roli (bib0059) 2006; 7 Carlini, Wagner (bib0085) 2017 Liu, Chawla (bib0094) 2010; 81 Barreno, Nelson, Joseph, Tygar (bib0040) 2010; 81 Großhans, Sawade, Brückner, Scheffer (bib0095) 2013; 28 Moosavi-Dezfooli, Fawzi, Frossard (bib0005) 2016 Christmann, Steinwart (bib0121) 2004; 5 Bootkrajang, Kaban (bib0122) 2014; 47 Papernot, McDaniel, Wu, Jha, Swami (bib0006) 2016 Cretu, Stavrou, Locasto, Stolfo, Keromytis (bib0116) 2008 Corona, Biggio, Contini, Piras, Corda, Mereu, Mureddu, Ariu, Roli (bib0056) 2017; 10492 Wong, Kolter (bib0100) 2018; 80 Goodfellow, Shlens, Szegedy (bib0003) 2015 Lowd, Meek (bib0020) 2005 Chen, Zhang, Sharma, Yi, Hsieh (bib0068) 2017 Sharif, Bhagavatula, Bauer, Reiter (bib0017) 2016 ArXiv e-prints. Athalye, Carlini, Wagner (bib0086) 2018; 80 Biggio, Corona, Maiorca, Nelson, Šrndić, Laskov, Giacinto, Roli (bib0038) 2013; 8190 Dietterich (bib0124) 2017; 38 Biggio, Fumera, Roli (bib0042) 2014; 28 Papernot, McDaniel, Jha, Fredrikson, Celik, Swami (bib0014) 2016 Athalye, Engstrom, Ilyas, Kwok (bib0080) 2018 Tramèr, Zhang, Juels, Reiter, Ristenpart (bib0066) 2016 Biggio, Nelson, Laskov (bib0026) 2012 Huang, Kwiatkowska, Wang, Wu (bib0088) 2017; 10426 Torkamani, Lowd (bib0099) 2014; 32 Lowd, Meek (bib0021) 2005 Šrndić, Laskov (bib0083) 2013 Lyu, Huang, Liang (bib0101) 2015; 00 Biggio, Fumera, Pillai, Roli (bib0057) 2011; 32 Teo, Globerson, Roweis, Smola (bib0036) 2008 Biggio, Bulò, Pillai, Mura, Mequanint, Pelillo, Roli (bib0064) 2014; 8621 Li, Li (bib0010) 2017 Jagielski, Oprea, Biggio, Liu, Nita-Rotaru, Li (bib0119) 2018 Xu, Caramanis, Mannor (bib0084) 2009; 10 Melis, Demontis, Biggio, Brown, Fumera, Roli (bib0007) 2017 P. Laskov, R. Lippmann (Eds.), NIPS Workshop on Machine Learning in Adversarial Environments for Computer Security, 2007. Biggio, Corona, Nelson, Rubinstein, Maiorca, Fumera, Giacinto, Roli (bib0030) 2014 Šrndic, Laskov (bib0039) 2014 Grosse, Papernot, Manoharan, Backes, McDaniel (bib0011) 2017; Vol. 10493 Biggio, Fumera, Roli (bib0041) 2014; 26 D. Maiorca, B. Biggio, M.E. Chiappe, G. Giacinto, Adversarial detection of flash malware: limitations and open issues, CoRR ArXiv Globerson, Roweis (bib0035) 2006; 148 Biggio, Fumera, Roli (bib0045) 2008; 5342 Galbally, McCool, Fierrez, Marcel, Ortega-Garcia (bib0075) 2010; 43 Steinhardt, Koh, Liang (bib0118) 2017 Attar, Rad, Atani (bib0058) 2013; 40 Wittel, Wu (bib0034) 2004 Xu, Qi, Evans (bib0067) 2016 Zheng, Song, Leung, Goodfellow (bib0113) 2016 Newsome, Karp, Song (bib0090) 2006 Adler (bib0074) 2005; 3546 Dougherty, Hua, Xiong, Chen (bib0093) 2005; 38 Kloft, Laskov (bib0028) 2012 Rubinstein, Bartlett, Huang, Taft (bib0123) 2012; 4 Demontis, Russu, Biggio, Fumera, Roli (bib0077) 2016; 10029 Biggio, Rieck, Ariu, Wressnegger, Corona, Giacinto, Roli (bib0063) 2014 Biggio, Fumera, Marcialis, Roli (bib0110) 2017; 39 Brückner, Kanzow, Scheffer (bib0046) 2012; 13 Jordaney, Sharad, Dash, Wang, Papini, Nouretdinov, Cavallaro (bib0012) 2017 Carlini, Wagner (bib0016) 2017 Meng, Chen (bib0008) 2017 Xie, Wang, Zhang, Zhou, Xie, Yuille (bib0018) 2017 Matsumoto, Matsumoto, Yamada, Hoshino (bib0022) 2002; 26 Papernot, McDaniel, Goodfellow, Jha, Celik, Swami (bib0015) 2017 Fogla, Sharif, Perdisci, Kolesnikov, Lee (bib0081) 2006 Moreno-Torres, Raeder, Alaiz-Rodri-guez, Chawla, Herrera (bib0107) 2012; 45 Pillai, Fumera, Roli (bib0108) 2013; 46 Nelson, Barreno, Chi, Joseph, Rubinstein, Saini, Sutton, Tygar, Xia (bib0024) 2008 Madry, Makelov, Schmidt, Tsipras, Vladu (bib0104) 2018 Xiao, Biggio, Brown, Fumera, Eckert, Roli (bib0029) 2015; 37 Bendale, Boult (bib0106) 2016 Thomas, Rusu, Govindaraju (bib0060) 2009; 42 Sokolić, Giryes, Sapiro, Rodrigues (bib0102) 2017; 65 Dalvi, Domingos, Mausam, Sanghai, Verma (bib0019) 2004 Liu, Li, Vorobeychik, Oprea (bib0117) 2017 A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona, G. Giacinto, F. Roli, Yes, machine learning can be more secure! a case study on android malware detection, IEEE Trans. Dep. Secure Comp. doi Martinez-Diaz, Fierrez, Galbally, Ortega-Garcia (bib0076) 2011; 32 Rubinstein, Nelson, Huang, Joseph, Lau, Rao, Taft, Tygar (bib0025) 2009 Corona, Giacinto, Roli (bib0054) 2013; 239 C.J. Simon-Gabriel, Y. Ollivier, B. Schölkopf, L. Bottou, D. Lopez-Paz, Adversarial vulnerability of neural networks increases with input dimension, 2018. Nguyen, Yosinski, Clune (bib0004) 2015 B.M. Thuraisingham, B. Biggio, D.M. Freeman, B. Miller, A. Sinha (Eds.), AISec ’17: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, New York, NY, USA, ACM, 2017. McDaniel, Papernot, Celik (bib0013) 2016; 14 Nelson, Biggio, Laskov (bib0115) 2011 Pei, Cao, Yang, Jana (bib0089) 2017 Barreno, Nelson, Sears, Joseph, Tygar (bib0023) 2006 Russu, Demontis, Biggio, Fumera, Roli (bib0078) 2016 Cybenko, Landwehr (bib0097) 2012; 10 Fredrikson, Jha, Ristenpart (bib0073) 2015 Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Liu, Wang, Wang, Cai, Chen (bib0001) 2018; 77 Koh (10.1016/j.patcog.2018.07.023_bib0032) 2017 Barreno (10.1016/j.patcog.2018.07.023_bib0023) 2006 Fumera (10.1016/j.patcog.2018.07.023_bib0059) 2006; 7 Nelson (10.1016/j.patcog.2018.07.023_bib0070) 2012; 13 Biggio (10.1016/j.patcog.2018.07.023_bib0057) 2011; 32 Dougherty (10.1016/j.patcog.2018.07.023_bib0093) 2005; 38 Moosavi-Dezfooli (10.1016/j.patcog.2018.07.023_bib0005) 2016 Biggio (10.1016/j.patcog.2018.07.023_bib0064) 2014; 8621 Wooldridge (10.1016/j.patcog.2018.07.023_bib0096) 2012; 27 Grosse (10.1016/j.patcog.2018.07.023_bib0011) 2017; Vol. 10493 10.1016/j.patcog.2018.07.023_bib0103 Athalye (10.1016/j.patcog.2018.07.023_bib0086) 2018; 80 Athalye (10.1016/j.patcog.2018.07.023_bib0080) 2018 Madry (10.1016/j.patcog.2018.07.023_bib0104) 2018 Teo (10.1016/j.patcog.2018.07.023_bib0036) 2008 Corona (10.1016/j.patcog.2018.07.023_bib0054) 2013; 239 Bulò (10.1016/j.patcog.2018.07.023_bib0047) 2017; 28 Biggio (10.1016/j.patcog.2018.07.023_bib0105) 2015; 9132 10.1016/j.patcog.2018.07.023_bib0072 Kolcz (10.1016/j.patcog.2018.07.023_bib0044) 2009 10.1016/j.patcog.2018.07.023_bib0071 Zhang (10.1016/j.patcog.2018.07.023_bib0065) 2016; 46 Huang (10.1016/j.patcog.2018.07.023_bib0088) 2017; 10426 10.1016/j.patcog.2018.07.023_bib0114 Biggio (10.1016/j.patcog.2018.07.023_bib0110) 2017; 39 Gu (10.1016/j.patcog.2018.07.023_bib0001) 2018; 77 Christmann (10.1016/j.patcog.2018.07.023_bib0121) 2004; 5 Torkamani (10.1016/j.patcog.2018.07.023_bib0099) 2014; 32 McDaniel (10.1016/j.patcog.2018.07.023_bib0013) 2016; 14 Dekel (10.1016/j.patcog.2018.07.023_bib0037) 2010; 81 Biggio (10.1016/j.patcog.2018.07.023_bib0026) 2012 Lowd (10.1016/j.patcog.2018.07.023_bib0021) 2005 Qi (10.1016/j.patcog.2018.07.023_bib0098) 2013; 46 Xu (10.1016/j.patcog.2018.07.023_bib0084) 2009; 10 10.1016/j.patcog.2018.07.023_bib0049 10.1016/j.patcog.2018.07.023_bib0048 Kuncheva (10.1016/j.patcog.2018.07.023_bib0092) 2008 Sharif (10.1016/j.patcog.2018.07.023_bib0017) 2016 Xu (10.1016/j.patcog.2018.07.023_bib0067) 2016 Lu (10.1016/j.patcog.2018.07.023_bib0009) 2017 Biggio (10.1016/j.patcog.2018.07.023_bib0038) 2013; 8190 Bendale (10.1016/j.patcog.2018.07.023_bib0106) 2016 Nelson (10.1016/j.patcog.2018.07.023_bib0024) 2008 Šrndic (10.1016/j.patcog.2018.07.023_bib0039) 2014 Lowd (10.1016/j.patcog.2018.07.023_bib0020) 2005 Moreno-Torres (10.1016/j.patcog.2018.07.023_bib0107) 2012; 45 Chen (10.1016/j.patcog.2018.07.023_bib0068) 2017 Dong (10.1016/j.patcog.2018.07.023_bib0087) 2018 noz González (10.1016/j.patcog.2018.07.023_bib0033) 2018 10.1016/j.patcog.2018.07.023_bib0052 Barreno (10.1016/j.patcog.2018.07.023_bib0040) 2010; 81 Xu (10.1016/j.patcog.2018.07.023_bib0120) 2017; 63 Kantchelian (10.1016/j.patcog.2018.07.023_bib0079) 2016; 48 Biggio (10.1016/j.patcog.2018.07.023_bib0082) 2010; 1 Pei (10.1016/j.patcog.2018.07.023_bib0089) 2017 Pillai (10.1016/j.patcog.2018.07.023_bib0108) 2013; 46 Papernot (10.1016/j.patcog.2018.07.023_bib0006) 2016 Newsome (10.1016/j.patcog.2018.07.023_bib0090) 2006 Brückner (10.1016/j.patcog.2018.07.023_bib0046) 2012; 13 Liu (10.1016/j.patcog.2018.07.023_bib0094) 2010; 81 Zheng (10.1016/j.patcog.2018.07.023_bib0113) 2016 Li (10.1016/j.patcog.2018.07.023_bib0010) 2017 Joseph (10.1016/j.patcog.2018.07.023_bib0053) 2018 Dietterich (10.1016/j.patcog.2018.07.023_bib0124) 2017; 38 Wittel (10.1016/j.patcog.2018.07.023_bib0034) 2004 Mei (10.1016/j.patcog.2018.07.023_bib0031) 2015 Corona (10.1016/j.patcog.2018.07.023_bib0056) 2017; 10492 Bootkrajang (10.1016/j.patcog.2018.07.023_bib0122) 2014; 47 Joseph (10.1016/j.patcog.2018.07.023_bib0051) 2013; 3 Huang (10.1016/j.patcog.2018.07.023_bib0061) 2011 Cybenko (10.1016/j.patcog.2018.07.023_bib0097) 2012; 10 Biggio (10.1016/j.patcog.2018.07.023_bib0111) 2011; Vol. 6713 Lyu (10.1016/j.patcog.2018.07.023_bib0101) 2015; 00 Thomas (10.1016/j.patcog.2018.07.023_sbref0056) 2009; 42 Nelson (10.1016/j.patcog.2018.07.023_bib0115) 2011 Adler (10.1016/j.patcog.2018.07.023_bib0074) 2005; 3546 Carlini (10.1016/j.patcog.2018.07.023_bib0085) 2017 Biggio (10.1016/j.patcog.2018.07.023_bib0043) 2015; 32 Dalvi (10.1016/j.patcog.2018.07.023_bib0019) 2004 Biggio (10.1016/j.patcog.2018.07.023_bib0062) 2013 Martinez-Diaz (10.1016/j.patcog.2018.07.023_bib0076) 2011; 32 Xie (10.1016/j.patcog.2018.07.023_bib0018) 2017 Meng (10.1016/j.patcog.2018.07.023_bib0008) 2017 Matsumoto (10.1016/j.patcog.2018.07.023_bib0022) 2002; 26 Barth (10.1016/j.patcog.2018.07.023_bib0091) 2012; 9 Tramèr (10.1016/j.patcog.2018.07.023_bib0066) 2016 Fredrikson (10.1016/j.patcog.2018.07.023_bib0073) 2015 Nguyen (10.1016/j.patcog.2018.07.023_bib0004) 2015 Biggio (10.1016/j.patcog.2018.07.023_bib0041) 2014; 26 Wong (10.1016/j.patcog.2018.07.023_bib0100) 2018; 80 Wild (10.1016/j.patcog.2018.07.023_bib0109) 2016; 50 Steinhardt (10.1016/j.patcog.2018.07.023_bib0118) 2017 Kloft (10.1016/j.patcog.2018.07.023_bib0028) 2012 Galbally (10.1016/j.patcog.2018.07.023_bib0075) 2010; 43 Liu (10.1016/j.patcog.2018.07.023_bib0117) 2017 Carlini (10.1016/j.patcog.2018.07.023_bib0016) 2017 Zantedeschi (10.1016/j.patcog.2018.07.023_bib0112) 2017 Han (10.1016/j.patcog.2018.07.023_bib0055) 2016 Biggio (10.1016/j.patcog.2018.07.023_bib0063) 2014 Jagielski (10.1016/j.patcog.2018.07.023_bib0119) 2018 Biggio (10.1016/j.patcog.2018.07.023_bib0042) 2014; 28 Papernot (10.1016/j.patcog.2018.07.023_bib0015) 2017 Attar (10.1016/j.patcog.2018.07.023_bib0058) 2013; 40 Biggio (10.1016/j.patcog.2018.07.023_bib0030) 2014 Laskov (10.1016/j.patcog.2018.07.023_bib0050) 2010; 81 Šrndić (10.1016/j.patcog.2018.07.023_bib0083) 2013 Russu (10.1016/j.patcog.2018.07.023_bib0078) 2016 Großhans (10.1016/j.patcog.2018.07.023_bib0095) 2013; 28 Biggio (10.1016/j.patcog.2018.07.023_bib0045) 2008; 5342 Demontis (10.1016/j.patcog.2018.07.023_bib0077) 2016; 10029 Goodfellow (10.1016/j.patcog.2018.07.023_bib0003) 2015 Jordaney (10.1016/j.patcog.2018.07.023_bib0012) 2017 Lipton (10.1016/j.patcog.2018.07.023_bib0125) 2016 Fogla (10.1016/j.patcog.2018.07.023_bib0081) 2006 Rubinstein (10.1016/j.patcog.2018.07.023_bib0123) 2012; 4 Melis (10.1016/j.patcog.2018.07.023_bib0007) 2017 Papernot (10.1016/j.patcog.2018.07.023_bib0014) 2016 Rubinstein (10.1016/j.patcog.2018.07.023_bib0025) 2009 Sokolić (10.1016/j.patcog.2018.07.023_bib0102) 2017; 65 Kloft (10.1016/j.patcog.2018.07.023_bib0027) 2010 Cretu (10.1016/j.patcog.2018.07.023_bib0116) 2008 Globerson (10.1016/j.patcog.2018.07.023_bib0035) 2006; 148 Dang (10.1016/j.patcog.2018.07.023_bib0069) 2017 Szegedy (10.1016/j.patcog.2018.07.023_bib0002) 2014 Xiao (10.1016/j.patcog.2018.07.023_bib0029) 2015; 37 |
| References_xml | – reference: A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona, G. Giacinto, F. Roli, Yes, machine learning can be more secure! a case study on android malware detection, IEEE Trans. Dep. Secure Comp. doi: – start-page: 4480 year: 2016 end-page: 4488 ident: bib0113 article-title: Improving the robustness of deep neural networks via stability training publication-title: Proceedings of the IEEE CVPR – reference: P. Laskov, R. Lippmann (Eds.), NIPS Workshop on Machine Learning in Adversarial Environments for Computer Security, 2007. – reference: T. Gu, B. Dolan-Gavitt, S. Garg, BadNets: identifying vulnerabilities in the machine learning model supply chain, in: Proceedings of the NIPS Workshop on Mach. Learn. and Comp. Sec. – year: 2017 ident: bib0008 article-title: MagNet: a two-pronged defense against adversarial examples publication-title: Proceedings of the Twenty Fourth ACM (CCS) – volume: 00 start-page: 301 year: 2015 end-page: 309 ident: bib0101 article-title: A unified gradient regularization family for adversarial examples publication-title: Proceedings of the ICDM – volume: 32 start-page: 1643 year: 2011 end-page: 1651 ident: bib0076 article-title: An evaluation of indirect attacks and countermeasures in fingerprint verification systems publication-title: Pattern Recognit Lett. – year: 2016 ident: bib0125 article-title: The mythos of model interpretability publication-title: Proceedings of the ICML Workshop on Human Interpretability of Machine Learning – start-page: 506 year: 2017 end-page: 519 ident: bib0015 article-title: Practical black-box attacks against machine learning publication-title: Proceedings of the ASIA CCS – volume: 26 start-page: 984 year: 2014 end-page: 996 ident: bib0041 article-title: Security evaluation of pattern classifiers under attack publication-title: IEEE Trans. Knowl. Data Eng. – volume: 42 start-page: 3365 year: 2009 end-page: 3373 ident: bib0060 article-title: Synthetic handwritten captchas publication-title: Pattern Recognit. – year: 2016 ident: bib0067 article-title: Automatically evading classifiers publication-title: Proceedings of the NDSS – volume: 28 start-page: 55 year: 2013 end-page: 63 ident: bib0095 article-title: Bayesian games for adversarial regression problems publication-title: Proceedings of the Thirtieth ICML, JMLR W&CP – start-page: 119 year: 2017 end-page: 133 ident: bib0069 article-title: Evading classifiers by morphing in the dark publication-title: Proceedings of the ACM CCS – volume: 38 start-page: 1520 year: 2005 end-page: 1532 ident: bib0093 article-title: Optimal robust classifiers publication-title: Pattern Recognit. – volume: 81 start-page: 121 year: 2010 end-page: 148 ident: bib0040 article-title: The security of machine learning publication-title: Mach. Learn. – reference: D. Maiorca, B. Biggio, M.E. Chiappe, G. Giacinto, Adversarial detection of flash malware: limitations and open issues, CoRR ArXiv: – volume: 4 start-page: 65 year: 2012 end-page: 100 ident: bib0123 article-title: Learning in a large function space: privacy-preserving mechanisms for SVM learning publication-title: J. Priv. Conf. – volume: 14 start-page: 68 year: 2016 end-page: 72 ident: bib0013 article-title: Machine learning in adversarial settings publication-title: IEEE Secur. Priv. – volume: 45 start-page: 521 year: 2012 end-page: 530 ident: bib0107 article-title: A unifying view on dataset shift in classification publication-title: Pattern Recognit. – start-page: 105 year: 2014 end-page: 153 ident: bib0030 article-title: Security evaluation of support vector machines in adversarial environments publication-title: Support Vector Machines Applications – start-page: 197 year: 2014 end-page: 211 ident: bib0039 article-title: Practical evasion of a learning-based classifier: a case study publication-title: Proceedings of the IEEE SP – volume: 9132 start-page: 168 year: 2015 end-page: 180 ident: bib0105 article-title: One-and-a-half-class multiple classifier systems for secure learning against evasion attacks at test time publication-title: Proceedings of the MCS – start-page: 1402 year: 2016 end-page: 1413 ident: bib0055 article-title: PhishEye: live monitoring of sandboxed phishing kits publication-title: Proceedings of the ACM CCS – year: 2017 ident: bib0009 article-title: SafetyNet: detecting and rejecting adversarial examples robustly publication-title: Proceedings of the IEEE ICCV – year: 2005 ident: bib0021 article-title: Good word attacks on statistical spam filters, Mountain View, CA, USA publication-title: Proceedings of the Second CEAS – volume: 80 start-page: 5283 year: 2018 end-page: 5292 ident: bib0100 article-title: Provable defenses against adversarial examples via the convex outer adversarial polytope publication-title: Proceedings of the ICML – start-page: 1563 year: 2016 end-page: 1572 ident: bib0106 article-title: Towards open set deep networks publication-title: Proceedings of the IEEE CVPR – start-page: 1807 year: 2012 end-page: 1814 ident: bib0026 article-title: Poisoning attacks against support vector machines publication-title: Proceedings of the Twenty Ninth ICML – volume: Vol. 6713 start-page: 350 year: 2011 end-page: 359 ident: bib0111 article-title: Bagging classifiers for fighting poisoning attacks in adversarial classification tasks publication-title: Proceedings of the MCS – volume: 8190 start-page: 387 year: 2013 end-page: 402 ident: bib0038 article-title: Evasion attacks against machine learning at test time publication-title: Proceedings of the ECML PKDD, Part III – volume: 46 start-page: 766 year: 2016 end-page: 777 ident: bib0065 article-title: Adversarial feature selection against evasion attacks publication-title: IEEE Trans. Cybern. – start-page: 27 year: 2018 end-page: 38 ident: bib0033 article-title: Towards poisoning of deep learning algorithms with back-gradient optimization publication-title: Proceedings of the AISec – start-page: 15 year: 2017 end-page: 26 ident: bib0068 article-title: ZOO: zeroth order optimization based black-box attacks to deep neural networks without training substitute models publication-title: AISec – reference: , 2017. – start-page: 1 year: 2017 end-page: 18 ident: bib0089 article-title: DeepXplore: automated whitebox testing of deep learning systems publication-title: Proceedings of the Twenty Sixth SOSP – start-page: 91 year: 2017 end-page: 102 ident: bib0117 article-title: Robust linear regression against training data poisoning publication-title: Proceedings of the AISec – year: 2018 ident: bib0119 article-title: Manipulating machine learning: poisoning attacks and countermeasures for regression learning publication-title: Proceedings of the Thirty Ninth IEEE Symposium Security and Privacy – volume: 5342 start-page: 500 year: 2008 end-page: 509 ident: bib0045 article-title: Adversarial pattern classification using multiple classifiers and randomisation publication-title: Proceedings of the SSPR – volume: 81 start-page: 115 year: 2010 end-page: 119 ident: bib0050 article-title: Machine learning in adversarial environments publication-title: Mach. Learn. – year: 2015 ident: bib0003 article-title: Explaining and harnessing adversarial examples publication-title: Proceedings of the ICLR – start-page: 582 year: 2016 end-page: 597 ident: bib0006 article-title: Distillation as a defense to adversarial perturbations against deep neural networks publication-title: Proceedings of the IEEE (SP) – year: 2004 ident: bib0034 article-title: On attacking statistical spam filters publication-title: Proceedings of the First CEAS – volume: 3546 start-page: 1100 year: 2005 end-page: 1109 ident: bib0074 article-title: Vulnerabilities in biometric encryption systems publication-title: Proceedings of the Fifth ICAVBPA – start-page: 5 year: 2008 end-page: 10 ident: bib0092 article-title: Classifier ensembles for detecting concept change in streaming data: overview and perspectives publication-title: Proceedings of the SUEMA – volume: 3 start-page: 1 year: 2013 end-page: 30 ident: bib0051 article-title: Machine learning methods for computer security (dagstuhl perspectives workshop 12371) publication-title: Dagstuhl Manif. – year: 2017 ident: bib0032 article-title: Understanding black-box predictions via influence functions publication-title: Proceedings of the ICML – volume: 81 start-page: 69 year: 2010 end-page: 83 ident: bib0094 article-title: Mining adversarial patterns via regularized loss minimization publication-title: Mach. Learn. – start-page: 427 year: 2015 end-page: 436 ident: bib0004 article-title: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images publication-title: Proceedings of the IEEE CVPR – start-page: 1528 year: 2016 end-page: 1540 ident: bib0017 article-title: Accessorize to a crime: real and stealthy attacks on state-of-the-art face recognition publication-title: Proceedings of the CCS – start-page: 405 year: 2010 end-page: 412 ident: bib0027 article-title: Online anomaly detection under adversarial impact publication-title: Proceedings of the Thirteenth AISTATS – volume: 48 start-page: 2387 year: 2016 end-page: 2396 ident: bib0079 article-title: Evasion and hardening of tree ensemble classifiers publication-title: Proceedings of the ICML – reference: C.J. Simon-Gabriel, Y. Ollivier, B. Schölkopf, L. Bottou, D. Lopez-Paz, Adversarial vulnerability of neural networks increases with input dimension, 2018. – start-page: 3647 year: 2012 end-page: 3690 ident: bib0028 article-title: Security analysis of online centroid anomaly detection publication-title: Proceedings of the JMLR – year: 2017 ident: bib0010 article-title: Adversarial examples detection in deep networks with convolutional filter statistics publication-title: Proceedings of the IEEE ICCV – year: 2017 ident: bib0007 article-title: Is deep learning safe for robot vision? adversarial examples against the iCub humanoid publication-title: Proceedings of the ICCV Workshop – start-page: 27 year: 2014 end-page: 36 ident: bib0063 article-title: Poisoning behavioral malware clustering publication-title: Proceedings of the AISec – year: 2017 ident: bib0118 article-title: Certified defenses for data poisoning attacks publication-title: Proceedings of the NIPS – volume: Vol. 10493 start-page: 62 year: 2017 end-page: 79 ident: bib0011 article-title: Adversarial examples for malware detection publication-title: Proceedings of the ESORICS (2) – volume: 32 start-page: 31 year: 2015 end-page: 41 ident: bib0043 article-title: Adversarial biometric recognition: a review on biometric system security from the adversarial machine-learning perspective publication-title: IEEE Signal Proc. Mag. – volume: 77 start-page: 354 year: 2018 end-page: 377 ident: bib0001 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit. – volume: 13 start-page: 2617 year: 2012 end-page: 2654 ident: bib0046 article-title: Static prediction games for adversarial learning problems publication-title: Proceedings of the JMLR – start-page: 87 year: 2013 end-page: 98 ident: bib0062 article-title: Is data clustering in adversarial settings secure? publication-title: Proceedings of the AISec – start-page: 241 year: 2006 end-page: 256 ident: bib0081 article-title: Polymorphic blending attacks publication-title: Proceedings of the USENIX Security Symposium, USENIX Association – volume: 7 start-page: 2699 year: 2006 end-page: 2720 ident: bib0059 article-title: Spam filtering based on the analysis of text information embedded into images publication-title: J. Mach. Learn. Res. – volume: 239 start-page: 201 year: 2013 end-page: 225 ident: bib0054 article-title: Adversarial attacks against intrusion detection systems: taxonomy, solutions and open issues publication-title: Inf. Sci. – volume: 5 start-page: 1007 year: 2004 end-page: 1034 ident: bib0121 article-title: On robust properties of convex risk minimization methods for pattern recognition publication-title: J. Mach. Learn. Res. – start-page: 641 year: 2005 end-page: 647 ident: bib0020 article-title: Adversarial learning publication-title: Proceedings of the ICKDDM – year: 2017 ident: bib0018 article-title: Adversarial examples for semantic segmentation and object detection publication-title: Proceedings of the IEEE ICCV – year: 2018 ident: bib0053 article-title: Adversarial Machine Learning – volume: 10 start-page: 5 year: 2012 end-page: 8 ident: bib0097 article-title: Security analytics and measurements publication-title: IEEE Secur. Priv. – start-page: 601 year: 2016 end-page: 618 ident: bib0066 article-title: Stealing machine learning models via prediction APIs publication-title: Proceedings of the USENIX Security Symposium, USENIX Association – volume: 28 start-page: 2466 year: 2017 end-page: 2478 ident: bib0047 article-title: Randomized prediction games for adversarial machine learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 372 year: 2016 end-page: 387 ident: bib0014 article-title: The limitations of deep learning in adversarial settings publication-title: Proceedings of the First IEEE European Symposium Security and Privacy – start-page: 59 year: 2016 end-page: 69 ident: bib0078 article-title: Secure kernel machines against evasion attacks publication-title: Proceedings of the AISec – volume: 26 year: 2002 ident: bib0022 article-title: Impact of artificial “gummy” fingers on fingerprint systems publication-title: Datenschutz und Datensicherheit – reference: X. Chen, C. Liu, B. Li, K. Lu, D. Song, Targeted backdoor attacks on deep learning systems using data poisoning, ArXiv e-prints – start-page: 3 year: 2017 end-page: 14 ident: bib0085 article-title: Adversarial examples are not easily detected: Bypassing ten detection methods publication-title: Proceedings of the AISec – start-page: 1 year: 2009 end-page: 14 ident: bib0025 article-title: Antidote: understanding and defending against poisoning of anomaly detectors publication-title: Proceedings of the IMC – year: 2018 ident: bib0080 article-title: Synthesizing robust adversarial examples publication-title: Proceedings of the ICLR – start-page: 43 year: 2011 end-page: 57 ident: bib0061 article-title: Adversarial machine learning, Chicago, IL, USA publication-title: Proceedings of the Fourth AISec – volume: 10 start-page: 1485 year: 2009 end-page: 1510 ident: bib0084 article-title: Robustness and regularization of support vector machines publication-title: J. Mach. Learn. Res. – volume: 47 start-page: 3641 year: 2014 end-page: 3655 ident: bib0122 article-title: Learning kernel logistic regression in the presence of class label noise publication-title: Pattern Recognit. – volume: 50 start-page: 17 year: 2016 end-page: 25 ident: bib0109 article-title: Robust multimodal face and fingerprint fusion in the presence of spoofing attacks publication-title: Pattern Recognit. – start-page: 39 year: 2017 end-page: 49 ident: bib0112 article-title: Efficient defenses against adversarial attacks publication-title: Proceedings of the AISec – volume: 32 start-page: 1436 year: 2011 end-page: 1446 ident: bib0057 article-title: A survey and experimental evaluation of image spam filtering techniques publication-title: Pattern Recognit. Lett. – year: 2018 ident: bib0087 article-title: Boosting adversarial examples with momentum publication-title: Proceedings of the IEEE CVPR – reference: B.M. Thuraisingham, B. Biggio, D.M. Freeman, B. Miller, A. Sinha (Eds.), AISec ’17: Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, New York, NY, USA, ACM, 2017. – volume: 27 start-page: 76 year: 2012 end-page: 80 ident: bib0096 article-title: Does game theory work? publication-title: IEEE IS – start-page: 2574 year: 2016 end-page: 2582 ident: bib0005 article-title: Deepfool: a simple and accurate method to fool deep neural networks publication-title: Proceedings of the IEEE CVPR – year: 2014 ident: bib0002 article-title: Intriguing properties of neural networks publication-title: Proceedings of the ICLR – volume: 10029 start-page: 322 year: 2016 end-page: 332 ident: bib0077 article-title: On security and sparsity of linear classifiers for adversarial settings publication-title: Proceedings of the SSPR – volume: 46 start-page: 2256 year: 2013 end-page: 2266 ident: bib0108 article-title: Multi-label classification with a reject option publication-title: Pattern Recognit. – year: 2013 ident: bib0083 article-title: Detection of malicious PDF files based on hierarchical document structure publication-title: Proceedings of the Twentieth NDSS – year: 2009 ident: bib0044 article-title: Feature weighting for improved classifier robustness publication-title: Proceedings of the Sixth CEAS – start-page: 99 year: 2004 end-page: 108 ident: bib0019 article-title: Adversarial classification publication-title: Proceedings of the ICKDDM – start-page: 625 year: 2017 end-page: 642 ident: bib0012 article-title: Transcend: detecting concept drift in malware classification models publication-title: Proceedings of the USENIX Security Symposium – volume: 46 start-page: 305 year: 2013 end-page: 316 ident: bib0098 article-title: Robust twin support vector machine for pattern classification publication-title: Pattern Recognit. – start-page: 81 year: 2008 end-page: 95 ident: bib0116 article-title: Casting out demons: sanitizing training data for anomaly sensors publication-title: Proceedings of the IEEE CS – start-page: 1489 year: 2008 end-page: 1496 ident: bib0036 article-title: Convex learning with invariances publication-title: Proceedings of the NIPS – volume: 9 start-page: 482 year: 2012 end-page: 493 ident: bib0091 article-title: A learning-based approach to reactive security publication-title: IEEE Trans. Dependable Secure Comput. – volume: 37 start-page: 1689 year: 2015 end-page: 1698 ident: bib0029 article-title: Is feature selection secure against training data poisoning? publication-title: Proceedings of the Thirt Second ICML – volume: 1 start-page: 27 year: 2010 end-page: 41 ident: bib0082 article-title: Multiple classifier systems for robust classifier design in adversarial environments publication-title: Int. J. Mach. Learn. Cybern. – volume: 32 start-page: 577 year: 2014 end-page: 585 ident: bib0099 article-title: On robustness and regularization of structural support vector machines publication-title: Proceedings of the ICML – volume: 10426 start-page: 3 year: 2017 end-page: 29 ident: bib0088 article-title: Safety verification of deep neural networks publication-title: Proceedings of the Twenty Ninth ICCAV, Part I – volume: 38 year: 2017 ident: bib0124 article-title: Steps toward robust artificial intelligence publication-title: AI Mag. – volume: 8621 start-page: 42 year: 2014 end-page: 52 ident: bib0064 article-title: Poisoning complete-linkage hierarchical clustering publication-title: Proceedings of the SSPR – start-page: 16 year: 2006 end-page: 25 ident: bib0023 article-title: Can machine learning be secure? publication-title: Proceedings of the ASIA CCS – volume: 148 start-page: 353 year: 2006 end-page: 360 ident: bib0035 article-title: Nightmare at test time: robust learning by feature deletion publication-title: Proceedings of the Twenty Third ICML – year: 2015 ident: bib0031 article-title: Using machine teaching to identify optimal training-set attacks on machine learners publication-title: Proceedings of the Twenty Ninth AAAI – volume: 43 start-page: 1027 year: 2010 end-page: 1038 ident: bib0075 article-title: On the vulnerability of face verification systems to hill-climbing attacks publication-title: Pattern Recognit. – year: 2018 ident: bib0104 article-title: Towards deep learning models resistant to adversarial attacks publication-title: Proceedings of the ICLR – start-page: 1 year: 2008 end-page: 9 ident: bib0024 article-title: Exploiting machine learning to subvert your spam filter publication-title: Proceedings of the LEET, USENIX Association – volume: 28 start-page: 1460002 year: 2014 ident: bib0042 article-title: Pattern recognition systems under attack: design issues and research challenges publication-title: Int. J. Pattern Recognit. Artif. Intell. – volume: 10492 start-page: 370 year: 2017 end-page: 388 ident: bib0056 article-title: DeltaPhish: detecting phishing webpages in compromised websites publication-title: Proceedings of the ESORICS – start-page: 1322 year: 2015 end-page: 1333 ident: bib0073 article-title: Model inversion attacks that exploit confidence information and basic countermeasures publication-title: Proceedings of the ACM CCS – start-page: 39 year: 2017 end-page: 57 ident: bib0016 article-title: Towards evaluating the robustness of neural networks publication-title: Proceedings of the IEEE SP – reference: . – volume: 80 start-page: 274 year: 2018 end-page: 283 ident: bib0086 article-title: Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples publication-title: Proceedings of the ICML – volume: 13 start-page: 1293 year: 2012 end-page: 1332 ident: bib0070 article-title: Query strategies for evading convex-inducing classifiers publication-title: J. Mach. Learn. Res. – volume: 81 start-page: 149 year: 2010 end-page: 178 ident: bib0037 article-title: Learning to classify with missing and corrupted features publication-title: Mach. Learn. – start-page: 87 year: 2011 end-page: 92 ident: bib0115 article-title: Understanding the risk factors of learning in adversarial environments publication-title: Proceedings of the AISec – volume: 63 start-page: 139 year: 2017 end-page: 148 ident: bib0120 article-title: Robust support vector machines based on the rescaled hinge loss function publication-title: Pattern Recognit. – volume: 65 start-page: 4265 year: 2017 end-page: 4280 ident: bib0102 article-title: Robust large margin deep neural networks publication-title: IEEE Trans. Signal Process. – reference: ArXiv e-prints. – volume: 40 start-page: 71 year: 2013 end-page: 105 ident: bib0058 article-title: A survey of image spamming and filtering techniques publication-title: Artif. Intell. Rev. – start-page: 81 year: 2006 end-page: 105 ident: bib0090 article-title: Paragraph: thwarting signature learning by training maliciously publication-title: Proceedings of the RAID, LNCS – volume: 39 start-page: 561 year: 2017 end-page: 575 ident: bib0110 article-title: Statistical meta-analysis of presentation attacks for secure multibiometric systems publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2016 ident: 10.1016/j.patcog.2018.07.023_bib0125 article-title: The mythos of model interpretability – volume: 45 start-page: 521 issue: 1 year: 2012 ident: 10.1016/j.patcog.2018.07.023_bib0107 article-title: A unifying view on dataset shift in classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.06.019 – start-page: 3647 year: 2012 ident: 10.1016/j.patcog.2018.07.023_bib0028 article-title: Security analysis of online centroid anomaly detection – ident: 10.1016/j.patcog.2018.07.023_bib0103 – start-page: 582 year: 2016 ident: 10.1016/j.patcog.2018.07.023_bib0006 article-title: Distillation as a defense to adversarial perturbations against deep neural networks – volume: 1 start-page: 27 issue: 1 year: 2010 ident: 10.1016/j.patcog.2018.07.023_bib0082 article-title: Multiple classifier systems for robust classifier design in adversarial environments publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-010-0007-7 – start-page: 59 year: 2016 ident: 10.1016/j.patcog.2018.07.023_bib0078 article-title: Secure kernel machines against evasion attacks – volume: 5342 start-page: 500 year: 2008 ident: 10.1016/j.patcog.2018.07.023_bib0045 article-title: Adversarial pattern classification using multiple classifiers and randomisation – start-page: 1322 year: 2015 ident: 10.1016/j.patcog.2018.07.023_bib0073 article-title: Model inversion attacks that exploit confidence information and basic countermeasures – volume: 10029 start-page: 322 year: 2016 ident: 10.1016/j.patcog.2018.07.023_bib0077 article-title: On security and sparsity of linear classifiers for adversarial settings – year: 2018 ident: 10.1016/j.patcog.2018.07.023_bib0087 article-title: Boosting adversarial examples with momentum – start-page: 506 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0015 article-title: Practical black-box attacks against machine learning – volume: 42 start-page: 3365 issue: 12 year: 2009 ident: 10.1016/j.patcog.2018.07.023_sbref0056 article-title: Synthetic handwritten captchas publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.12.018 – year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0118 article-title: Certified defenses for data poisoning attacks – start-page: 427 year: 2015 ident: 10.1016/j.patcog.2018.07.023_bib0004 article-title: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images – volume: 40 start-page: 71 issue: 1 year: 2013 ident: 10.1016/j.patcog.2018.07.023_bib0058 article-title: A survey of image spamming and filtering techniques publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9280-4 – year: 2015 ident: 10.1016/j.patcog.2018.07.023_bib0003 article-title: Explaining and harnessing adversarial examples – volume: 32 start-page: 1643 issue: 12 year: 2011 ident: 10.1016/j.patcog.2018.07.023_bib0076 article-title: An evaluation of indirect attacks and countermeasures in fingerprint verification systems publication-title: Pattern Recognit Lett. doi: 10.1016/j.patrec.2011.04.005 – volume: 00 start-page: 301 year: 2015 ident: 10.1016/j.patcog.2018.07.023_bib0101 article-title: A unified gradient regularization family for adversarial examples – volume: 81 start-page: 121 year: 2010 ident: 10.1016/j.patcog.2018.07.023_bib0040 article-title: The security of machine learning publication-title: Mach. Learn. doi: 10.1007/s10994-010-5188-5 – volume: 46 start-page: 766 issue: 3 year: 2016 ident: 10.1016/j.patcog.2018.07.023_bib0065 article-title: Adversarial feature selection against evasion attacks publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2415032 – volume: 47 start-page: 3641 issue: 11 year: 2014 ident: 10.1016/j.patcog.2018.07.023_bib0122 article-title: Learning kernel logistic regression in the presence of class label noise publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.05.007 – start-page: 119 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0069 article-title: Evading classifiers by morphing in the dark – start-page: 87 year: 2011 ident: 10.1016/j.patcog.2018.07.023_bib0115 article-title: Understanding the risk factors of learning in adversarial environments – year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0010 article-title: Adversarial examples detection in deep networks with convolutional filter statistics – volume: 10 start-page: 5 issue: 3 year: 2012 ident: 10.1016/j.patcog.2018.07.023_bib0097 article-title: Security analytics and measurements publication-title: IEEE Secur. Priv. doi: 10.1109/MSP.2012.75 – volume: 38 issue: 3 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0124 article-title: Steps toward robust artificial intelligence publication-title: AI Mag. – year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0008 article-title: MagNet: a two-pronged defense against adversarial examples – start-page: 241 year: 2006 ident: 10.1016/j.patcog.2018.07.023_bib0081 article-title: Polymorphic blending attacks – volume: 46 start-page: 305 issue: 1 year: 2013 ident: 10.1016/j.patcog.2018.07.023_bib0098 article-title: Robust twin support vector machine for pattern classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.06.019 – volume: 148 start-page: 353 year: 2006 ident: 10.1016/j.patcog.2018.07.023_bib0035 article-title: Nightmare at test time: robust learning by feature deletion – volume: 77 start-page: 354 year: 2018 ident: 10.1016/j.patcog.2018.07.023_bib0001 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.10.013 – volume: 43 start-page: 1027 issue: 3 year: 2010 ident: 10.1016/j.patcog.2018.07.023_bib0075 article-title: On the vulnerability of face verification systems to hill-climbing attacks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.08.022 – volume: 39 start-page: 561 issue: 3 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0110 article-title: Statistical meta-analysis of presentation attacks for secure multibiometric systems publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2558154 – start-page: 91 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0117 article-title: Robust linear regression against training data poisoning – start-page: 39 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0016 article-title: Towards evaluating the robustness of neural networks – start-page: 27 year: 2014 ident: 10.1016/j.patcog.2018.07.023_bib0063 article-title: Poisoning behavioral malware clustering – volume: 4 start-page: 65 issue: 1 year: 2012 ident: 10.1016/j.patcog.2018.07.023_bib0123 article-title: Learning in a large function space: privacy-preserving mechanisms for SVM learning publication-title: J. Priv. Conf. – start-page: 1 year: 2008 ident: 10.1016/j.patcog.2018.07.023_bib0024 article-title: Exploiting machine learning to subvert your spam filter – start-page: 81 year: 2008 ident: 10.1016/j.patcog.2018.07.023_bib0116 article-title: Casting out demons: sanitizing training data for anomaly sensors – start-page: 405 year: 2010 ident: 10.1016/j.patcog.2018.07.023_bib0027 article-title: Online anomaly detection under adversarial impact – start-page: 105 year: 2014 ident: 10.1016/j.patcog.2018.07.023_bib0030 article-title: Security evaluation of support vector machines in adversarial environments – start-page: 625 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0012 article-title: Transcend: detecting concept drift in malware classification models – ident: 10.1016/j.patcog.2018.07.023_bib0048 doi: 10.1109/TDSC.2017.2700270 – volume: 50 start-page: 17 year: 2016 ident: 10.1016/j.patcog.2018.07.023_bib0109 article-title: Robust multimodal face and fingerprint fusion in the presence of spoofing attacks publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.08.007 – start-page: 2574 year: 2016 ident: 10.1016/j.patcog.2018.07.023_bib0005 article-title: Deepfool: a simple and accurate method to fool deep neural networks – start-page: 1402 year: 2016 ident: 10.1016/j.patcog.2018.07.023_bib0055 article-title: PhishEye: live monitoring of sandboxed phishing kits – ident: 10.1016/j.patcog.2018.07.023_bib0114 – year: 2015 ident: 10.1016/j.patcog.2018.07.023_bib0031 article-title: Using machine teaching to identify optimal training-set attacks on machine learners – volume: Vol. 6713 start-page: 350 year: 2011 ident: 10.1016/j.patcog.2018.07.023_bib0111 article-title: Bagging classifiers for fighting poisoning attacks in adversarial classification tasks – ident: 10.1016/j.patcog.2018.07.023_bib0072 – volume: 13 start-page: 1293 year: 2012 ident: 10.1016/j.patcog.2018.07.023_bib0070 article-title: Query strategies for evading convex-inducing classifiers publication-title: J. Mach. Learn. Res. – volume: 26 start-page: 984 issue: 4 year: 2014 ident: 10.1016/j.patcog.2018.07.023_bib0041 article-title: Security evaluation of pattern classifiers under attack publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2013.57 – volume: 65 start-page: 4265 issue: 16 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0102 article-title: Robust large margin deep neural networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2708039 – start-page: 4480 year: 2016 ident: 10.1016/j.patcog.2018.07.023_bib0113 article-title: Improving the robustness of deep neural networks via stability training – volume: 48 start-page: 2387 year: 2016 ident: 10.1016/j.patcog.2018.07.023_bib0079 article-title: Evasion and hardening of tree ensemble classifiers – year: 2013 ident: 10.1016/j.patcog.2018.07.023_bib0083 article-title: Detection of malicious PDF files based on hierarchical document structure – year: 2014 ident: 10.1016/j.patcog.2018.07.023_bib0002 article-title: Intriguing properties of neural networks – start-page: 641 year: 2005 ident: 10.1016/j.patcog.2018.07.023_bib0020 article-title: Adversarial learning – start-page: 3 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0085 article-title: Adversarial examples are not easily detected: Bypassing ten detection methods – ident: 10.1016/j.patcog.2018.07.023_bib0052 – ident: 10.1016/j.patcog.2018.07.023_bib0049 – year: 2018 ident: 10.1016/j.patcog.2018.07.023_bib0080 article-title: Synthesizing robust adversarial examples – year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0009 article-title: SafetyNet: detecting and rejecting adversarial examples robustly – year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0007 article-title: Is deep learning safe for robot vision? adversarial examples against the iCub humanoid – volume: 7 start-page: 2699 year: 2006 ident: 10.1016/j.patcog.2018.07.023_bib0059 article-title: Spam filtering based on the analysis of text information embedded into images publication-title: J. Mach. Learn. Res. – start-page: 1563 year: 2016 ident: 10.1016/j.patcog.2018.07.023_bib0106 article-title: Towards open set deep networks – volume: 9 start-page: 482 issue: 4 year: 2012 ident: 10.1016/j.patcog.2018.07.023_bib0091 article-title: A learning-based approach to reactive security publication-title: IEEE Trans. Dependable Secure Comput. doi: 10.1109/TDSC.2011.42 – volume: 81 start-page: 69 issue: 1 year: 2010 ident: 10.1016/j.patcog.2018.07.023_bib0094 article-title: Mining adversarial patterns via regularized loss minimization publication-title: Mach. Learn. doi: 10.1007/s10994-010-5199-2 – year: 2018 ident: 10.1016/j.patcog.2018.07.023_bib0104 article-title: Towards deep learning models resistant to adversarial attacks – start-page: 1528 year: 2016 ident: 10.1016/j.patcog.2018.07.023_bib0017 article-title: Accessorize to a crime: real and stealthy attacks on state-of-the-art face recognition – start-page: 27 year: 2018 ident: 10.1016/j.patcog.2018.07.023_bib0033 article-title: Towards poisoning of deep learning algorithms with back-gradient optimization – volume: 80 start-page: 274 year: 2018 ident: 10.1016/j.patcog.2018.07.023_bib0086 article-title: Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples – start-page: 39 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0112 article-title: Efficient defenses against adversarial attacks – volume: 10492 start-page: 370 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0056 article-title: DeltaPhish: detecting phishing webpages in compromised websites – volume: 13 start-page: 2617 year: 2012 ident: 10.1016/j.patcog.2018.07.023_bib0046 article-title: Static prediction games for adversarial learning problems – start-page: 1 year: 2009 ident: 10.1016/j.patcog.2018.07.023_bib0025 article-title: Antidote: understanding and defending against poisoning of anomaly detectors – volume: 3 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.patcog.2018.07.023_bib0051 article-title: Machine learning methods for computer security (dagstuhl perspectives workshop 12371) publication-title: Dagstuhl Manif. – year: 2004 ident: 10.1016/j.patcog.2018.07.023_bib0034 article-title: On attacking statistical spam filters – volume: 32 start-page: 31 issue: 5 year: 2015 ident: 10.1016/j.patcog.2018.07.023_bib0043 article-title: Adversarial biometric recognition: a review on biometric system security from the adversarial machine-learning perspective publication-title: IEEE Signal Proc. Mag. doi: 10.1109/MSP.2015.2426728 – start-page: 15 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0068 article-title: ZOO: zeroth order optimization based black-box attacks to deep neural networks without training substitute models – year: 2018 ident: 10.1016/j.patcog.2018.07.023_bib0053 – volume: 28 start-page: 55 year: 2013 ident: 10.1016/j.patcog.2018.07.023_bib0095 article-title: Bayesian games for adversarial regression problems – volume: 28 start-page: 2466 issue: 11 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0047 article-title: Randomized prediction games for adversarial machine learning publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2593488 – year: 2009 ident: 10.1016/j.patcog.2018.07.023_bib0044 article-title: Feature weighting for improved classifier robustness – volume: 80 start-page: 5283 year: 2018 ident: 10.1016/j.patcog.2018.07.023_bib0100 article-title: Provable defenses against adversarial examples via the convex outer adversarial polytope – year: 2018 ident: 10.1016/j.patcog.2018.07.023_bib0119 article-title: Manipulating machine learning: poisoning attacks and countermeasures for regression learning – year: 2005 ident: 10.1016/j.patcog.2018.07.023_bib0021 article-title: Good word attacks on statistical spam filters, Mountain View, CA, USA – volume: 28 start-page: 1460002 issue: 7 year: 2014 ident: 10.1016/j.patcog.2018.07.023_bib0042 article-title: Pattern recognition systems under attack: design issues and research challenges publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001414600027 – volume: 239 start-page: 201 issue: 0 year: 2013 ident: 10.1016/j.patcog.2018.07.023_bib0054 article-title: Adversarial attacks against intrusion detection systems: taxonomy, solutions and open issues publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.03.022 – start-page: 1489 year: 2008 ident: 10.1016/j.patcog.2018.07.023_bib0036 article-title: Convex learning with invariances – volume: 32 start-page: 1436 issue: 10 year: 2011 ident: 10.1016/j.patcog.2018.07.023_bib0057 article-title: A survey and experimental evaluation of image spam filtering techniques publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2011.03.022 – volume: 5 start-page: 1007 year: 2004 ident: 10.1016/j.patcog.2018.07.023_bib0121 article-title: On robust properties of convex risk minimization methods for pattern recognition publication-title: J. Mach. Learn. Res. – volume: 32 start-page: 577 year: 2014 ident: 10.1016/j.patcog.2018.07.023_bib0099 article-title: On robustness and regularization of structural support vector machines – volume: 10426 start-page: 3 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0088 article-title: Safety verification of deep neural networks – year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0032 article-title: Understanding black-box predictions via influence functions – start-page: 87 year: 2013 ident: 10.1016/j.patcog.2018.07.023_bib0062 article-title: Is data clustering in adversarial settings secure? – volume: 27 start-page: 76 issue: 6 year: 2012 ident: 10.1016/j.patcog.2018.07.023_bib0096 article-title: Does game theory work? publication-title: IEEE IS – start-page: 372 year: 2016 ident: 10.1016/j.patcog.2018.07.023_bib0014 article-title: The limitations of deep learning in adversarial settings – volume: 46 start-page: 2256 issue: 8 year: 2013 ident: 10.1016/j.patcog.2018.07.023_bib0108 article-title: Multi-label classification with a reject option publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2013.01.035 – ident: 10.1016/j.patcog.2018.07.023_bib0071 – start-page: 16 year: 2006 ident: 10.1016/j.patcog.2018.07.023_bib0023 article-title: Can machine learning be secure? – volume: 63 start-page: 139 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0120 article-title: Robust support vector machines based on the rescaled hinge loss function publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.09.045 – volume: 81 start-page: 115 year: 2010 ident: 10.1016/j.patcog.2018.07.023_bib0050 article-title: Machine learning in adversarial environments publication-title: Mach. Learn. doi: 10.1007/s10994-010-5207-6 – start-page: 99 year: 2004 ident: 10.1016/j.patcog.2018.07.023_bib0019 article-title: Adversarial classification – start-page: 1807 year: 2012 ident: 10.1016/j.patcog.2018.07.023_bib0026 article-title: Poisoning attacks against support vector machines – volume: 10 start-page: 1485 year: 2009 ident: 10.1016/j.patcog.2018.07.023_bib0084 article-title: Robustness and regularization of support vector machines publication-title: J. Mach. Learn. Res. – start-page: 81 year: 2006 ident: 10.1016/j.patcog.2018.07.023_bib0090 article-title: Paragraph: thwarting signature learning by training maliciously – start-page: 197 year: 2014 ident: 10.1016/j.patcog.2018.07.023_bib0039 article-title: Practical evasion of a learning-based classifier: a case study – volume: 8190 start-page: 387 year: 2013 ident: 10.1016/j.patcog.2018.07.023_bib0038 article-title: Evasion attacks against machine learning at test time – start-page: 601 year: 2016 ident: 10.1016/j.patcog.2018.07.023_bib0066 article-title: Stealing machine learning models via prediction APIs – volume: 14 start-page: 68 issue: 3 year: 2016 ident: 10.1016/j.patcog.2018.07.023_bib0013 article-title: Machine learning in adversarial settings publication-title: IEEE Secur. Priv. doi: 10.1109/MSP.2016.51 – volume: 8621 start-page: 42 year: 2014 ident: 10.1016/j.patcog.2018.07.023_bib0064 article-title: Poisoning complete-linkage hierarchical clustering – start-page: 5 year: 2008 ident: 10.1016/j.patcog.2018.07.023_bib0092 article-title: Classifier ensembles for detecting concept change in streaming data: overview and perspectives – volume: 3546 start-page: 1100 year: 2005 ident: 10.1016/j.patcog.2018.07.023_bib0074 article-title: Vulnerabilities in biometric encryption systems – year: 2016 ident: 10.1016/j.patcog.2018.07.023_bib0067 article-title: Automatically evading classifiers – volume: 37 start-page: 1689 year: 2015 ident: 10.1016/j.patcog.2018.07.023_bib0029 article-title: Is feature selection secure against training data poisoning? – volume: 81 start-page: 149 year: 2010 ident: 10.1016/j.patcog.2018.07.023_bib0037 article-title: Learning to classify with missing and corrupted features publication-title: Mach. Learn. doi: 10.1007/s10994-009-5124-8 – volume: 9132 start-page: 168 year: 2015 ident: 10.1016/j.patcog.2018.07.023_bib0105 article-title: One-and-a-half-class multiple classifier systems for secure learning against evasion attacks at test time – year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0018 article-title: Adversarial examples for semantic segmentation and object detection – start-page: 1 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0089 article-title: DeepXplore: automated whitebox testing of deep learning systems – volume: 26 issue: 8 year: 2002 ident: 10.1016/j.patcog.2018.07.023_bib0022 article-title: Impact of artificial “gummy” fingers on fingerprint systems publication-title: Datenschutz und Datensicherheit – volume: Vol. 10493 start-page: 62 year: 2017 ident: 10.1016/j.patcog.2018.07.023_bib0011 article-title: Adversarial examples for malware detection – volume: 38 start-page: 1520 issue: 10 year: 2005 ident: 10.1016/j.patcog.2018.07.023_bib0093 article-title: Optimal robust classifiers publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2005.01.019 – start-page: 43 year: 2011 ident: 10.1016/j.patcog.2018.07.023_bib0061 article-title: Adversarial machine learning, Chicago, IL, USA |
| SSID | ssj0017142 |
| Score | 2.733223 |
| Snippet | •We provide a detailed review of the evolution of adversarial machine learning over the last ten years.•We start from pioneering work up to more recent work... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 317 |
| SubjectTerms | Adversarial examples Adversarial machine learning Deep learning Evasion attacks Poisoning attacks Secure learning |
| Title | Wild patterns: Ten years after the rise of adversarial machine learning |
| URI | https://dx.doi.org/10.1016/j.patcog.2018.07.023 |
| Volume | 84 |
| WOSCitedRecordID | wos000444659200024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFLYo9NALlC4CSisfuCGjJE5spzeE2CqEkEqluUXeUoEgg5ihov-e5y0ZoKItEpdoFNmZ5H328-fntyC0kRltcpllRPGCktKInCiAntRKuOXOZEL6lPlH_PhYjEb1Saw2OvHlBHjXidvb-upFoYZ7ALYLnf0PuPuHwg34DaDDFWCH6z8BD_PcuHSpztI3CdbzbvM3fOUkFgT3ToVnwYYvXT3mifSlOy69X6VNhSR-zvLWk_C8zd7faDi9d-b1s3E4u5hOHR0dDnFC7PWeVMHbK5kXcvHAVaOPexmcjLwepTmhRRZUkw2qU3BKgH7d062inFGONERpxnU2Rmo9UuHBmnC-BYKCL3LOd8KnVy3osGT1joTfQ-5Jr5kce6teoYWCVzXot4Xtw93Rt_5EiedlyBwf3zyFUXpfv8f_9WeaMkM9Tt-ixbhnwNsB62U0Z7t3aCnV48BRPb9H-w56nKD_igF47IHHHngMwGMHPB63eAZ4HIHHCfgP6Mfe7unOAYmFMogG_jwlhmVCacOkLWRVG2oYq1SugXm0LGsZs6qURlFhuG5LBk1gvti2Kow0VirA7SOa78adXUHYMq0rvyvnFppKxVvZWtjn1oWVolWriCa5NDpmkXfFTC6a5C543gRpNk6aTcYbkOYqIn2vq5BF5S_teRJ5E5lgYHgNjJIne649u-cn9GYY_-tofnp9Yz-j1_oXzJzrL3E43QFFX4T9 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wild+patterns%3A+Ten+years+after+the+rise+of+adversarial+machine+learning&rft.jtitle=Pattern+recognition&rft.au=Biggio%2C+Battista&rft.au=Roli%2C+Fabio&rft.date=2018-12-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=84&rft.spage=317&rft.epage=331&rft_id=info:doi/10.1016%2Fj.patcog.2018.07.023&rft.externalDocID=S0031320318302565 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |