Synthesis and optimization of energy integrated advanced distillation sequences
•Novel effective routes for eco-efficient separation by distillation sequences.•Simultaneous optimization of all design degrees of freedom in distillation sequences.•Optimal arrangement of complex columns sequencing for NGL separation. This paper explores the basis on which reliable screening of dis...
Gespeichert in:
| Veröffentlicht in: | Separation and purification technology Jg. 315; S. 123717 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
15.06.2023
|
| Schlagworte: | |
| ISSN: | 1383-5866, 1873-3794 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Novel effective routes for eco-efficient separation by distillation sequences.•Simultaneous optimization of all design degrees of freedom in distillation sequences.•Optimal arrangement of complex columns sequencing for NGL separation.
This paper explores the basis on which reliable screening of distillation sequences for energy-efficient separation of zeotropic multicomponent mixtures can be carried out. A case study for the separation of natural gas liquids is used to demonstrate the approach. To solve this generic problem, a screening algorithm has been developed using optimization of a superstructure for sequence synthesis using shortcut models, in conjunction with a transportation algorithm for the synthesis of the heat integration arrangement. Different approaches for the inclusion of heat integration are explored and compared. The best few designs from this screening are then evaluated using rigorous simulation. It has been found that separation problems of the type explored can be screened reliably using shortcut distillation models in conjunction with the synthesis of heat exchanger network designs. Non-integrated designs using thermally coupled complex columns show much better performance than the corresponding designs using simple columns. However, once heat integration is included the difference between designs using complex columns and simple columns narrows significantly. |
|---|---|
| AbstractList | •Novel effective routes for eco-efficient separation by distillation sequences.•Simultaneous optimization of all design degrees of freedom in distillation sequences.•Optimal arrangement of complex columns sequencing for NGL separation.
This paper explores the basis on which reliable screening of distillation sequences for energy-efficient separation of zeotropic multicomponent mixtures can be carried out. A case study for the separation of natural gas liquids is used to demonstrate the approach. To solve this generic problem, a screening algorithm has been developed using optimization of a superstructure for sequence synthesis using shortcut models, in conjunction with a transportation algorithm for the synthesis of the heat integration arrangement. Different approaches for the inclusion of heat integration are explored and compared. The best few designs from this screening are then evaluated using rigorous simulation. It has been found that separation problems of the type explored can be screened reliably using shortcut distillation models in conjunction with the synthesis of heat exchanger network designs. Non-integrated designs using thermally coupled complex columns show much better performance than the corresponding designs using simple columns. However, once heat integration is included the difference between designs using complex columns and simple columns narrows significantly. |
| ArticleNumber | 123717 |
| Author | Kiss, Anton A. Finn, Adrian J. Smith, Robin Doyle, Stephen J. Li, Qing |
| Author_xml | – sequence: 1 givenname: Qing surname: Li fullname: Li, Qing organization: Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands – sequence: 2 givenname: Adrian J. surname: Finn fullname: Finn, Adrian J. organization: Costain, Costain House, 1500, Aviator Way, Manchester Business Park, Manchester M22 5TG, United Kingdom – sequence: 3 givenname: Stephen J. surname: Doyle fullname: Doyle, Stephen J. organization: Centre for Process Integration, Department of Chemical Engineering, The University of Manchester, Sackville Street, Manchester M13 9PL, United Kingdom – sequence: 4 givenname: Robin surname: Smith fullname: Smith, Robin organization: Centre for Process Integration, Department of Chemical Engineering, The University of Manchester, Sackville Street, Manchester M13 9PL, United Kingdom – sequence: 5 givenname: Anton A. surname: Kiss fullname: Kiss, Anton A. email: a.a.kiss@tudelft.nl organization: Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands |
| BookMark | eNqFkMtOwzAQRS1UJNrCH7DID6T40SQuCyRU8ZIqsQDWljMeF1epE2y3Uvl6UsKKBazmajRnpHsmZORbj4RcMjpjlJVXm1nErtuFGadczBgXFatOyJjJSuSiWsxHfRZS5IUsyzMyiXFDKauY5GPy_HLw6R2ji5n2Jmu75LbuUyfX-qy1GXoM60PmfMJ10AlNps1ee-iDcTG5phlOI37ssF_Hc3JqdRPx4mdOydv93evyMV89Pzwtb1c5iIKn3HBbS8GhQBTSmBpqkAtDrWYL0BollqKAshCmRM2gqjkaCszWFrDiYJmYkvnwF0IbY0CruuC2OhwUo-ooRW3UIEUdpahBSo9d_8LApe8KKWjX_AffDDD2xfYOg4rgjq2NCwhJmdb9_eALt_WGiQ |
| CitedBy_id | crossref_primary_10_1016_j_cherd_2024_12_011 crossref_primary_10_1080_01496395_2024_2366914 crossref_primary_10_1016_j_cherd_2024_06_041 crossref_primary_10_1016_j_energy_2024_131186 crossref_primary_10_1016_j_seppur_2025_134463 crossref_primary_10_1016_j_cjche_2023_08_010 crossref_primary_10_1016_j_compchemeng_2025_109144 crossref_primary_10_1016_j_rser_2024_114522 crossref_primary_10_1016_j_seppur_2025_131457 crossref_primary_10_1016_j_cherd_2024_07_045 crossref_primary_10_1515_cppm_2024_0035 crossref_primary_10_1016_j_cep_2024_109708 crossref_primary_10_1016_j_compchemeng_2025_109245 crossref_primary_10_1016_j_compchemeng_2023_108369 crossref_primary_10_1016_j_coche_2023_100985 crossref_primary_10_1016_j_seppur_2024_130030 crossref_primary_10_1002_aic_18776 crossref_primary_10_3389_fenrg_2024_1340635 crossref_primary_10_1002_aic_18801 |
| Cites_doi | 10.1016/j.compchemeng.2008.08.001 10.1016/j.compchemeng.2019.106520 10.1021/ie50269a003 10.1016/0009-2509(83)80156-0 10.1002/aic.690310908 10.1016/j.cherd.2008.06.013 10.1021/ie980062m 10.1021/ie50368a017 10.1016/j.compchemeng.2017.01.030 10.1002/aic.13971 10.1002/aic.690200309 10.1021/acs.iecr.7b05214 10.1002/aic.690230628 10.1016/j.energy.2021.121684 10.1016/j.compchemeng.2019.106650 10.1016/j.compchemeng.2019.106583 10.1016/j.cep.2011.01.011 10.1002/aic.17328 10.1016/j.jtice.2012.01.012 10.1007/s11814-015-0139-2 10.1016/j.seppur.2022.121137 10.1016/j.compchemeng.2022.107907 10.1021/ie50480a044 10.1016/j.compchemeng.2019.05.028 10.1021/ie034011n 10.1002/ceat.201500698 10.1016/j.cherd.2019.04.023 10.1016/j.cherd.2022.02.020 10.1287/opre.2022.2340 10.1016/j.energy.2020.117788 10.1016/j.jngse.2020.103180 10.1016/j.cherd.2017.07.009 10.1016/j.jngse.2016.05.038 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s) |
| Copyright_xml | – notice: 2023 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.seppur.2023.123717 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3794 |
| ExternalDocumentID | 10_1016_j_seppur_2023_123717 S1383586623006251 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSM SSZ T5K ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FGOYB HZ~ R2- ~HD |
| ID | FETCH-LOGICAL-c352t-d2fb832c5ee38ddbcbc89d0fa19caae8e635c653d6ea1c7b2ed0c1fbfce72cf13 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000975068400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1383-5866 |
| IngestDate | Sat Nov 29 07:01:16 EST 2025 Tue Nov 18 22:52:12 EST 2025 Fri Feb 23 02:35:18 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Process design Energy integration Distillation sequencing Process optimization Process synthesis |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c352t-d2fb832c5ee38ddbcbc89d0fa19caae8e635c653d6ea1c7b2ed0c1fbfce72cf13 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.seppur.2023.123717 |
| ParticipantIDs | crossref_primary_10_1016_j_seppur_2023_123717 crossref_citationtrail_10_1016_j_seppur_2023_123717 elsevier_sciencedirect_doi_10_1016_j_seppur_2023_123717 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-15 |
| PublicationDateYYYYMMDD | 2023-06-15 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Separation and purification technology |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Long, Minh, Pham, Bahadori, Lee (b0135) 2016; 33 Zhang, Luo, Yuan (b0235) 2021; 67 Seader, Westerberg (b0170) 1977; 23 Fenske (b0040) 1932; 24 R.T. Gooty, R. Agrawal, M. Tawarmalani, Advances in MINLP to identify energy-efficient distillation configurations, Oper. Res. (2022). doi: 10.1287/opre.2022.2340. Zhang, Zeng, Li, Yang, Feng (b0230) 2022; 164 Seider, Seader, Lewin (b0175) 1999 Leeson, Fennell, Mac, Shah (b0120) 2017; 125 Skiborowski (b0185) 2018; 69 Jiang, Agrawal (b0090) 2019; 147 Bertran, Frauzem, Sanchez-Arcilla, Zhang, Woodley, Gani (b0020) 2017; 106 Kiss, Smith (b0105) 2020; 203 Manley (b0140) 1998; 28 Smith, Triantafyllou (b0190) 1992; 70 S. Farrokpanah, Design of heat integrated low temperature distillation systems. The University of Manchester, 2009. CPI Suite, The University of Manchester, Centre for Process Integration, 2022. <www.ceas.manchester.ac.uk/cpi/research/resources/software/> (Date accessed 20 December 2022). Jain, Smith (b0085) 2012; 43 Lestak, Collins (b0125) 1997; 104 Smith R., Chemical process design and integration, Second edition. ed., John Wiley & Sons, Inc., Chichester, West Sussex, United Kingdom, 2016. Kiss, Bildea (b0095) 2011; 50 Schwarz, Beloff, Beaver (b0165) 2002; 98 Cerda, Westerberg, Mason, Linnhoff (b0025) 1983; 38 Kiss, Infante Ferreira (b0100) 2016 Gilliland (b0060) 1940; 32 Andrecovich, Westerberg (b0015) 1985; 31 International Energy Agency - Projections for Natural Gas (2018). IEA, 2018. Tamuzi, Kasiri, Khalili-Garakani (b0200) 2020; 76 Long, Lee (b0130) 2012; 7 Yang, Li, Feng, Rong, Wang (b0220) 2022; 180 Ramapriya, Selvarajah, Jimenez Cucaita, Huff, Tawarmalani, Agrawal (b0155) 2018; 57 Halvorsen, Dejanović, Maråk, Olujić, Skogestad (b0075) 2016; 39 An, Yuan (b0010) 2009; 33 Zhang, Luo, Yuan (b0240) 2019; 127 Waltermann, Skiborowski (b0215) 2019; 129 Gerrard (b0055) 2000 Premkumar, Rangaiah (b0145) 2009; 87 Yoo, Binns, Jang, Cho, Kim (b0225) 2016; 33 Qyyum, Naquash, Haider, Al-Sobhi, Lee (b0150) 2022; 238 Agrawal, Fidkowski (b0005) 1998; 37 Shenvi, Shah, Agrawal (b0180) 2013; 59 Turton, Bailie, Whiting, Shaeiwitz (b0205) 2018 Kong, Maravelias (b0110) 2020; 133 Lee, Yeh, Chen, Chen (b0115) 2022; 293 Rathore, Van Wormer, Powers (b0160) 1974; 20 Flores, Cárdenas, Hernández, Rico-Ramírez (b0045) 2003; 42 GPSA Engineering Data Book, 14th Edition, Gas Processors and Suppliers Association, Tulsa, Oklahoma, USA (2017). Franke (b0050) 2019; 131 Underwood (b0210) 1949; 41 Kiss (10.1016/j.seppur.2023.123717_b0100) 2016 Schwarz (10.1016/j.seppur.2023.123717_b0165) 2002; 98 Manley (10.1016/j.seppur.2023.123717_b0140) 1998; 28 Kiss (10.1016/j.seppur.2023.123717_b0105) 2020; 203 10.1016/j.seppur.2023.123717_b0070 Long (10.1016/j.seppur.2023.123717_b0135) 2016; 33 Skiborowski (10.1016/j.seppur.2023.123717_b0185) 2018; 69 Smith (10.1016/j.seppur.2023.123717_b0190) 1992; 70 Agrawal (10.1016/j.seppur.2023.123717_b0005) 1998; 37 10.1016/j.seppur.2023.123717_b0195 10.1016/j.seppur.2023.123717_b0030 Zhang (10.1016/j.seppur.2023.123717_b0235) 2021; 67 Turton (10.1016/j.seppur.2023.123717_b0205) 2018 Fenske (10.1016/j.seppur.2023.123717_b0040) 1932; 24 Long (10.1016/j.seppur.2023.123717_b0130) 2012; 7 Qyyum (10.1016/j.seppur.2023.123717_b0150) 2022; 238 Kiss (10.1016/j.seppur.2023.123717_b0095) 2011; 50 Flores (10.1016/j.seppur.2023.123717_b0045) 2003; 42 Underwood (10.1016/j.seppur.2023.123717_b0210) 1949; 41 An (10.1016/j.seppur.2023.123717_b0010) 2009; 33 Jain (10.1016/j.seppur.2023.123717_b0085) 2012; 43 Rathore (10.1016/j.seppur.2023.123717_b0160) 1974; 20 Halvorsen (10.1016/j.seppur.2023.123717_b0075) 2016; 39 Zhang (10.1016/j.seppur.2023.123717_b0240) 2019; 127 Premkumar (10.1016/j.seppur.2023.123717_b0145) 2009; 87 10.1016/j.seppur.2023.123717_b0080 Jiang (10.1016/j.seppur.2023.123717_b0090) 2019; 147 Cerda (10.1016/j.seppur.2023.123717_b0025) 1983; 38 Lestak (10.1016/j.seppur.2023.123717_b0125) 1997; 104 Seider (10.1016/j.seppur.2023.123717_b0175) 1999 Bertran (10.1016/j.seppur.2023.123717_b0020) 2017; 106 Andrecovich (10.1016/j.seppur.2023.123717_b0015) 1985; 31 Seader (10.1016/j.seppur.2023.123717_b0170) 1977; 23 Gilliland (10.1016/j.seppur.2023.123717_b0060) 1940; 32 Tamuzi (10.1016/j.seppur.2023.123717_b0200) 2020; 76 10.1016/j.seppur.2023.123717_b0065 Yang (10.1016/j.seppur.2023.123717_b0220) 2022; 180 Waltermann (10.1016/j.seppur.2023.123717_b0215) 2019; 129 Kong (10.1016/j.seppur.2023.123717_b0110) 2020; 133 Zhang (10.1016/j.seppur.2023.123717_b0230) 2022; 164 Lee (10.1016/j.seppur.2023.123717_b0115) 2022; 293 10.1016/j.seppur.2023.123717_b0035 Shenvi (10.1016/j.seppur.2023.123717_b0180) 2013; 59 Leeson (10.1016/j.seppur.2023.123717_b0120) 2017; 125 Franke (10.1016/j.seppur.2023.123717_b0050) 2019; 131 Ramapriya (10.1016/j.seppur.2023.123717_b0155) 2018; 57 Yoo (10.1016/j.seppur.2023.123717_b0225) 2016; 33 Gerrard (10.1016/j.seppur.2023.123717_b0055) 2000 |
| References_xml | – volume: 133 year: 2020 ident: b0110 article-title: New multicomponent distillation costillation network synthesis using superstructure-based methods publication-title: Comput. Chem. Eng. – volume: 41 start-page: 2844 year: 1949 end-page: 2847 ident: b0210 article-title: Fractional Distillation of Multicomponent Mixtures publication-title: Ind. Eng. Chem. – year: 2000 ident: b0055 article-title: Guide to Capital Cost Estimating – volume: 98 start-page: 58 year: 2002 end-page: 63 ident: b0165 article-title: Use sustainability metrics to guide decision-making publication-title: Chem. Eng. Prog. – year: 1999 ident: b0175 article-title: Process Design Principles: Synthesis, Analysis, and Evaluation – volume: 87 start-page: 47 year: 2009 end-page: 60 ident: b0145 article-title: Retrofitting conventional column systems to dividing-wall columns publication-title: Chem. Eng. Res. Des. – volume: 67 start-page: e17328 year: 2021 ident: b0235 article-title: A novel stochastic optimization method to efficiently synthesize large-scale nonsharp distillation systems publication-title: AIChE J – volume: 125 start-page: 166 year: 2017 end-page: 180 ident: b0120 article-title: Simultaneous design of separation sequences and whole process energy integration publication-title: Chem. Eng. Res. Des. – volume: 127 start-page: 158 year: 2019 end-page: 174 ident: b0240 article-title: Synthesis of simultaneously heat integrated and thermally coupled nonsharp distillation sequences based on stochastic optimization publication-title: Comput. Chem. Eng. – reference: International Energy Agency - Projections for Natural Gas (2018). IEA, 2018. – volume: 57 start-page: 7726 year: 2018 end-page: 7731 ident: b0155 article-title: Short-cut methods versus rigorous methods for performance-evaluation of distillation configurations publication-title: Ind. Eng. Chem. Res. – volume: 106 start-page: 892 year: 2017 end-page: 910 ident: b0020 article-title: A generic methodology for processing route synthesis and design based on superstructure optimization publication-title: Comput. Chem. Eng. – volume: 203 year: 2020 ident: b0105 article-title: Rethinking energy use in distillation processes for a more sustainable chemical industry publication-title: Energy – reference: R.T. Gooty, R. Agrawal, M. Tawarmalani, Advances in MINLP to identify energy-efficient distillation configurations, Oper. Res. (2022). doi: 10.1287/opre.2022.2340. – volume: 50 start-page: 281 year: 2011 end-page: 292 ident: b0095 article-title: A control perspective on process intensification in dividing-wall columns publication-title: Chem. Eng. Process. – reference: Smith R., Chemical process design and integration, Second edition. ed., John Wiley & Sons, Inc., Chichester, West Sussex, United Kingdom, 2016. – volume: 147 start-page: 122 year: 2019 end-page: 145 ident: b0090 article-title: Process intensification in multicomponent distillation: a review of recent advancements publication-title: Chem. Eng. Res. Des. – year: 2018 ident: b0205 article-title: Analysis, Synthesis and Design of Chemical Processes – volume: 129 year: 2019 ident: b0215 article-title: Efficient optimization-based design of energy-integrated distillation processes publication-title: Comput. Chem. Eng. – volume: 131 year: 2019 ident: b0050 article-title: Mixed-integer optimization of distillation sequences with Aspen Plus: a practical approach publication-title: Comput. Chem. Eng. – volume: 104 year: 1997 ident: b0125 publication-title: Advanced distillation saves energy and capital – volume: 23 start-page: 951 year: 1977 end-page: 954 ident: b0170 article-title: A combined heuristic and evolutionary strategy for synthesis of simple separation sequences publication-title: AIChE J – volume: 164 year: 2022 ident: b0230 article-title: Simulation-assisted design of a distillation train with simultaneous column and sequence optimization publication-title: Comput. Chem. Eng. – volume: 59 start-page: 272 year: 2013 end-page: 282 ident: b0180 article-title: New multicomponent distillation configurations with simultaneous heat and mass integration publication-title: AIChE J – year: 2016 ident: b0100 article-title: Heat Pumps in Chemical Process Industry – volume: 33 start-page: 199 year: 2009 end-page: 212 ident: b0010 article-title: A simulated annealing-based approach to the optimal synthesis of heat-integrated distillation sequences publication-title: Comput. Chem. Eng. – reference: CPI Suite, The University of Manchester, Centre for Process Integration, 2022. <www.ceas.manchester.ac.uk/cpi/research/resources/software/> (Date accessed 20 December 2022). – volume: 39 start-page: 2348 year: 2016 end-page: 2354 ident: b0075 article-title: Dividing-wall column for fractionation of natural gas liquids in floating liquefied natural gas plants publication-title: Chem. Eng. Technol. – volume: 31 start-page: 1461 year: 1985 end-page: 1474 ident: b0015 article-title: An MILP formulation for heat-integrated distillation sequence synthesis publication-title: AIChE J – volume: 42 start-page: 5940 year: 2003 end-page: 5945 ident: b0045 article-title: Thermodynamic analysis of thermally coupled distillation sequences publication-title: Ind. Eng. Chem. Res. – volume: 37 start-page: 3444 year: 1998 end-page: 3454 ident: b0005 article-title: Are thermally coupled distillation columns always thermodynamically more efficient for ternary distillations? publication-title: Ind. Eng. Chem. Res. – volume: 33 start-page: 405 year: 2016 end-page: 415 ident: b0225 article-title: A design procedure for heat-integrated distillation column sequencing of natural gas liquid fractionation processes publication-title: Korean J. Chem. Eng. – volume: 24 start-page: 482 year: 1932 end-page: 485 ident: b0040 article-title: Fractionation of Straight-Run Pennsylvania Gasoline publication-title: Ind. Eng. Chem. – reference: GPSA Engineering Data Book, 14th Edition, Gas Processors and Suppliers Association, Tulsa, Oklahoma, USA (2017). – volume: 7 start-page: S71 year: 2012 end-page: S77 ident: b0130 article-title: Improvement of natural gas liquid recovery energy efficiency through thermally coupled distillation arrangements publication-title: Asia Pac. J. Chem. Eng. – volume: 28 start-page: 211 year: 1998 end-page: 216 ident: b0140 publication-title: Thermodynamically efficient distillation: NGL fractionation – volume: 32 start-page: 1101 year: 1940 end-page: 1106 ident: b0060 article-title: Multicomponent rectification estimation of the number of theoretical plates as a function of the reflux ratio publication-title: Ind. Eng. Chem. – volume: 70 start-page: 118 year: 1992 end-page: 132 ident: b0190 article-title: The design and optimisation of fully thermally coupled distillation columns publication-title: Trans. IChemE – volume: 38 start-page: 373 year: 1983 end-page: 387 ident: b0025 article-title: Minimum utility usage in heat exchanger network synthesis A transportation problem publication-title: Chem. Eng. Sci. – volume: 33 start-page: 458 year: 2016 end-page: 468 ident: b0135 article-title: Novel retrofit designs using a modified coordinate descent methodology for improving energy efficiency of natural gas liquid fractionation process publication-title: J. Nat. Gas Sci. Eng. – volume: 76 year: 2020 ident: b0200 article-title: Design and optimization of distillation column sequencing for NGL fractionation processes publication-title: J. Nat. Gas Sci. Eng. – volume: 69 year: 2018 ident: b0185 publication-title: Fast screening of energy and cost efficient intensified distillation processes – volume: 238 year: 2022 ident: b0150 article-title: State-of-the-art assessment of natural gas liquids recovery processes: Techno-economic evaluation, policy implications, open issues, and the way forward publication-title: Energy – volume: 180 start-page: 164 year: 2022 end-page: 177 ident: b0220 article-title: Retrofit of an industrial solvent recovery system: Distillation sequence intensification and simulation-based optimization publication-title: Chem. Eng. Res. Des. – volume: 20 start-page: 491 year: 1974 end-page: 502 ident: b0160 article-title: Synthesis strategies for multicomponent separation systems with energy integration publication-title: AIChE J – volume: 43 start-page: 525 year: 2012 end-page: 534 ident: b0085 article-title: Synthesis of heat-integrated distillation sequence systems publication-title: J. Taiwan Inst. Chem. Eng. – volume: 293 year: 2022 ident: b0115 article-title: Design and control of a comprehensive ethylenediamine (EDA) process with external/internal heat integration publication-title: Sep. Purif. Technol. – reference: S. Farrokpanah, Design of heat integrated low temperature distillation systems. The University of Manchester, 2009. – volume: 33 start-page: 199 year: 2009 ident: 10.1016/j.seppur.2023.123717_b0010 article-title: A simulated annealing-based approach to the optimal synthesis of heat-integrated distillation sequences publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2008.08.001 – volume: 129 year: 2019 ident: 10.1016/j.seppur.2023.123717_b0215 article-title: Efficient optimization-based design of energy-integrated distillation processes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106520 – volume: 24 start-page: 482 year: 1932 ident: 10.1016/j.seppur.2023.123717_b0040 article-title: Fractionation of Straight-Run Pennsylvania Gasoline publication-title: Ind. Eng. Chem. doi: 10.1021/ie50269a003 – volume: 104 year: 1997 ident: 10.1016/j.seppur.2023.123717_b0125 publication-title: Advanced distillation saves energy and capital – ident: 10.1016/j.seppur.2023.123717_b0195 – ident: 10.1016/j.seppur.2023.123717_b0080 – volume: 7 start-page: S71 year: 2012 ident: 10.1016/j.seppur.2023.123717_b0130 article-title: Improvement of natural gas liquid recovery energy efficiency through thermally coupled distillation arrangements publication-title: Asia Pac. J. Chem. Eng. – volume: 38 start-page: 373 year: 1983 ident: 10.1016/j.seppur.2023.123717_b0025 article-title: Minimum utility usage in heat exchanger network synthesis A transportation problem publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(83)80156-0 – volume: 31 start-page: 1461 year: 1985 ident: 10.1016/j.seppur.2023.123717_b0015 article-title: An MILP formulation for heat-integrated distillation sequence synthesis publication-title: AIChE J doi: 10.1002/aic.690310908 – volume: 87 start-page: 47 year: 2009 ident: 10.1016/j.seppur.2023.123717_b0145 article-title: Retrofitting conventional column systems to dividing-wall columns publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2008.06.013 – volume: 37 start-page: 3444 year: 1998 ident: 10.1016/j.seppur.2023.123717_b0005 article-title: Are thermally coupled distillation columns always thermodynamically more efficient for ternary distillations? publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie980062m – year: 2018 ident: 10.1016/j.seppur.2023.123717_b0205 – volume: 32 start-page: 1101 year: 1940 ident: 10.1016/j.seppur.2023.123717_b0060 article-title: Multicomponent rectification estimation of the number of theoretical plates as a function of the reflux ratio publication-title: Ind. Eng. Chem. doi: 10.1021/ie50368a017 – volume: 106 start-page: 892 year: 2017 ident: 10.1016/j.seppur.2023.123717_b0020 article-title: A generic methodology for processing route synthesis and design based on superstructure optimization publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.01.030 – volume: 59 start-page: 272 year: 2013 ident: 10.1016/j.seppur.2023.123717_b0180 article-title: New multicomponent distillation configurations with simultaneous heat and mass integration publication-title: AIChE J doi: 10.1002/aic.13971 – volume: 20 start-page: 491 year: 1974 ident: 10.1016/j.seppur.2023.123717_b0160 article-title: Synthesis strategies for multicomponent separation systems with energy integration publication-title: AIChE J doi: 10.1002/aic.690200309 – volume: 57 start-page: 7726 year: 2018 ident: 10.1016/j.seppur.2023.123717_b0155 article-title: Short-cut methods versus rigorous methods for performance-evaluation of distillation configurations publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b05214 – ident: 10.1016/j.seppur.2023.123717_b0070 – volume: 23 start-page: 951 year: 1977 ident: 10.1016/j.seppur.2023.123717_b0170 article-title: A combined heuristic and evolutionary strategy for synthesis of simple separation sequences publication-title: AIChE J doi: 10.1002/aic.690230628 – volume: 238 year: 2022 ident: 10.1016/j.seppur.2023.123717_b0150 article-title: State-of-the-art assessment of natural gas liquids recovery processes: Techno-economic evaluation, policy implications, open issues, and the way forward publication-title: Energy doi: 10.1016/j.energy.2021.121684 – ident: 10.1016/j.seppur.2023.123717_b0030 – volume: 133 year: 2020 ident: 10.1016/j.seppur.2023.123717_b0110 article-title: New multicomponent distillation costillation network synthesis using superstructure-based methods publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106650 – volume: 131 year: 2019 ident: 10.1016/j.seppur.2023.123717_b0050 article-title: Mixed-integer optimization of distillation sequences with Aspen Plus: a practical approach publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.106583 – year: 2000 ident: 10.1016/j.seppur.2023.123717_b0055 – volume: 50 start-page: 281 year: 2011 ident: 10.1016/j.seppur.2023.123717_b0095 article-title: A control perspective on process intensification in dividing-wall columns publication-title: Chem. Eng. Process. doi: 10.1016/j.cep.2011.01.011 – volume: 67 start-page: e17328 year: 2021 ident: 10.1016/j.seppur.2023.123717_b0235 article-title: A novel stochastic optimization method to efficiently synthesize large-scale nonsharp distillation systems publication-title: AIChE J doi: 10.1002/aic.17328 – volume: 43 start-page: 525 year: 2012 ident: 10.1016/j.seppur.2023.123717_b0085 article-title: Synthesis of heat-integrated distillation sequence systems publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2012.01.012 – volume: 33 start-page: 405 year: 2016 ident: 10.1016/j.seppur.2023.123717_b0225 article-title: A design procedure for heat-integrated distillation column sequencing of natural gas liquid fractionation processes publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-015-0139-2 – volume: 293 year: 2022 ident: 10.1016/j.seppur.2023.123717_b0115 article-title: Design and control of a comprehensive ethylenediamine (EDA) process with external/internal heat integration publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121137 – volume: 164 year: 2022 ident: 10.1016/j.seppur.2023.123717_b0230 article-title: Simulation-assisted design of a distillation train with simultaneous column and sequence optimization publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107907 – volume: 69 year: 2018 ident: 10.1016/j.seppur.2023.123717_b0185 publication-title: Fast screening of energy and cost efficient intensified distillation processes – volume: 41 start-page: 2844 year: 1949 ident: 10.1016/j.seppur.2023.123717_b0210 article-title: Fractional Distillation of Multicomponent Mixtures publication-title: Ind. Eng. Chem. doi: 10.1021/ie50480a044 – ident: 10.1016/j.seppur.2023.123717_b0035 – volume: 127 start-page: 158 year: 2019 ident: 10.1016/j.seppur.2023.123717_b0240 article-title: Synthesis of simultaneously heat integrated and thermally coupled nonsharp distillation sequences based on stochastic optimization publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.05.028 – volume: 98 start-page: 58 year: 2002 ident: 10.1016/j.seppur.2023.123717_b0165 article-title: Use sustainability metrics to guide decision-making publication-title: Chem. Eng. Prog. – volume: 42 start-page: 5940 year: 2003 ident: 10.1016/j.seppur.2023.123717_b0045 article-title: Thermodynamic analysis of thermally coupled distillation sequences publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie034011n – volume: 39 start-page: 2348 year: 2016 ident: 10.1016/j.seppur.2023.123717_b0075 article-title: Dividing-wall column for fractionation of natural gas liquids in floating liquefied natural gas plants publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201500698 – volume: 147 start-page: 122 year: 2019 ident: 10.1016/j.seppur.2023.123717_b0090 article-title: Process intensification in multicomponent distillation: a review of recent advancements publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2019.04.023 – volume: 180 start-page: 164 year: 2022 ident: 10.1016/j.seppur.2023.123717_b0220 article-title: Retrofit of an industrial solvent recovery system: Distillation sequence intensification and simulation-based optimization publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2022.02.020 – year: 1999 ident: 10.1016/j.seppur.2023.123717_b0175 – volume: 70 start-page: 118 year: 1992 ident: 10.1016/j.seppur.2023.123717_b0190 article-title: The design and optimisation of fully thermally coupled distillation columns publication-title: Trans. IChemE – ident: 10.1016/j.seppur.2023.123717_b0065 doi: 10.1287/opre.2022.2340 – volume: 203 year: 2020 ident: 10.1016/j.seppur.2023.123717_b0105 article-title: Rethinking energy use in distillation processes for a more sustainable chemical industry publication-title: Energy doi: 10.1016/j.energy.2020.117788 – volume: 76 year: 2020 ident: 10.1016/j.seppur.2023.123717_b0200 article-title: Design and optimization of distillation column sequencing for NGL fractionation processes publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2020.103180 – volume: 125 start-page: 166 year: 2017 ident: 10.1016/j.seppur.2023.123717_b0120 article-title: Simultaneous design of separation sequences and whole process energy integration publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2017.07.009 – volume: 28 start-page: 211 year: 1998 ident: 10.1016/j.seppur.2023.123717_b0140 publication-title: Thermodynamically efficient distillation: NGL fractionation – year: 2016 ident: 10.1016/j.seppur.2023.123717_b0100 – volume: 33 start-page: 458 year: 2016 ident: 10.1016/j.seppur.2023.123717_b0135 article-title: Novel retrofit designs using a modified coordinate descent methodology for improving energy efficiency of natural gas liquid fractionation process publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.05.038 |
| SSID | ssj0017182 |
| Score | 2.5226564 |
| Snippet | •Novel effective routes for eco-efficient separation by distillation sequences.•Simultaneous optimization of all design degrees of freedom in distillation... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 123717 |
| SubjectTerms | Distillation sequencing Energy integration Process design Process optimization Process synthesis |
| Title | Synthesis and optimization of energy integrated advanced distillation sequences |
| URI | https://dx.doi.org/10.1016/j.seppur.2023.123717 |
| Volume | 315 |
| WOSCitedRecordID | wos000975068400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3794 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017182 issn: 1383-5866 databaseCode: AIEXJ dateStart: 19970519 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBYhySE9lKZNaPoIOvRWtPgt-biUlDaEpGFT2JvRExJS77LZhOTfd-SRvKYb-gj0YozWsryaz6NvxjMjQj6IyicHiJqlzlSsUBLeuUoWrJAG6LNMbKW7Iq4n_PRUTKf1t-BVuum2E-BtK-7v6_l_FTW0gbB96uw_iLu_KTTAOQgdjiB2OP6V4CcPLZA6X2fE-8RnoBJ-hFxLTwxtzPULVSLMKgrA-Nf9GmPjPvYh1kP2OrFYKTxEMM9vFz7QCBuWaz76ky5Q4DyujR4kl8iWx2bh9crxqKfRswcMaw5BZ4OfetdPl6k2dFJkfsMIhmma6Dlby57plC1Yx6wUVSiFjW2C56D0cOPjqKFzvNWatkfHg0_On8M_HvmBR7ASc8wG_aWO9sQP50cDoysBqw9M5q2MlzWowq3x16Ppcf_xCZbr7iN5fLyYcdmFBa6P9TijGbCUixfkeTAv6BhhsUs2bPuSPBsUnXxFznqAUBAiHQKEzhxFgNAVQGgECB0ChPYA2SPfPx9dfPrCwrYaTAPbXjKTOQV6XJfW5sIYpZUWtUmcTGstpRUWOKiuytxUVqaaq8yaRKdOOW15pl2a75PNdtba14QWylmRqDLJnC5UampVKM1T62rr8pzLA5LHqWl0qDnvtz65bmJw4VWDE9r4CW1wQg8I63vNsebKH67ncdabwBuRDzYAlN_2fPPknm_Jzgrn78jmcnFr35Ntfbe8vFkcBkT9BPcZmgY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+optimization+of+energy+integrated+advanced+distillation+sequences&rft.jtitle=Separation+and+purification+technology&rft.au=Li%2C+Qing&rft.au=Finn%2C+Adrian+J.&rft.au=Doyle%2C+Stephen+J.&rft.au=Smith%2C+Robin&rft.date=2023-06-15&rft.pub=Elsevier+B.V&rft.issn=1383-5866&rft.eissn=1873-3794&rft.volume=315&rft_id=info:doi/10.1016%2Fj.seppur.2023.123717&rft.externalDocID=S1383586623006251 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-5866&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-5866&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-5866&client=summon |