A constitutive model for amorphous thermoplastics from low to high strain rates: Formulation and computational aspects

In this paper, a recently proposed finite strain visco-elastic visco-plastic (three-dimensional) constitutive model is extended to predict the nonlinear response of amorphous polymers from low to high strain rates. The model accounts for the influence of distinct molecular mechanisms, which become a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of plasticity Vol. 169; p. 103712
Main Authors: Carvalho Alves, A. Francisca, Ferreira, Bernardo P., Andrade Pires, F.M.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.10.2023
Subjects:
ISSN:0749-6419
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, a recently proposed finite strain visco-elastic visco-plastic (three-dimensional) constitutive model is extended to predict the nonlinear response of amorphous polymers from low to high strain rates. The model accounts for the influence of distinct molecular mechanisms, which become active at different deformation rates. Therefore, the constitutive equations include two relaxation phenomena to describe the strain rate sensitivity of amorphous polymers. Well-established rheological elements are adopted to define visco-elasticity (generalized Maxwell elements) and visco-plasticity (Eyring dashpots). In addition, strain hardening is modeled with a plasticity-induced (nonlinear) hardening element which is extended to distinguish between the contribution of the two transitions. From a computational viewpoint, a fully implicit integration algorithm is derived, and a highly efficient implementation is obtained. It is shown that it is possible to reduce the return mapping system of equations to only two independent (scalar) nonlinear equations. A four-stage optimization-based calibration procedure is proposed to identify the model’s material parameters in a completely unsupervised way. The predictive capability of the constitutive model is validated against literature results for polycarbonate and poly(methyl methacrylate), accounting for temperature and strain rate dependencies under different loading conditions. The results show that the model can capture the transition in the yield behavior and predict the post-yield large strain behavior over a wide range of strain rates. The efficiency of the calibration procedure and the overall numerical strategy is also demonstrated. Despite the adiabatic conditions observed under high strain rates, the model replicates the associated effect of temperature through strain rate dependency. •A visco-elastic visco-plastic constitutive model is formulated from low to high strain rates.•Two molecular mobility mechanisms are modeled with known rheological elements.•A fully implicit formulation is derived leading to an efficient implementation.•A four-stage optimization-based calibration procedure is proposed.•Excellent agreement with experimental and numerical results for two thermoplastics.
AbstractList In this paper, a recently proposed finite strain visco-elastic visco-plastic (three-dimensional) constitutive model is extended to predict the nonlinear response of amorphous polymers from low to high strain rates. The model accounts for the influence of distinct molecular mechanisms, which become active at different deformation rates. Therefore, the constitutive equations include two relaxation phenomena to describe the strain rate sensitivity of amorphous polymers. Well-established rheological elements are adopted to define visco-elasticity (generalized Maxwell elements) and visco-plasticity (Eyring dashpots). In addition, strain hardening is modeled with a plasticity-induced (nonlinear) hardening element which is extended to distinguish between the contribution of the two transitions. From a computational viewpoint, a fully implicit integration algorithm is derived, and a highly efficient implementation is obtained. It is shown that it is possible to reduce the return mapping system of equations to only two independent (scalar) nonlinear equations. A four-stage optimization-based calibration procedure is proposed to identify the model’s material parameters in a completely unsupervised way. The predictive capability of the constitutive model is validated against literature results for polycarbonate and poly(methyl methacrylate), accounting for temperature and strain rate dependencies under different loading conditions. The results show that the model can capture the transition in the yield behavior and predict the post-yield large strain behavior over a wide range of strain rates. The efficiency of the calibration procedure and the overall numerical strategy is also demonstrated. Despite the adiabatic conditions observed under high strain rates, the model replicates the associated effect of temperature through strain rate dependency. •A visco-elastic visco-plastic constitutive model is formulated from low to high strain rates.•Two molecular mobility mechanisms are modeled with known rheological elements.•A fully implicit formulation is derived leading to an efficient implementation.•A four-stage optimization-based calibration procedure is proposed.•Excellent agreement with experimental and numerical results for two thermoplastics.
ArticleNumber 103712
Author Andrade Pires, F.M.
Carvalho Alves, A. Francisca
Ferreira, Bernardo P.
Author_xml – sequence: 1
  givenname: A. Francisca
  orcidid: 0000-0002-7842-2292
  surname: Carvalho Alves
  fullname: Carvalho Alves, A. Francisca
  organization: DEMec - Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
– sequence: 2
  givenname: Bernardo P.
  orcidid: 0000-0001-5956-3877
  surname: Ferreira
  fullname: Ferreira, Bernardo P.
  organization: School of Engineering, Brown University, 184 Hope St, Providence, RI 02912, United States of America
– sequence: 3
  givenname: F.M.
  orcidid: 0000-0002-4802-6360
  surname: Andrade Pires
  fullname: Andrade Pires, F.M.
  email: fpires@fe.up.pt
  organization: DEMec - Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
BookMark eNqFkL1OwzAURj0UibbwBgx-gRb_pEnTAamqKCAhscBs3dg3xFUSR7ZTxNuTECYGmKxr6XzSOQsya12LhNxwtuaMp7entT11NYS1YEIOXzLjYkbmLEvyVZrw_JIsQjgxxjZbyefkvKfatSHa2Ed7Rto4gzUtnafQON9Vrg80VugbN45GqwMtvWto7T5odLSy7xUN0YNtqYeIYUePzjd9DdG6lkJrhvmm6-P3DTWF0KGO4YpclFAHvP55l-TteP96eFw9vzw8HfbPKy03Iq4Ml9tcgEApDWCBnGsDmUFZmDIBwTg3RnBRFsDRbIqiyLJtViLoVBgp01wuSTLtau9C8FiqztsG_KfiTI291ElNvdTYS029Bmz3C9N2UhhV6__guwnGQexs0augLbYajfWDuzLO_j3wBWa8kdA
CitedBy_id crossref_primary_10_1016_j_compstruct_2025_119220
crossref_primary_10_1016_j_ijplas_2024_104179
crossref_primary_10_1016_j_ijsolstr_2023_112488
crossref_primary_10_3390_polym16121640
crossref_primary_10_1016_j_ijengsci_2025_104322
crossref_primary_10_1007_s00289_024_05631_0
crossref_primary_10_1016_j_cscm_2025_e04438
crossref_primary_10_1016_j_ijengsci_2025_104252
crossref_primary_10_1115_1_4069106
Cites_doi 10.1016/j.compstruc.2023.107007
10.1016/j.ijsolstr.2007.05.018
10.1016/0167-6636(94)00034-E
10.1016/j.ijplas.2022.103262
10.1016/j.matdes.2010.06.039
10.1108/EC-05-2019-0197
10.1016/j.ijsolstr.2016.06.008
10.1016/j.apm.2017.11.003
10.1016/j.compstruc.2018.01.010
10.1007/s10237-004-0055-6
10.1016/0032-3861(65)90056-X
10.1016/j.ijplas.2019.06.003
10.1016/S0022-5096(97)00075-6
10.1016/0167-6636(88)90003-8
10.1016/j.ijplas.2014.10.004
10.1007/s11043-016-9320-1
10.1016/j.ijplas.2019.05.010
10.1002/pen.10832
10.1016/j.ijplas.2012.10.005
10.1023/A:1009720708029
10.3390/polym12122949
10.1016/j.polymer.2014.09.071
10.1007/BF01233145
10.1016/j.ijplas.2019.06.013
10.1016/j.compstruc.2016.01.002
10.1016/j.compstruc.2015.09.001
10.1016/j.engfailanal.2019.01.001
10.1016/j.ijplas.2008.11.005
10.1002/pen.10440
10.1016/j.ijmecsci.2020.105653
10.1016/j.mechmat.2019.04.023
10.1016/j.ijsolstr.2014.03.026
10.1002/pen.23315
10.1002/nme.740
10.1007/BF00545162
10.1016/0045-7825(92)90156-E
10.1002/pen.24842
10.1016/j.ijplas.2023.103556
10.1002/polb.21579
10.1007/s11043-017-9367-7
10.4028/www.scientific.net/AMM.442.125
10.1063/1.1722098
10.1115/1.3564580
10.1016/j.ijmecsci.2012.09.003
10.1002/nme.1620300602
10.1051/epjconf/20122602009
10.1016/S0032-3861(03)00089-2
10.1016/j.polymer.2022.124936
10.1016/j.polymer.2020.122710
10.1016/j.ijplas.2014.04.010
10.1007/BF00366642
10.1007/BF00772717
10.1016/S0045-7825(99)00261-3
10.1016/j.ijplas.2018.11.016
10.1007/s11043-012-9167-z
10.1063/1.1708953
10.1016/j.ijplas.2016.10.008
10.1002/polb.21979
10.1103/PhysRevE.95.063001
10.1016/j.ijsolstr.2005.04.016
10.1016/j.ijplas.2016.12.001
10.1016/j.ijsolstr.2009.08.006
10.1016/j.jmps.2020.104175
10.1016/j.ijplas.2022.103415
10.1016/S0020-7683(97)00217-5
10.1016/j.engfracmech.2021.107535
10.1007/BF00761956
10.1002/mame.201500322
10.1016/j.matdes.2012.02.007
10.1016/j.ijplas.2017.08.001
10.1007/BF00356330
10.1002/polb.1993.090310207
10.1115/1.482784
10.1002/pol.1969.160071010
10.1016/j.ijsolstr.2005.06.040
10.1016/S0167-6636(00)00028-4
10.1016/j.ijplas.2020.102899
10.1016/j.ijplas.2022.103361
10.1016/0749-6419(93)90034-N
10.1016/0921-5093(89)90174-3
10.1007/BF02324146
10.1016/0045-7825(87)90107-1
10.1007/BF01517499
10.1016/j.cma.2022.115528
10.1016/j.ijfatigue.2017.10.006
10.1016/j.ijplas.2018.09.013
10.1002/(SICI)1097-0207(19980530)42:2<289::AID-NME364>3.0.CO;2-9
10.1007/BF00756628
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ijplas.2023.103712
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_ijplas_2023_103712
S0749641923001961
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABDPE
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UNMZH
VH1
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c352t-d13892a2e33daebe11cda7de3bdf4a2011dd212fba1ed5bbb7787feac62d33693
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001147980800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0749-6419
IngestDate Sat Nov 29 07:21:38 EST 2025
Tue Nov 18 21:51:10 EST 2025
Tue Dec 03 03:45:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Visco-plasticity
Strain-rate
Amorphous polymers
Implicit integration algorithm
Finite Element Analysis
Poly(methyl methacrylate)
Calibration
Polycarbonate
Visco-elasticity
Language English
License This is an open access article under the CC BY-NC license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-d13892a2e33daebe11cda7de3bdf4a2011dd212fba1ed5bbb7787feac62d33693
ORCID 0000-0001-5956-3877
0000-0002-4802-6360
0000-0002-7842-2292
OpenAccessLink https://dx.doi.org/10.1016/j.ijplas.2023.103712
ParticipantIDs crossref_primary_10_1016_j_ijplas_2023_103712
crossref_citationtrail_10_1016_j_ijplas_2023_103712
elsevier_sciencedirect_doi_10_1016_j_ijplas_2023_103712
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle International journal of plasticity
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rouainia, Perić (b79) 1998; 42
Haslach (b40) 2005; 3
Holopainen, Barriere, Cheng, Kouhia (b43) 2017; 91
Wendlandt, Tervoort, Suter (b98) 2010; 48
Jiang, Zhu, Zhang, YANG (b47) 2020; 179
Manaia, Pires, de Jesus, Wu (b62) 2019; 97
Varghese, Batra (b92) 2009; 46
Areias, Rabczuk, Vaz, Sardinha, Leite (b4) 2022; 400
Fleischhauer, Dal, Kaliske, Schneider (b31) 2012; 65
Eterovic, Bathe (b27) 1990; 30
Kendall, Siviour (b50) 2012; 26
Okereke, Buckley, Siviour (b71) 2012; 16
Zhang, Montáns (b104) 2019; 113
Mulliken (b68) 2006
Schang, Billon, Muracciole, Fernagut (b81) 1996; 36
Xiao, Tian, Xu, Steinmann (b100) 2022; 156
Kaliske (b49) 2000; 185
Arcan, Hashin, Voloshin (b3) 1978; 18
Bergstrom (b12) 2015
Ree, Eyring (b74) 1955; 26
Wang, Xu, Gao, Zhang, Moumni (b95) 2018; 58
Perić, Owen, Honnor (b72) 1992; 94
Bergström, Boyce (b14) 2000; 32
Bouvard, Francis, Tschopp, Marin, Bammann, Horstemeyer (b15) 2013; 42
Xiao, Ghazaryan, Tervoort, Nguyen (b99) 2017; 95
Lan, Jiang, Wu (b54) 2022; 158
Bauwens, Bauwens-Crowet, Homès (b10) 1969; 7
Hu, Huang, Zhang, Chen (b45) 2013; 442
Roetling (b78) 1965; 6
Treloar (b89) 1975
Malherbe, Vayatis (b61) 2017
Simo, Hughes (b85) 1998
Tervoort (b86) 1996
Bauwens-Crowet (b11) 1973; 8
Foot, Truss, Ward, Duckett (b32) 1987; 22
Mirkhalaf, Andrade Pires, Simoes (b67) 2017; 88
Eyring (b28) 1963
Leonov (b59) 1976; 15
Chen, Li, Yang, Jiang, Guan (b20) 2021; 245
Wang, Zhou, Huang, Zhang, Zhao (b97) 2017; 21
Colak, Cakir (b22) 2019; 135
Lin, Qian, Xie, Wang, Xiao (b60) 2023; 163
Govaert, Engels, Wendlandt, Tervoort, Suter (b34) 2008; 46
Christensen (b21) 2012
Govaert, Timmermans, Brekelmans (b35) 2000; 122
Meißner, Watschke, Winter, Vietor (b65) 2020; 12
Ames, Srivastava, Chester, Anand (b2) 2009; 25
Yu, Yao, Han, Zang, Gu (b102) 2014; 55
Richeton, Ahzi, Vecchio, Jiang, Makradi (b77) 2007; 44
Federico, Bouvard, Combeaud, Billon (b29) 2020; 202
King (b51) 2017
Arruda, Boyce, Jayachandran (b6) 1995; 19
Lee, Liu (b58) 1967; 38
Tervoort, Smit, Brekelmans, Govaert (b87) 1998; 1
Duan, Saigal, Greif, Zimmerman (b25) 2001; 41
G’sell, Jonas (b37) 1979; 14
Mulliken, Boyce (b69) 2006; 43
Wang, Guo, Seppala, Nguyen (b93) 2021; 146
Simo (b84) 1987; 60
Maurel-Pantel, Baquet, Bikard, Bouvard, Billon (b64) 2015; 67
Carvalho Alves, Ferreira, Andrade Pires (b19) 2023
Arruda, Boyce (b5) 1993; 9
de Souza Neto, Perić, Owen (b24) 2008
G’Sell, El Bari, Perez, Cavaille, Johari (b36) 1989; 110
Richeton, Ahzi, Vecchio, Jiang, Adharapurapu (b76) 2006; 43
Mirkhalaf, Andrade Pires, Simoes (b66) 2016; 166
Yu, Yao, Tan, Han (b103) 2016; 301
Shen, Kang, Lam, Liu, Zhou (b82) 2019; 121
Pichler, Lackner, Mang (b73) 2003; 57
Baaijens (b7) 1991; 30
Nguyen, Lani, Pardoen, Morelle, Noels (b70) 2016; 96
Duffo, Monasse, Haudin, G’Sell, Dahoun (b26) 1995; 30
Jiang (b46) 2019; 161–162
Latorre, Montáns (b55) 2016; 163
Haward, Thackray (b41) 1968; 302
Hasan, Boyce, Li, Berko (b39) 1993; 31
Ferreira, Carvalho Alves, Andrade Pires (b30) 2023
Latorre, Montáns (b56) 2018; 55
Barriere, Gabrion, Holopainen (b8) 2019; 122
Cao, Wang, Wang (b18) 2014; 51
Zhang, Nguyen, Segurado, Montáns (b105) 2021; 137
Krairi, Doghri, Schalnat, Robert, Van Paepegem (b53) 2019; 115
Wang, Zhang, Huang, Tang, Wang, Zhou (b96) 2018; 22
Holzapfel (b44) 2000
Crisfield (b23) 1991
Yang, Li, Dong, Ma, He, Zhao, Chen (b101) 2022; 251
Cao, Wang, Wang (b17) 2012; 38
Lee (b57) 1969; 36
Reese, Govindjee (b75) 1998; 35
Safari, Zamani, Ferreira, Guedes (b80) 2013; 53
Bauwens (b9) 1972; 7
Matsubara, Terada, Maeda, Kobayashi, Murata, Sumiyama, Furuichi, Nonomura (b63) 2020; 37
Timmermans (b88) 1997
Johnsen, Clausen, Grytten, Benallal, Hopperstad (b48) 2018; 124
Wang, Peng, Deng, Lai, Fu, Ni (b94) 2019; 122
Gudimetla, Doghri (b38) 2017; 98
Boyce, Parks, Argon (b16) 1988; 7
Aguir, BelHadjSalah, Hambli (b1) 2011; 32
Uchida, Kamimura, Yoshida, Kaneko (b90) 2022; 153
Shojaei, Volgers (b83) 2018; 107
Fotheringham, Cherry, Bauwens-Crowet (b33) 1976; 11
Bergström, Boyce (b13) 1998; 46
van Melick, Govaert, Meijer (b91) 2003; 44
Holopainen, Barriere (b42) 2018; 199
Krairi, Doghri (b52) 2014; 60
Wang (10.1016/j.ijplas.2023.103712_b97) 2017; 21
Tervoort (10.1016/j.ijplas.2023.103712_b86) 1996
Boyce (10.1016/j.ijplas.2023.103712_b16) 1988; 7
Carvalho Alves (10.1016/j.ijplas.2023.103712_b19) 2023
Bauwens (10.1016/j.ijplas.2023.103712_b10) 1969; 7
Xiao (10.1016/j.ijplas.2023.103712_b100) 2022; 156
Yang (10.1016/j.ijplas.2023.103712_b101) 2022; 251
Hasan (10.1016/j.ijplas.2023.103712_b39) 1993; 31
Hu (10.1016/j.ijplas.2023.103712_b45) 2013; 442
Kaliske (10.1016/j.ijplas.2023.103712_b49) 2000; 185
Gudimetla (10.1016/j.ijplas.2023.103712_b38) 2017; 98
Jiang (10.1016/j.ijplas.2023.103712_b47) 2020; 179
Bergstrom (10.1016/j.ijplas.2023.103712_b12) 2015
Okereke (10.1016/j.ijplas.2023.103712_b71) 2012; 16
Govaert (10.1016/j.ijplas.2023.103712_b35) 2000; 122
Krairi (10.1016/j.ijplas.2023.103712_b52) 2014; 60
Mulliken (10.1016/j.ijplas.2023.103712_b68) 2006
Baaijens (10.1016/j.ijplas.2023.103712_b7) 1991; 30
Arruda (10.1016/j.ijplas.2023.103712_b6) 1995; 19
Johnsen (10.1016/j.ijplas.2023.103712_b48) 2018; 124
Xiao (10.1016/j.ijplas.2023.103712_b99) 2017; 95
Bergström (10.1016/j.ijplas.2023.103712_b13) 1998; 46
Krairi (10.1016/j.ijplas.2023.103712_b53) 2019; 115
Maurel-Pantel (10.1016/j.ijplas.2023.103712_b64) 2015; 67
Bergström (10.1016/j.ijplas.2023.103712_b14) 2000; 32
Lan (10.1016/j.ijplas.2023.103712_b54) 2022; 158
Latorre (10.1016/j.ijplas.2023.103712_b55) 2016; 163
Safari (10.1016/j.ijplas.2023.103712_b80) 2013; 53
Holzapfel (10.1016/j.ijplas.2023.103712_b44) 2000
Arruda (10.1016/j.ijplas.2023.103712_b5) 1993; 9
Lee (10.1016/j.ijplas.2023.103712_b58) 1967; 38
Aguir (10.1016/j.ijplas.2023.103712_b1) 2011; 32
Malherbe (10.1016/j.ijplas.2023.103712_b61) 2017
Fleischhauer (10.1016/j.ijplas.2023.103712_b31) 2012; 65
Bauwens (10.1016/j.ijplas.2023.103712_b9) 1972; 7
Latorre (10.1016/j.ijplas.2023.103712_b56) 2018; 55
G’sell (10.1016/j.ijplas.2023.103712_b37) 1979; 14
Mirkhalaf (10.1016/j.ijplas.2023.103712_b66) 2016; 166
Duan (10.1016/j.ijplas.2023.103712_b25) 2001; 41
Eterovic (10.1016/j.ijplas.2023.103712_b27) 1990; 30
Richeton (10.1016/j.ijplas.2023.103712_b77) 2007; 44
Wang (10.1016/j.ijplas.2023.103712_b95) 2018; 58
van Melick (10.1016/j.ijplas.2023.103712_b91) 2003; 44
Bouvard (10.1016/j.ijplas.2023.103712_b15) 2013; 42
Chen (10.1016/j.ijplas.2023.103712_b20) 2021; 245
Richeton (10.1016/j.ijplas.2023.103712_b76) 2006; 43
Leonov (10.1016/j.ijplas.2023.103712_b59) 1976; 15
Zhang (10.1016/j.ijplas.2023.103712_b105) 2021; 137
Yu (10.1016/j.ijplas.2023.103712_b103) 2016; 301
Duffo (10.1016/j.ijplas.2023.103712_b26) 1995; 30
Ames (10.1016/j.ijplas.2023.103712_b2) 2009; 25
Pichler (10.1016/j.ijplas.2023.103712_b73) 2003; 57
Varghese (10.1016/j.ijplas.2023.103712_b92) 2009; 46
Schang (10.1016/j.ijplas.2023.103712_b81) 1996; 36
Wang (10.1016/j.ijplas.2023.103712_b94) 2019; 122
Arcan (10.1016/j.ijplas.2023.103712_b3) 1978; 18
Govaert (10.1016/j.ijplas.2023.103712_b34) 2008; 46
King (10.1016/j.ijplas.2023.103712_b51) 2017
Perić (10.1016/j.ijplas.2023.103712_b72) 1992; 94
Matsubara (10.1016/j.ijplas.2023.103712_b63) 2020; 37
Mulliken (10.1016/j.ijplas.2023.103712_b69) 2006; 43
Wang (10.1016/j.ijplas.2023.103712_b93) 2021; 146
Areias (10.1016/j.ijplas.2023.103712_b4) 2022; 400
Eyring (10.1016/j.ijplas.2023.103712_b28) 1963
Yu (10.1016/j.ijplas.2023.103712_b102) 2014; 55
Federico (10.1016/j.ijplas.2023.103712_b29) 2020; 202
Simo (10.1016/j.ijplas.2023.103712_b85) 1998
Haslach (10.1016/j.ijplas.2023.103712_b40) 2005; 3
Treloar (10.1016/j.ijplas.2023.103712_b89) 1975
Nguyen (10.1016/j.ijplas.2023.103712_b70) 2016; 96
Wang (10.1016/j.ijplas.2023.103712_b96) 2018; 22
Simo (10.1016/j.ijplas.2023.103712_b84) 1987; 60
Ferreira (10.1016/j.ijplas.2023.103712_b30) 2023
Ree (10.1016/j.ijplas.2023.103712_b74) 1955; 26
Shojaei (10.1016/j.ijplas.2023.103712_b83) 2018; 107
Shen (10.1016/j.ijplas.2023.103712_b82) 2019; 121
Rouainia (10.1016/j.ijplas.2023.103712_b79) 1998; 42
Holopainen (10.1016/j.ijplas.2023.103712_b42) 2018; 199
Holopainen (10.1016/j.ijplas.2023.103712_b43) 2017; 91
Zhang (10.1016/j.ijplas.2023.103712_b104) 2019; 113
Haward (10.1016/j.ijplas.2023.103712_b41) 1968; 302
Kendall (10.1016/j.ijplas.2023.103712_b50) 2012; 26
Foot (10.1016/j.ijplas.2023.103712_b32) 1987; 22
Lin (10.1016/j.ijplas.2023.103712_b60) 2023; 163
Timmermans (10.1016/j.ijplas.2023.103712_b88) 1997
Meißner (10.1016/j.ijplas.2023.103712_b65) 2020; 12
Barriere (10.1016/j.ijplas.2023.103712_b8) 2019; 122
Bauwens-Crowet (10.1016/j.ijplas.2023.103712_b11) 1973; 8
Christensen (10.1016/j.ijplas.2023.103712_b21) 2012
Lee (10.1016/j.ijplas.2023.103712_b57) 1969; 36
Crisfield (10.1016/j.ijplas.2023.103712_b23) 1991
G’Sell (10.1016/j.ijplas.2023.103712_b36) 1989; 110
Manaia (10.1016/j.ijplas.2023.103712_b62) 2019; 97
Jiang (10.1016/j.ijplas.2023.103712_b46) 2019; 161–162
Cao (10.1016/j.ijplas.2023.103712_b17) 2012; 38
Cao (10.1016/j.ijplas.2023.103712_b18) 2014; 51
Roetling (10.1016/j.ijplas.2023.103712_b78) 1965; 6
de Souza Neto (10.1016/j.ijplas.2023.103712_b24) 2008
Tervoort (10.1016/j.ijplas.2023.103712_b87) 1998; 1
Colak (10.1016/j.ijplas.2023.103712_b22) 2019; 135
Fotheringham (10.1016/j.ijplas.2023.103712_b33) 1976; 11
Uchida (10.1016/j.ijplas.2023.103712_b90) 2022; 153
Reese (10.1016/j.ijplas.2023.103712_b75) 1998; 35
Wendlandt (10.1016/j.ijplas.2023.103712_b98) 2010; 48
Mirkhalaf (10.1016/j.ijplas.2023.103712_b67) 2017; 88
References_xml – year: 2000
  ident: b44
  article-title: Nonlinear Solid Mechanics: A Continuum Approach for Engineering
– volume: 442
  start-page: 125
  year: 2013
  end-page: 128
  ident: b45
  article-title: Compression tests of polycarbonate under quasi-static and dynamic loading
  publication-title: Appl. Mech. Mater.
– volume: 202
  year: 2020
  ident: b29
  article-title: Modelling strain rate and temperature dependent mechanical response of PMMAs at large deformation from below to above Tg
  publication-title: Polymer
– volume: 43
  start-page: 2318
  year: 2006
  end-page: 2335
  ident: b76
  article-title: Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress
  publication-title: Int. J. Solids Struct.
– year: 2017
  ident: b51
  article-title: A global optimization algorithm worth using
– volume: 153
  year: 2022
  ident: b90
  article-title: Viscoelastic-viscoplastic modeling of epoxy based on transient network theory
  publication-title: Int. J. Plast.
– volume: 11
  start-page: 1368
  year: 1976
  end-page: 1371
  ident: b33
  article-title: Comment on “the compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates”
  publication-title: J. Mater. Sci.
– volume: 37
  start-page: 1703
  year: 2020
  end-page: 1735
  ident: b63
  article-title: Viscoelastic-viscoplastic combined constitutive model for glassy amorphous polymers under loading/unloading/no-load states
  publication-title: Eng. Comput.
– volume: 1
  start-page: 269
  year: 1998
  end-page: 291
  ident: b87
  article-title: A constitutive equation for the elasto-viscoplastic deformation of glassy polymers
  publication-title: Mech. Time Depend. Mater.
– volume: 161–162
  year: 2019
  ident: b46
  article-title: Finite deformation constitutive model for macro-yield behavior of amorphous glassy polymers with a molecular entanglement-based internal-state variable
  publication-title: Int. J. Mech. Sci.
– volume: 26
  start-page: 793
  year: 1955
  end-page: 800
  ident: b74
  article-title: Theory of non-Newtonian flow. I. Solid plastic system
  publication-title: J. Appl. Phys.
– volume: 251
  year: 2022
  ident: b101
  article-title: Temperature and strain rate sensitivity of yield strength of amorphous polymers: Characterization and modeling
  publication-title: Polymer
– year: 1991
  ident: b23
  article-title: Non-Linear Finite Element Analysis of Solids and Structures
– year: 1997
  ident: b88
  article-title: Evaluation of a Constitutive Model for Solid Polymeric Materials: Model Selection and Parameter Quantification
– volume: 301
  start-page: 469
  year: 2016
  end-page: 485
  ident: b103
  article-title: A macro-Damaged viscoelastoplastic model for thermomechanical and rate-Dependent behavior of glassy polymers
  publication-title: Macromol. Mater. Eng.
– volume: 30
  start-page: 284
  year: 1991
  end-page: 299
  ident: b7
  article-title: Calculation of residual stresses in injection molded products
  publication-title: Rheol. Acta
– volume: 36
  start-page: 541
  year: 1996
  end-page: 550
  ident: b81
  article-title: Mechanical behavior of a ductile polyamide 12 during impact
  publication-title: Polym. Eng. Sci.
– volume: 16
  start-page: 361
  year: 2012
  end-page: 379
  ident: b71
  article-title: Compression of polypropylene across a wide range of strain rates
  publication-title: Mech. Time Depend. Mater.
– volume: 30
  start-page: 1099
  year: 1990
  end-page: 1114
  ident: b27
  article-title: A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 42
  start-page: 168
  year: 2013
  end-page: 193
  ident: b15
  article-title: An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation
  publication-title: Int. J. Plast.
– volume: 7
  start-page: 15
  year: 1988
  end-page: 33
  ident: b16
  article-title: Large inelastic deformation of glassy polymers. Part I: Rate dependent constitutive model
  publication-title: Mech. Mater.
– volume: 46
  start-page: 2475
  year: 2008
  end-page: 2481
  ident: b34
  article-title: Does the strain hardening modulus of glassy polymers scale with the flow stress?
  publication-title: J. Polym. Sci. B Polym. Phys.
– volume: 96
  start-page: 192
  year: 2016
  end-page: 216
  ident: b70
  article-title: A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers
  publication-title: Int. J. Solids Struct.
– volume: 98
  start-page: 197
  year: 2017
  end-page: 216
  ident: b38
  article-title: A finite strain thermodynamically-based constitutive framework coupling viscoelasticity and viscoplasticity with application to glassy polymers
  publication-title: Int. J. Plast.
– volume: 43
  start-page: 1331
  year: 2006
  end-page: 1356
  ident: b69
  article-title: Mechanics of the rate-dependent elastic– Plastic deformation of glassy polymers from low to high strain rates
  publication-title: Int. J. Solids Struct.
– volume: 32
  start-page: 627
  year: 2000
  end-page: 644
  ident: b14
  article-title: Large strain time-dependent behaviour of filled elastomers
  publication-title: Mech. Mater.
– volume: 46
  start-page: 4079
  year: 2009
  end-page: 4094
  ident: b92
  article-title: Constitutive equations for thermomechanical deformations of glassy polymers
  publication-title: Int. J. Solids Struct.
– volume: 12
  start-page: 2949
  year: 2020
  ident: b65
  article-title: Artificial neural networks-based material parameter identification for numerical simulations of additively manufactured parts by material extrusion
  publication-title: Polymers
– volume: 44
  start-page: 7938
  year: 2007
  end-page: 7954
  ident: b77
  article-title: Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates
  publication-title: Int. J. Solids Struct.
– volume: 38
  start-page: 19
  year: 1967
  end-page: 27
  ident: b58
  article-title: Finite-Strain elastic–Plastic theory with application to plane-wave analysis
  publication-title: J. Appl. Phys.
– volume: 35
  start-page: 3455
  year: 1998
  end-page: 3482
  ident: b75
  article-title: A theory of finite viscoelasticity and numerical aspects
  publication-title: Int. J. Solids Struct.
– volume: 60
  start-page: 163
  year: 2014
  end-page: 181
  ident: b52
  article-title: A thermodynamically-based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage
  publication-title: Int. J. Plast.
– year: 2023
  ident: b19
  article-title: Constitutive modeling of amorphous thermoplastics from low to high strain rates: Formulation and critical comparison employing an optimization-based parameter identification
  publication-title: Int. J. Solids Struct.
– year: 2012
  ident: b21
  article-title: Theory of Viscoelasticity: An Introduction
– volume: 31
  start-page: 185
  year: 1993
  end-page: 197
  ident: b39
  article-title: An investigation of the yield and postyield behavior and corresponding structure of poly(methyl methacrylate)
  publication-title: J. Polym. Sci. B Polym. Phys.
– year: 2006
  ident: b68
  article-title: Mechanics of Amorphous Polymers and Polymer Nanocomposites during High Rate Deformation
– volume: 3
  start-page: 172
  year: 2005
  end-page: 189
  ident: b40
  article-title: Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue
  publication-title: Biomech. Model. Mechanobiol.
– volume: 124
  year: 2018
  ident: b48
  article-title: A thermo-elasto-viscoplastic constitutive model for polymers
  publication-title: J. Mech. Phys. Solids
– volume: 122
  year: 2000
  ident: b35
  article-title: The influence of intrinsic strain softening on strain localization in polycarbonate: Modeling and experimental validation
  publication-title: J. Eng. Mater. Technol. Trans. ASME
– volume: 245
  year: 2021
  ident: b20
  article-title: Efficient parameters identification of a modified GTN model of ductile fracture using machine learning
  publication-title: Eng. Fract. Mech.
– volume: 32
  start-page: 48
  year: 2011
  end-page: 53
  ident: b1
  article-title: Parameter identification of an elasto-plastic behaviour using artificial neural networks–genetic algorithm method
  publication-title: Mater. Des.
– volume: 38
  start-page: 53
  year: 2012
  end-page: 58
  ident: b17
  article-title: Effects of strain rate and temperature on the tension behavior of polycarbonate
  publication-title: Mater. Des.
– volume: 48
  start-page: 1464
  year: 2010
  end-page: 1472
  ident: b98
  article-title: Strain-hardening modulus of cross-linked glassy poly(methyl methacrylate)
  publication-title: J. Polym. Sci. B Polym. Phys.
– volume: 55
  start-page: 6577
  year: 2014
  end-page: 6593
  ident: b102
  article-title: A visco-elastoplastic constitutive model for large deformation response of polycarbonate over a wide range of strain rates and temperatures
  publication-title: Polymer
– year: 1996
  ident: b86
  article-title: Constitutive Modelling of Polymer Glasses: Finite, Nonlinear Viscoelastic Behaviour of Polycarbonate
– volume: 58
  start-page: 2237
  year: 2018
  end-page: 2248
  ident: b95
  article-title: A 3D thermomechanical constitutive model for polycarbonate and its application in ballistic simulation
  publication-title: Polym. Eng. Sci.
– volume: 122
  start-page: 31
  year: 2019
  end-page: 48
  ident: b8
  article-title: A compact constitutive model to describe the viscoelastic-plastic behaviour of glassy polymers: Comparison with monotonic and cyclic experiments and state-of-the-art models
  publication-title: Int. J. Plast.
– year: 1998
  ident: b85
  publication-title: Computational Inelasticity
– volume: 19
  start-page: 193
  year: 1995
  end-page: 212
  ident: b6
  article-title: Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers
  publication-title: Mech. Mater.
– volume: 115
  start-page: 154
  year: 2019
  end-page: 177
  ident: b53
  article-title: Thermo-mechanical coupling of a viscoelastic-viscoplastic model for thermoplastic polymers: Thermodynamical derivation and experimental assessment
  publication-title: Int. J. Plast.
– volume: 55
  start-page: 716
  year: 2018
  end-page: 740
  ident: b56
  article-title: A new class of plastic flow evolution equations for anisotropic multiplicative elastoplasticity based on the notion of a corrector elastic strain rate
  publication-title: Appl. Math. Model.
– year: 1975
  ident: b89
  publication-title: The Physics of Rubber Elasticity
– volume: 7
  start-page: 577
  year: 1972
  end-page: 584
  ident: b9
  article-title: Relation between the compression yield stress and the mechanical loss peak of bisphenol-a-polycarbonate in the
  publication-title: J. Mater. Sci.
– volume: 158
  year: 2022
  ident: b54
  article-title: A thermodynamically-based constitutive theory for amorphous glassy polymers at finite deformations
  publication-title: Int. J. Plast.
– volume: 60
  start-page: 153
  year: 1987
  end-page: 173
  ident: b84
  article-title: On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 156
  year: 2022
  ident: b100
  article-title: Thermomechanical coupling in glassy polymers: An effective temperature theory
  publication-title: Int. J. Plast.
– volume: 135
  year: 2019
  ident: b22
  article-title: Material model parameter estimation with genetic algorithm optimization method and modeling of strain and temperature dependent behavior of epoxy resin with cooperative-VBO model
  publication-title: Mech. Mater.
– volume: 107
  start-page: 33
  year: 2018
  end-page: 39
  ident: b83
  article-title: A coupled hyperelastic-plastic-continuum damage model for studying cyclic behavior of unfilled engineering polymers
  publication-title: Int. J. Fatigue
– volume: 6
  start-page: 615
  year: 1965
  end-page: 619
  ident: b78
  article-title: Yield stress behaviour of poly(ethyl methacrylate) in the glass transition region
  publication-title: Polymer
– volume: 21
  year: 2017
  ident: b97
  article-title: Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures
  publication-title: Mech. Time Depend. Mater.
– volume: 95
  year: 2017
  ident: b99
  article-title: Modeling energy storage and structural evolution during finite viscoplastic deformation of glassy polymers
  publication-title: Phys. Rev. E
– volume: 18
  start-page: 141
  year: 1978
  end-page: 146
  ident: b3
  article-title: A method to produce uniform plane-stress states with applications to fiber-reinforced materials
  publication-title: Exp. Mech.
– volume: 51
  start-page: 2539
  year: 2014
  end-page: 2548
  ident: b18
  article-title: Experimental investigation and modeling of the tension behavior of polycarbonate with temperature effects from low to high strain rates
  publication-title: Int. J. Solids Struct.
– volume: 53
  start-page: 752
  year: 2013
  end-page: 761
  ident: b80
  article-title: Constitutive modeling of polycarbonate during high strain rate deformation
  publication-title: Polym. Eng. Sci.
– volume: 94
  start-page: 35
  year: 1992
  end-page: 61
  ident: b72
  article-title: A model for finite strain elasto-plasticity based on logarithmic strains: Computational issues
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 22
  start-page: 1437
  year: 1987
  end-page: 1442
  ident: b32
  article-title: The yield behaviour of amorphous polyethylene terephthalate: An activated rate theory approach
  publication-title: J. Mater. Sci.
– volume: 137
  year: 2021
  ident: b105
  article-title: A multiplicative finite strain crystal plasticity formulation based on additive elastic corrector rates: Theory and numerical implementation
  publication-title: Int. J. Plast.
– volume: 22
  year: 2018
  ident: b96
  article-title: Establishment and comparison of four constitutive relationships of PC/ABS from low to high uniaxial strain rates
  publication-title: Mech. Time Depend. Mater.
– volume: 400
  year: 2022
  ident: b4
  article-title: A consistent algorithm for finite-strain visco-hyperelasticity and visco-plasticity of amorphous polymers
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 185
  start-page: 225
  year: 2000
  end-page: 243
  ident: b49
  article-title: A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 30
  start-page: 701
  year: 1995
  end-page: 711
  ident: b26
  article-title: Rheology of polypropylene in the solid state
  publication-title: J. Mater. Sci.
– volume: 91
  start-page: 109
  year: 2017
  end-page: 133
  ident: b43
  article-title: Continuum approach for modeling fatigue in amorphous glassy polymers. Applications to the investigation of damage-ratcheting interaction in polycarbonate
  publication-title: Int. J. Plast.
– volume: 15
  start-page: 85
  year: 1976
  end-page: 98
  ident: b59
  article-title: Nonequilibrium thermodynamics and rheology of viscoelastic polymer media
  publication-title: Rheol. Acta
– volume: 67
  start-page: 102
  year: 2015
  end-page: 126
  ident: b64
  article-title: A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66
  publication-title: Int. J. Plast.
– volume: 163
  start-page: 56
  year: 2016
  end-page: 70
  ident: b55
  article-title: Fully anisotropic finite strain viscoelasticity based on a reverse multiplicative decomposition and logarithmic strains
  publication-title: Comput. Struct.
– volume: 44
  start-page: 3579
  year: 2003
  end-page: 3591
  ident: b91
  article-title: Localisation phenomena in glassy polymers: Influence of thermal and mechanical history
  publication-title: Polymer
– year: 2008
  ident: b24
  article-title: Computational Methods for Plasticity
– volume: 121
  start-page: 227
  year: 2019
  end-page: 243
  ident: b82
  article-title: Thermo-elastic-viscoplastic-damage model for self-heating and mechanical behavior of thermoplastic polymers
  publication-title: Int. J. Plast.
– volume: 25
  start-page: 1495
  year: 2009
  end-page: 1539
  ident: b2
  article-title: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications
  publication-title: Int. J. Plast.
– year: 2023
  ident: b30
  article-title: An efficient finite strain constitutive model for amorphous thermoplastics: fully implicit computational implementation and optimization-based parameter calibration
  publication-title: Comput. Struct.
– volume: 166
  start-page: 60
  year: 2016
  end-page: 74
  ident: b66
  article-title: An elasto-viscoplastic constitutive model for polymers at finite strains: Formulation and computational aspects
  publication-title: Comput. Struct.
– volume: 97
  start-page: 331
  year: 2019
  end-page: 353
  ident: b62
  article-title: Yield behaviour of high-density polyethylene: Experimental and numerical characterization
  publication-title: Eng. Fail. Anal.
– year: 2015
  ident: b12
  article-title: Mechanics of Solid Polymers: Theory and Computational Modeling
– start-page: 283
  year: 1963
  end-page: 291
  ident: b28
  article-title: Viscosity, plasticity, and diffusion as examples of absolute reaction rates
  publication-title: J. Chem. Phys.
– volume: 179
  year: 2020
  ident: b47
  article-title: Constitutive modeling of the rate- and temperature-dependent macro-yield behavior of amorphous glassy polymers
  publication-title: Int. J. Mech. Sci.
– volume: 7
  start-page: 1745
  year: 1969
  end-page: 1754
  ident: b10
  article-title: Tensile yield-stress behavior of poly(vinyl chloride) and polycarbonate in the glass transition region
  publication-title: J. Polym. Sci. A-2: Polym. Phys.
– volume: 199
  start-page: 57
  year: 2018
  end-page: 73
  ident: b42
  article-title: Modeling of mechanical behavior of amorphous solids undergoing fatigue loadings, with application to polymers
  publication-title: Comput. Struct.
– volume: 57
  start-page: 1943
  year: 2003
  end-page: 1978
  ident: b73
  article-title: Back analysis of model parameters in geotechnical engineering by means of soft computing
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 88
  start-page: 159
  year: 2017
  end-page: 187
  ident: b67
  article-title: Modelling of the post yield response of amorphous polymers under different stress states
  publication-title: Int. J. Plast.
– volume: 122
  start-page: 135
  year: 2019
  end-page: 163
  ident: b94
  article-title: A finite strain thermodynamically-based constitutive modeling and analysis of viscoelastic-viscoplastic deformation behavior of glassy polymers
  publication-title: Int. J. Plast.
– volume: 65
  start-page: 48
  year: 2012
  end-page: 63
  ident: b31
  article-title: A constitutive model for finite deformation of amorphous polymers
  publication-title: Int. J. Mech. Sci.
– volume: 42
  start-page: 289
  year: 1998
  end-page: 311
  ident: b79
  article-title: A computational model for elasto-viscoplastic solids at finite strain with reference to thin shell applications
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 302
  start-page: 453
  year: 1968
  end-page: 472
  ident: b41
  article-title: The use of a mathematical model to describe isothermal stress-Strain curves in glassy thermoplastics
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 113
  start-page: 185
  year: 2019
  end-page: 217
  ident: b104
  article-title: A simple formulation for large-strain cyclic hyperelasto-plasticity using elastic correctors. Theory and algorithmic implementation
  publication-title: Int. J. Plast.
– volume: 146
  year: 2021
  ident: b93
  article-title: Extending the effective temperature model to the large strain hardening behavior of glassy polymers
  publication-title: J. Mech. Phys. Solids
– volume: 9
  start-page: 697
  year: 1993
  end-page: 720
  ident: b5
  article-title: Evolution of plastic anisotropy in amorphous polymers during finite straining
  publication-title: Int. J. Plast.
– volume: 26
  year: 2012
  ident: b50
  article-title: Strain rate dependence in plasticized and un-plasticized PVC
  publication-title: EPJ Web Conf.
– volume: 46
  start-page: 931
  year: 1998
  end-page: 954
  ident: b13
  article-title: Constitutive modeling of the large strain time-dependent behavior of elastomers
  publication-title: J. Mech. Phys. Solids
– volume: 14
  start-page: 583
  year: 1979
  end-page: 591
  ident: b37
  article-title: Determination of the plastic behaviour of solid polymers at constant true strain rate
  publication-title: J. Mater. Sci.
– start-page: 2314
  year: 2017
  end-page: 2323
  ident: b61
  article-title: Global optimization of Lipschitz functions
  publication-title: Proceedings of the 34th International Conference on Machine Learning - Volume 70
– volume: 36
  start-page: 1
  year: 1969
  end-page: 6
  ident: b57
  article-title: Elastic-Plastic deformation at finite strains
  publication-title: J. Appl. Mech.
– volume: 163
  year: 2023
  ident: b60
  article-title: A mean-field shear transformation zone theory for amorphous polymers
  publication-title: Int. J. Plast.
– volume: 8
  start-page: 968
  year: 1973
  end-page: 979
  ident: b11
  article-title: The compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates
  publication-title: J. Mater. Sci.
– volume: 110
  start-page: 223
  year: 1989
  end-page: 229
  ident: b36
  article-title: Effect of plastic deformation on the microstructure and properties of amorphous polycarbonate
  publication-title: Mater. Sci. Eng. A
– volume: 41
  start-page: 1322
  year: 2001
  end-page: 1328
  ident: b25
  article-title: A uniform phenomenological constitutive model for glassy and semicrystalline polymers
  publication-title: Polym. Eng. Sci.
– year: 2023
  ident: 10.1016/j.ijplas.2023.103712_b30
  article-title: An efficient finite strain constitutive model for amorphous thermoplastics: fully implicit computational implementation and optimization-based parameter calibration
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2023.107007
– volume: 44
  start-page: 7938
  issue: 24
  year: 2007
  ident: 10.1016/j.ijplas.2023.103712_b77
  article-title: Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2007.05.018
– volume: 19
  start-page: 193
  issue: 2
  year: 1995
  ident: 10.1016/j.ijplas.2023.103712_b6
  article-title: Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers
  publication-title: Mech. Mater.
  doi: 10.1016/0167-6636(94)00034-E
– volume: 153
  year: 2022
  ident: 10.1016/j.ijplas.2023.103712_b90
  article-title: Viscoelastic-viscoplastic modeling of epoxy based on transient network theory
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2022.103262
– volume: 32
  start-page: 48
  issue: 1
  year: 2011
  ident: 10.1016/j.ijplas.2023.103712_b1
  article-title: Parameter identification of an elasto-plastic behaviour using artificial neural networks–genetic algorithm method
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2010.06.039
– volume: 37
  start-page: 1703
  issue: 5
  year: 2020
  ident: 10.1016/j.ijplas.2023.103712_b63
  article-title: Viscoelastic-viscoplastic combined constitutive model for glassy amorphous polymers under loading/unloading/no-load states
  publication-title: Eng. Comput.
  doi: 10.1108/EC-05-2019-0197
– volume: 96
  start-page: 192
  year: 2016
  ident: 10.1016/j.ijplas.2023.103712_b70
  article-title: A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2016.06.008
– year: 2000
  ident: 10.1016/j.ijplas.2023.103712_b44
– volume: 55
  start-page: 716
  year: 2018
  ident: 10.1016/j.ijplas.2023.103712_b56
  article-title: A new class of plastic flow evolution equations for anisotropic multiplicative elastoplasticity based on the notion of a corrector elastic strain rate
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2017.11.003
– year: 2006
  ident: 10.1016/j.ijplas.2023.103712_b68
– volume: 199
  start-page: 57
  year: 2018
  ident: 10.1016/j.ijplas.2023.103712_b42
  article-title: Modeling of mechanical behavior of amorphous solids undergoing fatigue loadings, with application to polymers
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2018.01.010
– volume: 3
  start-page: 172
  issue: 3
  year: 2005
  ident: 10.1016/j.ijplas.2023.103712_b40
  article-title: Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-004-0055-6
– volume: 6
  start-page: 615
  issue: 11
  year: 1965
  ident: 10.1016/j.ijplas.2023.103712_b78
  article-title: Yield stress behaviour of poly(ethyl methacrylate) in the glass transition region
  publication-title: Polymer
  doi: 10.1016/0032-3861(65)90056-X
– volume: 121
  start-page: 227
  year: 2019
  ident: 10.1016/j.ijplas.2023.103712_b82
  article-title: Thermo-elastic-viscoplastic-damage model for self-heating and mechanical behavior of thermoplastic polymers
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.06.003
– volume: 46
  start-page: 931
  issue: 5
  year: 1998
  ident: 10.1016/j.ijplas.2023.103712_b13
  article-title: Constitutive modeling of the large strain time-dependent behavior of elastomers
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(97)00075-6
– volume: 7
  start-page: 15
  issue: 1
  year: 1988
  ident: 10.1016/j.ijplas.2023.103712_b16
  article-title: Large inelastic deformation of glassy polymers. Part I: Rate dependent constitutive model
  publication-title: Mech. Mater.
  doi: 10.1016/0167-6636(88)90003-8
– volume: 67
  start-page: 102
  year: 2015
  ident: 10.1016/j.ijplas.2023.103712_b64
  article-title: A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2014.10.004
– volume: 21
  year: 2017
  ident: 10.1016/j.ijplas.2023.103712_b97
  article-title: Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures
  publication-title: Mech. Time Depend. Mater.
  doi: 10.1007/s11043-016-9320-1
– volume: 122
  start-page: 31
  year: 2019
  ident: 10.1016/j.ijplas.2023.103712_b8
  article-title: A compact constitutive model to describe the viscoelastic-plastic behaviour of glassy polymers: Comparison with monotonic and cyclic experiments and state-of-the-art models
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.05.010
– volume: 41
  start-page: 1322
  issue: 8
  year: 2001
  ident: 10.1016/j.ijplas.2023.103712_b25
  article-title: A uniform phenomenological constitutive model for glassy and semicrystalline polymers
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.10832
– volume: 42
  start-page: 168
  year: 2013
  ident: 10.1016/j.ijplas.2023.103712_b15
  article-title: An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2012.10.005
– volume: 1
  start-page: 269
  issue: 3
  year: 1998
  ident: 10.1016/j.ijplas.2023.103712_b87
  article-title: A constitutive equation for the elasto-viscoplastic deformation of glassy polymers
  publication-title: Mech. Time Depend. Mater.
  doi: 10.1023/A:1009720708029
– volume: 12
  start-page: 2949
  year: 2020
  ident: 10.1016/j.ijplas.2023.103712_b65
  article-title: Artificial neural networks-based material parameter identification for numerical simulations of additively manufactured parts by material extrusion
  publication-title: Polymers
  doi: 10.3390/polym12122949
– volume: 55
  start-page: 6577
  issue: 25
  year: 2014
  ident: 10.1016/j.ijplas.2023.103712_b102
  article-title: A visco-elastoplastic constitutive model for large deformation response of polycarbonate over a wide range of strain rates and temperatures
  publication-title: Polymer
  doi: 10.1016/j.polymer.2014.09.071
– volume: 22
  start-page: 1437
  year: 1987
  ident: 10.1016/j.ijplas.2023.103712_b32
  article-title: The yield behaviour of amorphous polyethylene terephthalate: An activated rate theory approach
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF01233145
– volume: 122
  start-page: 135
  year: 2019
  ident: 10.1016/j.ijplas.2023.103712_b94
  article-title: A finite strain thermodynamically-based constitutive modeling and analysis of viscoelastic-viscoplastic deformation behavior of glassy polymers
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2019.06.013
– volume: 166
  start-page: 60
  year: 2016
  ident: 10.1016/j.ijplas.2023.103712_b66
  article-title: An elasto-viscoplastic constitutive model for polymers at finite strains: Formulation and computational aspects
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.01.002
– volume: 163
  start-page: 56
  year: 2016
  ident: 10.1016/j.ijplas.2023.103712_b55
  article-title: Fully anisotropic finite strain viscoelasticity based on a reverse multiplicative decomposition and logarithmic strains
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2015.09.001
– volume: 97
  start-page: 331
  year: 2019
  ident: 10.1016/j.ijplas.2023.103712_b62
  article-title: Yield behaviour of high-density polyethylene: Experimental and numerical characterization
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2019.01.001
– volume: 25
  start-page: 1495
  issue: 8
  year: 2009
  ident: 10.1016/j.ijplas.2023.103712_b2
  article-title: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2008.11.005
– year: 2012
  ident: 10.1016/j.ijplas.2023.103712_b21
– volume: 36
  start-page: 541
  issue: 4
  year: 1996
  ident: 10.1016/j.ijplas.2023.103712_b81
  article-title: Mechanical behavior of a ductile polyamide 12 during impact
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.10440
– volume: 179
  year: 2020
  ident: 10.1016/j.ijplas.2023.103712_b47
  article-title: Constitutive modeling of the rate- and temperature-dependent macro-yield behavior of amorphous glassy polymers
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.105653
– volume: 161–162
  year: 2019
  ident: 10.1016/j.ijplas.2023.103712_b46
  article-title: Finite deformation constitutive model for macro-yield behavior of amorphous glassy polymers with a molecular entanglement-based internal-state variable
  publication-title: Int. J. Mech. Sci.
– volume: 135
  year: 2019
  ident: 10.1016/j.ijplas.2023.103712_b22
  article-title: Material model parameter estimation with genetic algorithm optimization method and modeling of strain and temperature dependent behavior of epoxy resin with cooperative-VBO model
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2019.04.023
– volume: 51
  start-page: 2539
  issue: 13
  year: 2014
  ident: 10.1016/j.ijplas.2023.103712_b18
  article-title: Experimental investigation and modeling of the tension behavior of polycarbonate with temperature effects from low to high strain rates
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2014.03.026
– volume: 53
  start-page: 752
  issue: 4
  year: 2013
  ident: 10.1016/j.ijplas.2023.103712_b80
  article-title: Constitutive modeling of polycarbonate during high strain rate deformation
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.23315
– year: 2023
  ident: 10.1016/j.ijplas.2023.103712_b19
  article-title: Constitutive modeling of amorphous thermoplastics from low to high strain rates: Formulation and critical comparison employing an optimization-based parameter identification
  publication-title: Int. J. Solids Struct.
– volume: 57
  start-page: 1943
  year: 2003
  ident: 10.1016/j.ijplas.2023.103712_b73
  article-title: Back analysis of model parameters in geotechnical engineering by means of soft computing
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.740
– volume: 11
  start-page: 1368
  year: 1976
  ident: 10.1016/j.ijplas.2023.103712_b33
  article-title: Comment on “the compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates”
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00545162
– volume: 94
  start-page: 35
  issue: 1
  year: 1992
  ident: 10.1016/j.ijplas.2023.103712_b72
  article-title: A model for finite strain elasto-plasticity based on logarithmic strains: Computational issues
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(92)90156-E
– volume: 58
  start-page: 2237
  issue: 12
  year: 2018
  ident: 10.1016/j.ijplas.2023.103712_b95
  article-title: A 3D thermomechanical constitutive model for polycarbonate and its application in ballistic simulation
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.24842
– volume: 163
  year: 2023
  ident: 10.1016/j.ijplas.2023.103712_b60
  article-title: A mean-field shear transformation zone theory for amorphous polymers
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2023.103556
– volume: 46
  start-page: 2475
  issue: 22
  year: 2008
  ident: 10.1016/j.ijplas.2023.103712_b34
  article-title: Does the strain hardening modulus of glassy polymers scale with the flow stress?
  publication-title: J. Polym. Sci. B Polym. Phys.
  doi: 10.1002/polb.21579
– volume: 22
  year: 2018
  ident: 10.1016/j.ijplas.2023.103712_b96
  article-title: Establishment and comparison of four constitutive relationships of PC/ABS from low to high uniaxial strain rates
  publication-title: Mech. Time Depend. Mater.
  doi: 10.1007/s11043-017-9367-7
– volume: 442
  start-page: 125
  year: 2013
  ident: 10.1016/j.ijplas.2023.103712_b45
  article-title: Compression tests of polycarbonate under quasi-static and dynamic loading
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.442.125
– volume: 26
  start-page: 793
  year: 1955
  ident: 10.1016/j.ijplas.2023.103712_b74
  article-title: Theory of non-Newtonian flow. I. Solid plastic system
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1722098
– start-page: 283
  year: 1963
  ident: 10.1016/j.ijplas.2023.103712_b28
  article-title: Viscosity, plasticity, and diffusion as examples of absolute reaction rates
  publication-title: J. Chem. Phys.
– volume: 36
  start-page: 1
  issue: 1
  year: 1969
  ident: 10.1016/j.ijplas.2023.103712_b57
  article-title: Elastic-Plastic deformation at finite strains
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3564580
– volume: 65
  start-page: 48
  issue: 1
  year: 2012
  ident: 10.1016/j.ijplas.2023.103712_b31
  article-title: A constitutive model for finite deformation of amorphous polymers
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2012.09.003
– volume: 30
  start-page: 1099
  issue: 6
  year: 1990
  ident: 10.1016/j.ijplas.2023.103712_b27
  article-title: A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1620300602
– volume: 26
  year: 2012
  ident: 10.1016/j.ijplas.2023.103712_b50
  article-title: Strain rate dependence in plasticized and un-plasticized PVC
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/20122602009
– volume: 44
  start-page: 3579
  issue: 12
  year: 2003
  ident: 10.1016/j.ijplas.2023.103712_b91
  article-title: Localisation phenomena in glassy polymers: Influence of thermal and mechanical history
  publication-title: Polymer
  doi: 10.1016/S0032-3861(03)00089-2
– volume: 251
  year: 2022
  ident: 10.1016/j.ijplas.2023.103712_b101
  article-title: Temperature and strain rate sensitivity of yield strength of amorphous polymers: Characterization and modeling
  publication-title: Polymer
  doi: 10.1016/j.polymer.2022.124936
– volume: 202
  year: 2020
  ident: 10.1016/j.ijplas.2023.103712_b29
  article-title: Modelling strain rate and temperature dependent mechanical response of PMMAs at large deformation from below to above Tg
  publication-title: Polymer
  doi: 10.1016/j.polymer.2020.122710
– volume: 60
  start-page: 163
  year: 2014
  ident: 10.1016/j.ijplas.2023.103712_b52
  article-title: A thermodynamically-based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2014.04.010
– volume: 30
  start-page: 284
  year: 1991
  ident: 10.1016/j.ijplas.2023.103712_b7
  article-title: Calculation of residual stresses in injection molded products
  publication-title: Rheol. Acta
  doi: 10.1007/BF00366642
– volume: 14
  start-page: 583
  issue: 3
  year: 1979
  ident: 10.1016/j.ijplas.2023.103712_b37
  article-title: Determination of the plastic behaviour of solid polymers at constant true strain rate
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00772717
– volume: 185
  start-page: 225
  issue: 2
  year: 2000
  ident: 10.1016/j.ijplas.2023.103712_b49
  article-title: A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(99)00261-3
– year: 2017
  ident: 10.1016/j.ijplas.2023.103712_b51
– volume: 115
  start-page: 154
  year: 2019
  ident: 10.1016/j.ijplas.2023.103712_b53
  article-title: Thermo-mechanical coupling of a viscoelastic-viscoplastic model for thermoplastic polymers: Thermodynamical derivation and experimental assessment
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.11.016
– volume: 16
  start-page: 361
  year: 2012
  ident: 10.1016/j.ijplas.2023.103712_b71
  article-title: Compression of polypropylene across a wide range of strain rates
  publication-title: Mech. Time Depend. Mater.
  doi: 10.1007/s11043-012-9167-z
– volume: 38
  start-page: 19
  issue: 1
  year: 1967
  ident: 10.1016/j.ijplas.2023.103712_b58
  article-title: Finite-Strain elastic–Plastic theory with application to plane-wave analysis
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1708953
– volume: 88
  start-page: 159
  year: 2017
  ident: 10.1016/j.ijplas.2023.103712_b67
  article-title: Modelling of the post yield response of amorphous polymers under different stress states
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2016.10.008
– year: 2008
  ident: 10.1016/j.ijplas.2023.103712_b24
– volume: 48
  start-page: 1464
  issue: 13
  year: 2010
  ident: 10.1016/j.ijplas.2023.103712_b98
  article-title: Strain-hardening modulus of cross-linked glassy poly(methyl methacrylate)
  publication-title: J. Polym. Sci. B Polym. Phys.
  doi: 10.1002/polb.21979
– volume: 95
  year: 2017
  ident: 10.1016/j.ijplas.2023.103712_b99
  article-title: Modeling energy storage and structural evolution during finite viscoplastic deformation of glassy polymers
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.95.063001
– year: 1975
  ident: 10.1016/j.ijplas.2023.103712_b89
– year: 1997
  ident: 10.1016/j.ijplas.2023.103712_b88
– volume: 43
  start-page: 1331
  issue: 5
  year: 2006
  ident: 10.1016/j.ijplas.2023.103712_b69
  article-title: Mechanics of the rate-dependent elastic– Plastic deformation of glassy polymers from low to high strain rates
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2005.04.016
– volume: 91
  start-page: 109
  year: 2017
  ident: 10.1016/j.ijplas.2023.103712_b43
  article-title: Continuum approach for modeling fatigue in amorphous glassy polymers. Applications to the investigation of damage-ratcheting interaction in polycarbonate
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2016.12.001
– volume: 46
  start-page: 4079
  issue: 22
  year: 2009
  ident: 10.1016/j.ijplas.2023.103712_b92
  article-title: Constitutive equations for thermomechanical deformations of glassy polymers
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2009.08.006
– volume: 146
  year: 2021
  ident: 10.1016/j.ijplas.2023.103712_b93
  article-title: Extending the effective temperature model to the large strain hardening behavior of glassy polymers
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2020.104175
– volume: 158
  year: 2022
  ident: 10.1016/j.ijplas.2023.103712_b54
  article-title: A thermodynamically-based constitutive theory for amorphous glassy polymers at finite deformations
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2022.103415
– volume: 35
  start-page: 3455
  issue: 26
  year: 1998
  ident: 10.1016/j.ijplas.2023.103712_b75
  article-title: A theory of finite viscoelasticity and numerical aspects
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(97)00217-5
– year: 1991
  ident: 10.1016/j.ijplas.2023.103712_b23
– start-page: 2314
  year: 2017
  ident: 10.1016/j.ijplas.2023.103712_b61
  article-title: Global optimization of Lipschitz functions
– volume: 245
  year: 2021
  ident: 10.1016/j.ijplas.2023.103712_b20
  article-title: Efficient parameters identification of a modified GTN model of ductile fracture using machine learning
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2021.107535
– year: 1998
  ident: 10.1016/j.ijplas.2023.103712_b85
– volume: 124
  year: 2018
  ident: 10.1016/j.ijplas.2023.103712_b48
  article-title: A thermo-elasto-viscoplastic constitutive model for polymers
  publication-title: J. Mech. Phys. Solids
– volume: 302
  start-page: 453
  issue: 1471
  year: 1968
  ident: 10.1016/j.ijplas.2023.103712_b41
  article-title: The use of a mathematical model to describe isothermal stress-Strain curves in glassy thermoplastics
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 7
  start-page: 577
  year: 1972
  ident: 10.1016/j.ijplas.2023.103712_b9
  article-title: Relation between the compression yield stress and the mechanical loss peak of bisphenol-a-polycarbonate in the β transition range
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00761956
– volume: 301
  start-page: 469
  issue: 4
  year: 2016
  ident: 10.1016/j.ijplas.2023.103712_b103
  article-title: A macro-Damaged viscoelastoplastic model for thermomechanical and rate-Dependent behavior of glassy polymers
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201500322
– year: 2015
  ident: 10.1016/j.ijplas.2023.103712_b12
– volume: 38
  start-page: 53
  year: 2012
  ident: 10.1016/j.ijplas.2023.103712_b17
  article-title: Effects of strain rate and temperature on the tension behavior of polycarbonate
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2012.02.007
– volume: 98
  start-page: 197
  year: 2017
  ident: 10.1016/j.ijplas.2023.103712_b38
  article-title: A finite strain thermodynamically-based constitutive framework coupling viscoelasticity and viscoplasticity with application to glassy polymers
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2017.08.001
– volume: 30
  start-page: 701
  issue: 3
  year: 1995
  ident: 10.1016/j.ijplas.2023.103712_b26
  article-title: Rheology of polypropylene in the solid state
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00356330
– volume: 31
  start-page: 185
  issue: 2
  year: 1993
  ident: 10.1016/j.ijplas.2023.103712_b39
  article-title: An investigation of the yield and postyield behavior and corresponding structure of poly(methyl methacrylate)
  publication-title: J. Polym. Sci. B Polym. Phys.
  doi: 10.1002/polb.1993.090310207
– volume: 122
  year: 2000
  ident: 10.1016/j.ijplas.2023.103712_b35
  article-title: The influence of intrinsic strain softening on strain localization in polycarbonate: Modeling and experimental validation
  publication-title: J. Eng. Mater. Technol. Trans. ASME
  doi: 10.1115/1.482784
– volume: 7
  start-page: 1745
  issue: 10
  year: 1969
  ident: 10.1016/j.ijplas.2023.103712_b10
  article-title: Tensile yield-stress behavior of poly(vinyl chloride) and polycarbonate in the glass transition region
  publication-title: J. Polym. Sci. A-2: Polym. Phys.
  doi: 10.1002/pol.1969.160071010
– volume: 43
  start-page: 2318
  issue: 7
  year: 2006
  ident: 10.1016/j.ijplas.2023.103712_b76
  article-title: Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2005.06.040
– volume: 32
  start-page: 627
  year: 2000
  ident: 10.1016/j.ijplas.2023.103712_b14
  article-title: Large strain time-dependent behaviour of filled elastomers
  publication-title: Mech. Mater.
  doi: 10.1016/S0167-6636(00)00028-4
– volume: 137
  year: 2021
  ident: 10.1016/j.ijplas.2023.103712_b105
  article-title: A multiplicative finite strain crystal plasticity formulation based on additive elastic corrector rates: Theory and numerical implementation
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2020.102899
– volume: 156
  year: 2022
  ident: 10.1016/j.ijplas.2023.103712_b100
  article-title: Thermomechanical coupling in glassy polymers: An effective temperature theory
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2022.103361
– volume: 9
  start-page: 697
  issue: 6
  year: 1993
  ident: 10.1016/j.ijplas.2023.103712_b5
  article-title: Evolution of plastic anisotropy in amorphous polymers during finite straining
  publication-title: Int. J. Plast.
  doi: 10.1016/0749-6419(93)90034-N
– volume: 110
  start-page: 223
  year: 1989
  ident: 10.1016/j.ijplas.2023.103712_b36
  article-title: Effect of plastic deformation on the microstructure and properties of amorphous polycarbonate
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/0921-5093(89)90174-3
– volume: 18
  start-page: 141
  issue: 4
  year: 1978
  ident: 10.1016/j.ijplas.2023.103712_b3
  article-title: A method to produce uniform plane-stress states with applications to fiber-reinforced materials
  publication-title: Exp. Mech.
  doi: 10.1007/BF02324146
– volume: 60
  start-page: 153
  issue: 2
  year: 1987
  ident: 10.1016/j.ijplas.2023.103712_b84
  article-title: On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(87)90107-1
– volume: 15
  start-page: 85
  issue: 2
  year: 1976
  ident: 10.1016/j.ijplas.2023.103712_b59
  article-title: Nonequilibrium thermodynamics and rheology of viscoelastic polymer media
  publication-title: Rheol. Acta
  doi: 10.1007/BF01517499
– year: 1996
  ident: 10.1016/j.ijplas.2023.103712_b86
– volume: 400
  year: 2022
  ident: 10.1016/j.ijplas.2023.103712_b4
  article-title: A consistent algorithm for finite-strain visco-hyperelasticity and visco-plasticity of amorphous polymers
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2022.115528
– volume: 107
  start-page: 33
  year: 2018
  ident: 10.1016/j.ijplas.2023.103712_b83
  article-title: A coupled hyperelastic-plastic-continuum damage model for studying cyclic behavior of unfilled engineering polymers
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2017.10.006
– volume: 113
  start-page: 185
  year: 2019
  ident: 10.1016/j.ijplas.2023.103712_b104
  article-title: A simple formulation for large-strain cyclic hyperelasto-plasticity using elastic correctors. Theory and algorithmic implementation
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.09.013
– volume: 42
  start-page: 289
  issue: 2
  year: 1998
  ident: 10.1016/j.ijplas.2023.103712_b79
  article-title: A computational model for elasto-viscoplastic solids at finite strain with reference to thin shell applications
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/(SICI)1097-0207(19980530)42:2<289::AID-NME364>3.0.CO;2-9
– volume: 8
  start-page: 968
  issue: 7
  year: 1973
  ident: 10.1016/j.ijplas.2023.103712_b11
  article-title: The compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00756628
SSID ssj0005831
Score 2.4956431
Snippet In this paper, a recently proposed finite strain visco-elastic visco-plastic (three-dimensional) constitutive model is extended to predict the nonlinear...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103712
SubjectTerms Amorphous polymers
Calibration
Finite Element Analysis
Implicit integration algorithm
Poly(methyl methacrylate)
Polycarbonate
Strain-rate
Visco-elasticity
Visco-plasticity
Title A constitutive model for amorphous thermoplastics from low to high strain rates: Formulation and computational aspects
URI https://dx.doi.org/10.1016/j.ijplas.2023.103712
Volume 169
WOSCitedRecordID wos001147980800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0749-6419
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005831
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5tAEF65SQ_NoY-0VdO01R56s0CBtb0mNxTFais18iGVfEMLu6i2CFiYWPlL-ZeZ2QfgpEqbQy_IQuwsMB-z347nQcjXQEgVpKnEjB6JLcwyb6ok94CchxI-TAHDdLMJfnExXSyi-WBw63JhtgUvy-nNTbT-r6qGc6BsTJ19grpboXACfoPS4Qhqh-M_KT7GSHITAYBRQbrVjYmVvKrgpWLIK5K-q2oNxFkXadYpJgX2lquGWL4YE0gE5rkgD0WXwQyIrW3z5fLg1teNcyMKna256dPcXT9jrzqFnXPZtJ78M2xOVPyuhnGxNSYr9l27jy6MaKbqWi1r0ycaRdeyGs79zokha4DDcA4GXMuY-T_9vkMj7ELjnN3jo8ibjKwldUbaNHSxZhaTG0309YMVwDgjVv5yhU_k4wR-d_luwe17C2Ebnugi31aJkZKglMRIeUb2Qz6OwIDux9_PFz-6eKKpaX7p7t7laepgwod382ce1OM2l6_JS7spobEB0xsyUOUheWU3KNSa_80hOehVr3xLtjHtI41qpFFAGm2RRneRRhFpFJBGm4oi0qhBGtVIO6U9nFHAGd3BGbU4e0d-zc4vz755to2HlwG7bzyJ_4WHIlSMSQE2IwgyKbhULJX5SCABlRIIVJ6KQMlxmqYcFpEcCMEklIxNIvae7JVVqT4QmsFmRrFozNQkR8dHdKIyKTlXJwz2zeP8iDD3UpPM1rjH5yiSx1R6RLx21NrUePnL9dzpK7E81fDPBED46MiPT5zpmLzovpBPZK-pr9Vn8jzbNstN_cUi8A7mZb3G
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+constitutive+model+for+amorphous+thermoplastics+from+low+to+high+strain+rates%3A+Formulation+and+computational+aspects&rft.jtitle=International+journal+of+plasticity&rft.au=Carvalho+Alves%2C+A.+Francisca&rft.au=Ferreira%2C+Bernardo+P.&rft.au=Andrade+Pires%2C+F.M.&rft.date=2023-10-01&rft.issn=0749-6419&rft.volume=169&rft.spage=103712&rft_id=info:doi/10.1016%2Fj.ijplas.2023.103712&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijplas_2023_103712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6419&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6419&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6419&client=summon