A constitutive model for amorphous thermoplastics from low to high strain rates: Formulation and computational aspects
In this paper, a recently proposed finite strain visco-elastic visco-plastic (three-dimensional) constitutive model is extended to predict the nonlinear response of amorphous polymers from low to high strain rates. The model accounts for the influence of distinct molecular mechanisms, which become a...
Saved in:
| Published in: | International journal of plasticity Vol. 169; p. 103712 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.10.2023
|
| Subjects: | |
| ISSN: | 0749-6419 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, a recently proposed finite strain visco-elastic visco-plastic (three-dimensional) constitutive model is extended to predict the nonlinear response of amorphous polymers from low to high strain rates. The model accounts for the influence of distinct molecular mechanisms, which become active at different deformation rates. Therefore, the constitutive equations include two relaxation phenomena to describe the strain rate sensitivity of amorphous polymers. Well-established rheological elements are adopted to define visco-elasticity (generalized Maxwell elements) and visco-plasticity (Eyring dashpots). In addition, strain hardening is modeled with a plasticity-induced (nonlinear) hardening element which is extended to distinguish between the contribution of the two transitions. From a computational viewpoint, a fully implicit integration algorithm is derived, and a highly efficient implementation is obtained. It is shown that it is possible to reduce the return mapping system of equations to only two independent (scalar) nonlinear equations. A four-stage optimization-based calibration procedure is proposed to identify the model’s material parameters in a completely unsupervised way. The predictive capability of the constitutive model is validated against literature results for polycarbonate and poly(methyl methacrylate), accounting for temperature and strain rate dependencies under different loading conditions. The results show that the model can capture the transition in the yield behavior and predict the post-yield large strain behavior over a wide range of strain rates. The efficiency of the calibration procedure and the overall numerical strategy is also demonstrated. Despite the adiabatic conditions observed under high strain rates, the model replicates the associated effect of temperature through strain rate dependency.
•A visco-elastic visco-plastic constitutive model is formulated from low to high strain rates.•Two molecular mobility mechanisms are modeled with known rheological elements.•A fully implicit formulation is derived leading to an efficient implementation.•A four-stage optimization-based calibration procedure is proposed.•Excellent agreement with experimental and numerical results for two thermoplastics. |
|---|---|
| AbstractList | In this paper, a recently proposed finite strain visco-elastic visco-plastic (three-dimensional) constitutive model is extended to predict the nonlinear response of amorphous polymers from low to high strain rates. The model accounts for the influence of distinct molecular mechanisms, which become active at different deformation rates. Therefore, the constitutive equations include two relaxation phenomena to describe the strain rate sensitivity of amorphous polymers. Well-established rheological elements are adopted to define visco-elasticity (generalized Maxwell elements) and visco-plasticity (Eyring dashpots). In addition, strain hardening is modeled with a plasticity-induced (nonlinear) hardening element which is extended to distinguish between the contribution of the two transitions. From a computational viewpoint, a fully implicit integration algorithm is derived, and a highly efficient implementation is obtained. It is shown that it is possible to reduce the return mapping system of equations to only two independent (scalar) nonlinear equations. A four-stage optimization-based calibration procedure is proposed to identify the model’s material parameters in a completely unsupervised way. The predictive capability of the constitutive model is validated against literature results for polycarbonate and poly(methyl methacrylate), accounting for temperature and strain rate dependencies under different loading conditions. The results show that the model can capture the transition in the yield behavior and predict the post-yield large strain behavior over a wide range of strain rates. The efficiency of the calibration procedure and the overall numerical strategy is also demonstrated. Despite the adiabatic conditions observed under high strain rates, the model replicates the associated effect of temperature through strain rate dependency.
•A visco-elastic visco-plastic constitutive model is formulated from low to high strain rates.•Two molecular mobility mechanisms are modeled with known rheological elements.•A fully implicit formulation is derived leading to an efficient implementation.•A four-stage optimization-based calibration procedure is proposed.•Excellent agreement with experimental and numerical results for two thermoplastics. |
| ArticleNumber | 103712 |
| Author | Andrade Pires, F.M. Carvalho Alves, A. Francisca Ferreira, Bernardo P. |
| Author_xml | – sequence: 1 givenname: A. Francisca orcidid: 0000-0002-7842-2292 surname: Carvalho Alves fullname: Carvalho Alves, A. Francisca organization: DEMec - Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal – sequence: 2 givenname: Bernardo P. orcidid: 0000-0001-5956-3877 surname: Ferreira fullname: Ferreira, Bernardo P. organization: School of Engineering, Brown University, 184 Hope St, Providence, RI 02912, United States of America – sequence: 3 givenname: F.M. orcidid: 0000-0002-4802-6360 surname: Andrade Pires fullname: Andrade Pires, F.M. email: fpires@fe.up.pt organization: DEMec - Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal |
| BookMark | eNqFkL1OwzAURj0UibbwBgx-gRb_pEnTAamqKCAhscBs3dg3xFUSR7ZTxNuTECYGmKxr6XzSOQsya12LhNxwtuaMp7entT11NYS1YEIOXzLjYkbmLEvyVZrw_JIsQjgxxjZbyefkvKfatSHa2Ed7Rto4gzUtnafQON9Vrg80VugbN45GqwMtvWto7T5odLSy7xUN0YNtqYeIYUePzjd9DdG6lkJrhvmm6-P3DTWF0KGO4YpclFAHvP55l-TteP96eFw9vzw8HfbPKy03Iq4Ml9tcgEApDWCBnGsDmUFZmDIBwTg3RnBRFsDRbIqiyLJtViLoVBgp01wuSTLtau9C8FiqztsG_KfiTI291ElNvdTYS029Bmz3C9N2UhhV6__guwnGQexs0augLbYajfWDuzLO_j3wBWa8kdA |
| CitedBy_id | crossref_primary_10_1016_j_compstruct_2025_119220 crossref_primary_10_1016_j_ijplas_2024_104179 crossref_primary_10_1016_j_ijsolstr_2023_112488 crossref_primary_10_3390_polym16121640 crossref_primary_10_1016_j_ijengsci_2025_104322 crossref_primary_10_1007_s00289_024_05631_0 crossref_primary_10_1016_j_cscm_2025_e04438 crossref_primary_10_1016_j_ijengsci_2025_104252 crossref_primary_10_1115_1_4069106 |
| Cites_doi | 10.1016/j.compstruc.2023.107007 10.1016/j.ijsolstr.2007.05.018 10.1016/0167-6636(94)00034-E 10.1016/j.ijplas.2022.103262 10.1016/j.matdes.2010.06.039 10.1108/EC-05-2019-0197 10.1016/j.ijsolstr.2016.06.008 10.1016/j.apm.2017.11.003 10.1016/j.compstruc.2018.01.010 10.1007/s10237-004-0055-6 10.1016/0032-3861(65)90056-X 10.1016/j.ijplas.2019.06.003 10.1016/S0022-5096(97)00075-6 10.1016/0167-6636(88)90003-8 10.1016/j.ijplas.2014.10.004 10.1007/s11043-016-9320-1 10.1016/j.ijplas.2019.05.010 10.1002/pen.10832 10.1016/j.ijplas.2012.10.005 10.1023/A:1009720708029 10.3390/polym12122949 10.1016/j.polymer.2014.09.071 10.1007/BF01233145 10.1016/j.ijplas.2019.06.013 10.1016/j.compstruc.2016.01.002 10.1016/j.compstruc.2015.09.001 10.1016/j.engfailanal.2019.01.001 10.1016/j.ijplas.2008.11.005 10.1002/pen.10440 10.1016/j.ijmecsci.2020.105653 10.1016/j.mechmat.2019.04.023 10.1016/j.ijsolstr.2014.03.026 10.1002/pen.23315 10.1002/nme.740 10.1007/BF00545162 10.1016/0045-7825(92)90156-E 10.1002/pen.24842 10.1016/j.ijplas.2023.103556 10.1002/polb.21579 10.1007/s11043-017-9367-7 10.4028/www.scientific.net/AMM.442.125 10.1063/1.1722098 10.1115/1.3564580 10.1016/j.ijmecsci.2012.09.003 10.1002/nme.1620300602 10.1051/epjconf/20122602009 10.1016/S0032-3861(03)00089-2 10.1016/j.polymer.2022.124936 10.1016/j.polymer.2020.122710 10.1016/j.ijplas.2014.04.010 10.1007/BF00366642 10.1007/BF00772717 10.1016/S0045-7825(99)00261-3 10.1016/j.ijplas.2018.11.016 10.1007/s11043-012-9167-z 10.1063/1.1708953 10.1016/j.ijplas.2016.10.008 10.1002/polb.21979 10.1103/PhysRevE.95.063001 10.1016/j.ijsolstr.2005.04.016 10.1016/j.ijplas.2016.12.001 10.1016/j.ijsolstr.2009.08.006 10.1016/j.jmps.2020.104175 10.1016/j.ijplas.2022.103415 10.1016/S0020-7683(97)00217-5 10.1016/j.engfracmech.2021.107535 10.1007/BF00761956 10.1002/mame.201500322 10.1016/j.matdes.2012.02.007 10.1016/j.ijplas.2017.08.001 10.1007/BF00356330 10.1002/polb.1993.090310207 10.1115/1.482784 10.1002/pol.1969.160071010 10.1016/j.ijsolstr.2005.06.040 10.1016/S0167-6636(00)00028-4 10.1016/j.ijplas.2020.102899 10.1016/j.ijplas.2022.103361 10.1016/0749-6419(93)90034-N 10.1016/0921-5093(89)90174-3 10.1007/BF02324146 10.1016/0045-7825(87)90107-1 10.1007/BF01517499 10.1016/j.cma.2022.115528 10.1016/j.ijfatigue.2017.10.006 10.1016/j.ijplas.2018.09.013 10.1002/(SICI)1097-0207(19980530)42:2<289::AID-NME364>3.0.CO;2-9 10.1007/BF00756628 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s) |
| Copyright_xml | – notice: 2023 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.ijplas.2023.103712 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| ExternalDocumentID | 10_1016_j_ijplas_2023_103712 S0749641923001961 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABDPE ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ACDAQ ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSZ T5K TN5 UNMZH VH1 WUQ XPP ZMT ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c352t-d13892a2e33daebe11cda7de3bdf4a2011dd212fba1ed5bbb7787feac62d33693 |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001147980800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0749-6419 |
| IngestDate | Sat Nov 29 07:21:38 EST 2025 Tue Nov 18 21:51:10 EST 2025 Tue Dec 03 03:45:07 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Visco-plasticity Strain-rate Amorphous polymers Implicit integration algorithm Finite Element Analysis Poly(methyl methacrylate) Calibration Polycarbonate Visco-elasticity |
| Language | English |
| License | This is an open access article under the CC BY-NC license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c352t-d13892a2e33daebe11cda7de3bdf4a2011dd212fba1ed5bbb7787feac62d33693 |
| ORCID | 0000-0001-5956-3877 0000-0002-4802-6360 0000-0002-7842-2292 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.ijplas.2023.103712 |
| ParticipantIDs | crossref_primary_10_1016_j_ijplas_2023_103712 crossref_citationtrail_10_1016_j_ijplas_2023_103712 elsevier_sciencedirect_doi_10_1016_j_ijplas_2023_103712 |
| PublicationCentury | 2000 |
| PublicationDate | October 2023 2023-10-00 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of plasticity |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Rouainia, Perić (b79) 1998; 42 Haslach (b40) 2005; 3 Holopainen, Barriere, Cheng, Kouhia (b43) 2017; 91 Wendlandt, Tervoort, Suter (b98) 2010; 48 Jiang, Zhu, Zhang, YANG (b47) 2020; 179 Manaia, Pires, de Jesus, Wu (b62) 2019; 97 Varghese, Batra (b92) 2009; 46 Areias, Rabczuk, Vaz, Sardinha, Leite (b4) 2022; 400 Fleischhauer, Dal, Kaliske, Schneider (b31) 2012; 65 Eterovic, Bathe (b27) 1990; 30 Kendall, Siviour (b50) 2012; 26 Okereke, Buckley, Siviour (b71) 2012; 16 Zhang, Montáns (b104) 2019; 113 Mulliken (b68) 2006 Schang, Billon, Muracciole, Fernagut (b81) 1996; 36 Xiao, Tian, Xu, Steinmann (b100) 2022; 156 Kaliske (b49) 2000; 185 Arcan, Hashin, Voloshin (b3) 1978; 18 Bergstrom (b12) 2015 Ree, Eyring (b74) 1955; 26 Wang, Xu, Gao, Zhang, Moumni (b95) 2018; 58 Perić, Owen, Honnor (b72) 1992; 94 Bergström, Boyce (b14) 2000; 32 Bouvard, Francis, Tschopp, Marin, Bammann, Horstemeyer (b15) 2013; 42 Xiao, Ghazaryan, Tervoort, Nguyen (b99) 2017; 95 Lan, Jiang, Wu (b54) 2022; 158 Bauwens, Bauwens-Crowet, Homès (b10) 1969; 7 Hu, Huang, Zhang, Chen (b45) 2013; 442 Roetling (b78) 1965; 6 Treloar (b89) 1975 Malherbe, Vayatis (b61) 2017 Simo, Hughes (b85) 1998 Tervoort (b86) 1996 Bauwens-Crowet (b11) 1973; 8 Foot, Truss, Ward, Duckett (b32) 1987; 22 Mirkhalaf, Andrade Pires, Simoes (b67) 2017; 88 Eyring (b28) 1963 Leonov (b59) 1976; 15 Chen, Li, Yang, Jiang, Guan (b20) 2021; 245 Wang, Zhou, Huang, Zhang, Zhao (b97) 2017; 21 Colak, Cakir (b22) 2019; 135 Lin, Qian, Xie, Wang, Xiao (b60) 2023; 163 Govaert, Engels, Wendlandt, Tervoort, Suter (b34) 2008; 46 Christensen (b21) 2012 Govaert, Timmermans, Brekelmans (b35) 2000; 122 Meißner, Watschke, Winter, Vietor (b65) 2020; 12 Ames, Srivastava, Chester, Anand (b2) 2009; 25 Yu, Yao, Han, Zang, Gu (b102) 2014; 55 Richeton, Ahzi, Vecchio, Jiang, Makradi (b77) 2007; 44 Federico, Bouvard, Combeaud, Billon (b29) 2020; 202 King (b51) 2017 Arruda, Boyce, Jayachandran (b6) 1995; 19 Lee, Liu (b58) 1967; 38 Tervoort, Smit, Brekelmans, Govaert (b87) 1998; 1 Duan, Saigal, Greif, Zimmerman (b25) 2001; 41 G’sell, Jonas (b37) 1979; 14 Mulliken, Boyce (b69) 2006; 43 Wang, Guo, Seppala, Nguyen (b93) 2021; 146 Simo (b84) 1987; 60 Maurel-Pantel, Baquet, Bikard, Bouvard, Billon (b64) 2015; 67 Carvalho Alves, Ferreira, Andrade Pires (b19) 2023 Arruda, Boyce (b5) 1993; 9 de Souza Neto, Perić, Owen (b24) 2008 G’Sell, El Bari, Perez, Cavaille, Johari (b36) 1989; 110 Richeton, Ahzi, Vecchio, Jiang, Adharapurapu (b76) 2006; 43 Mirkhalaf, Andrade Pires, Simoes (b66) 2016; 166 Yu, Yao, Tan, Han (b103) 2016; 301 Shen, Kang, Lam, Liu, Zhou (b82) 2019; 121 Pichler, Lackner, Mang (b73) 2003; 57 Baaijens (b7) 1991; 30 Nguyen, Lani, Pardoen, Morelle, Noels (b70) 2016; 96 Duffo, Monasse, Haudin, G’Sell, Dahoun (b26) 1995; 30 Jiang (b46) 2019; 161–162 Latorre, Montáns (b55) 2016; 163 Haward, Thackray (b41) 1968; 302 Hasan, Boyce, Li, Berko (b39) 1993; 31 Ferreira, Carvalho Alves, Andrade Pires (b30) 2023 Latorre, Montáns (b56) 2018; 55 Barriere, Gabrion, Holopainen (b8) 2019; 122 Cao, Wang, Wang (b18) 2014; 51 Zhang, Nguyen, Segurado, Montáns (b105) 2021; 137 Krairi, Doghri, Schalnat, Robert, Van Paepegem (b53) 2019; 115 Wang, Zhang, Huang, Tang, Wang, Zhou (b96) 2018; 22 Holzapfel (b44) 2000 Crisfield (b23) 1991 Yang, Li, Dong, Ma, He, Zhao, Chen (b101) 2022; 251 Cao, Wang, Wang (b17) 2012; 38 Lee (b57) 1969; 36 Reese, Govindjee (b75) 1998; 35 Safari, Zamani, Ferreira, Guedes (b80) 2013; 53 Bauwens (b9) 1972; 7 Matsubara, Terada, Maeda, Kobayashi, Murata, Sumiyama, Furuichi, Nonomura (b63) 2020; 37 Timmermans (b88) 1997 Johnsen, Clausen, Grytten, Benallal, Hopperstad (b48) 2018; 124 Wang, Peng, Deng, Lai, Fu, Ni (b94) 2019; 122 Gudimetla, Doghri (b38) 2017; 98 Boyce, Parks, Argon (b16) 1988; 7 Aguir, BelHadjSalah, Hambli (b1) 2011; 32 Uchida, Kamimura, Yoshida, Kaneko (b90) 2022; 153 Shojaei, Volgers (b83) 2018; 107 Fotheringham, Cherry, Bauwens-Crowet (b33) 1976; 11 Bergström, Boyce (b13) 1998; 46 van Melick, Govaert, Meijer (b91) 2003; 44 Holopainen, Barriere (b42) 2018; 199 Krairi, Doghri (b52) 2014; 60 Wang (10.1016/j.ijplas.2023.103712_b97) 2017; 21 Tervoort (10.1016/j.ijplas.2023.103712_b86) 1996 Boyce (10.1016/j.ijplas.2023.103712_b16) 1988; 7 Carvalho Alves (10.1016/j.ijplas.2023.103712_b19) 2023 Bauwens (10.1016/j.ijplas.2023.103712_b10) 1969; 7 Xiao (10.1016/j.ijplas.2023.103712_b100) 2022; 156 Yang (10.1016/j.ijplas.2023.103712_b101) 2022; 251 Hasan (10.1016/j.ijplas.2023.103712_b39) 1993; 31 Hu (10.1016/j.ijplas.2023.103712_b45) 2013; 442 Kaliske (10.1016/j.ijplas.2023.103712_b49) 2000; 185 Gudimetla (10.1016/j.ijplas.2023.103712_b38) 2017; 98 Jiang (10.1016/j.ijplas.2023.103712_b47) 2020; 179 Bergstrom (10.1016/j.ijplas.2023.103712_b12) 2015 Okereke (10.1016/j.ijplas.2023.103712_b71) 2012; 16 Govaert (10.1016/j.ijplas.2023.103712_b35) 2000; 122 Krairi (10.1016/j.ijplas.2023.103712_b52) 2014; 60 Mulliken (10.1016/j.ijplas.2023.103712_b68) 2006 Baaijens (10.1016/j.ijplas.2023.103712_b7) 1991; 30 Arruda (10.1016/j.ijplas.2023.103712_b6) 1995; 19 Johnsen (10.1016/j.ijplas.2023.103712_b48) 2018; 124 Xiao (10.1016/j.ijplas.2023.103712_b99) 2017; 95 Bergström (10.1016/j.ijplas.2023.103712_b13) 1998; 46 Krairi (10.1016/j.ijplas.2023.103712_b53) 2019; 115 Maurel-Pantel (10.1016/j.ijplas.2023.103712_b64) 2015; 67 Bergström (10.1016/j.ijplas.2023.103712_b14) 2000; 32 Lan (10.1016/j.ijplas.2023.103712_b54) 2022; 158 Latorre (10.1016/j.ijplas.2023.103712_b55) 2016; 163 Safari (10.1016/j.ijplas.2023.103712_b80) 2013; 53 Holzapfel (10.1016/j.ijplas.2023.103712_b44) 2000 Arruda (10.1016/j.ijplas.2023.103712_b5) 1993; 9 Lee (10.1016/j.ijplas.2023.103712_b58) 1967; 38 Aguir (10.1016/j.ijplas.2023.103712_b1) 2011; 32 Malherbe (10.1016/j.ijplas.2023.103712_b61) 2017 Fleischhauer (10.1016/j.ijplas.2023.103712_b31) 2012; 65 Bauwens (10.1016/j.ijplas.2023.103712_b9) 1972; 7 Latorre (10.1016/j.ijplas.2023.103712_b56) 2018; 55 G’sell (10.1016/j.ijplas.2023.103712_b37) 1979; 14 Mirkhalaf (10.1016/j.ijplas.2023.103712_b66) 2016; 166 Duan (10.1016/j.ijplas.2023.103712_b25) 2001; 41 Eterovic (10.1016/j.ijplas.2023.103712_b27) 1990; 30 Richeton (10.1016/j.ijplas.2023.103712_b77) 2007; 44 Wang (10.1016/j.ijplas.2023.103712_b95) 2018; 58 van Melick (10.1016/j.ijplas.2023.103712_b91) 2003; 44 Bouvard (10.1016/j.ijplas.2023.103712_b15) 2013; 42 Chen (10.1016/j.ijplas.2023.103712_b20) 2021; 245 Richeton (10.1016/j.ijplas.2023.103712_b76) 2006; 43 Leonov (10.1016/j.ijplas.2023.103712_b59) 1976; 15 Zhang (10.1016/j.ijplas.2023.103712_b105) 2021; 137 Yu (10.1016/j.ijplas.2023.103712_b103) 2016; 301 Duffo (10.1016/j.ijplas.2023.103712_b26) 1995; 30 Ames (10.1016/j.ijplas.2023.103712_b2) 2009; 25 Pichler (10.1016/j.ijplas.2023.103712_b73) 2003; 57 Varghese (10.1016/j.ijplas.2023.103712_b92) 2009; 46 Schang (10.1016/j.ijplas.2023.103712_b81) 1996; 36 Wang (10.1016/j.ijplas.2023.103712_b94) 2019; 122 Arcan (10.1016/j.ijplas.2023.103712_b3) 1978; 18 Govaert (10.1016/j.ijplas.2023.103712_b34) 2008; 46 King (10.1016/j.ijplas.2023.103712_b51) 2017 Perić (10.1016/j.ijplas.2023.103712_b72) 1992; 94 Matsubara (10.1016/j.ijplas.2023.103712_b63) 2020; 37 Mulliken (10.1016/j.ijplas.2023.103712_b69) 2006; 43 Wang (10.1016/j.ijplas.2023.103712_b93) 2021; 146 Areias (10.1016/j.ijplas.2023.103712_b4) 2022; 400 Eyring (10.1016/j.ijplas.2023.103712_b28) 1963 Yu (10.1016/j.ijplas.2023.103712_b102) 2014; 55 Federico (10.1016/j.ijplas.2023.103712_b29) 2020; 202 Simo (10.1016/j.ijplas.2023.103712_b85) 1998 Haslach (10.1016/j.ijplas.2023.103712_b40) 2005; 3 Treloar (10.1016/j.ijplas.2023.103712_b89) 1975 Nguyen (10.1016/j.ijplas.2023.103712_b70) 2016; 96 Wang (10.1016/j.ijplas.2023.103712_b96) 2018; 22 Simo (10.1016/j.ijplas.2023.103712_b84) 1987; 60 Ferreira (10.1016/j.ijplas.2023.103712_b30) 2023 Ree (10.1016/j.ijplas.2023.103712_b74) 1955; 26 Shojaei (10.1016/j.ijplas.2023.103712_b83) 2018; 107 Shen (10.1016/j.ijplas.2023.103712_b82) 2019; 121 Rouainia (10.1016/j.ijplas.2023.103712_b79) 1998; 42 Holopainen (10.1016/j.ijplas.2023.103712_b42) 2018; 199 Holopainen (10.1016/j.ijplas.2023.103712_b43) 2017; 91 Zhang (10.1016/j.ijplas.2023.103712_b104) 2019; 113 Haward (10.1016/j.ijplas.2023.103712_b41) 1968; 302 Kendall (10.1016/j.ijplas.2023.103712_b50) 2012; 26 Foot (10.1016/j.ijplas.2023.103712_b32) 1987; 22 Lin (10.1016/j.ijplas.2023.103712_b60) 2023; 163 Timmermans (10.1016/j.ijplas.2023.103712_b88) 1997 Meißner (10.1016/j.ijplas.2023.103712_b65) 2020; 12 Barriere (10.1016/j.ijplas.2023.103712_b8) 2019; 122 Bauwens-Crowet (10.1016/j.ijplas.2023.103712_b11) 1973; 8 Christensen (10.1016/j.ijplas.2023.103712_b21) 2012 Lee (10.1016/j.ijplas.2023.103712_b57) 1969; 36 Crisfield (10.1016/j.ijplas.2023.103712_b23) 1991 G’Sell (10.1016/j.ijplas.2023.103712_b36) 1989; 110 Manaia (10.1016/j.ijplas.2023.103712_b62) 2019; 97 Jiang (10.1016/j.ijplas.2023.103712_b46) 2019; 161–162 Cao (10.1016/j.ijplas.2023.103712_b17) 2012; 38 Cao (10.1016/j.ijplas.2023.103712_b18) 2014; 51 Roetling (10.1016/j.ijplas.2023.103712_b78) 1965; 6 de Souza Neto (10.1016/j.ijplas.2023.103712_b24) 2008 Tervoort (10.1016/j.ijplas.2023.103712_b87) 1998; 1 Colak (10.1016/j.ijplas.2023.103712_b22) 2019; 135 Fotheringham (10.1016/j.ijplas.2023.103712_b33) 1976; 11 Uchida (10.1016/j.ijplas.2023.103712_b90) 2022; 153 Reese (10.1016/j.ijplas.2023.103712_b75) 1998; 35 Wendlandt (10.1016/j.ijplas.2023.103712_b98) 2010; 48 Mirkhalaf (10.1016/j.ijplas.2023.103712_b67) 2017; 88 |
| References_xml | – year: 2000 ident: b44 article-title: Nonlinear Solid Mechanics: A Continuum Approach for Engineering – volume: 442 start-page: 125 year: 2013 end-page: 128 ident: b45 article-title: Compression tests of polycarbonate under quasi-static and dynamic loading publication-title: Appl. Mech. Mater. – volume: 202 year: 2020 ident: b29 article-title: Modelling strain rate and temperature dependent mechanical response of PMMAs at large deformation from below to above Tg publication-title: Polymer – volume: 43 start-page: 2318 year: 2006 end-page: 2335 ident: b76 article-title: Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress publication-title: Int. J. Solids Struct. – year: 2017 ident: b51 article-title: A global optimization algorithm worth using – volume: 153 year: 2022 ident: b90 article-title: Viscoelastic-viscoplastic modeling of epoxy based on transient network theory publication-title: Int. J. Plast. – volume: 11 start-page: 1368 year: 1976 end-page: 1371 ident: b33 article-title: Comment on “the compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates” publication-title: J. Mater. Sci. – volume: 37 start-page: 1703 year: 2020 end-page: 1735 ident: b63 article-title: Viscoelastic-viscoplastic combined constitutive model for glassy amorphous polymers under loading/unloading/no-load states publication-title: Eng. Comput. – volume: 1 start-page: 269 year: 1998 end-page: 291 ident: b87 article-title: A constitutive equation for the elasto-viscoplastic deformation of glassy polymers publication-title: Mech. Time Depend. Mater. – volume: 161–162 year: 2019 ident: b46 article-title: Finite deformation constitutive model for macro-yield behavior of amorphous glassy polymers with a molecular entanglement-based internal-state variable publication-title: Int. J. Mech. Sci. – volume: 26 start-page: 793 year: 1955 end-page: 800 ident: b74 article-title: Theory of non-Newtonian flow. I. Solid plastic system publication-title: J. Appl. Phys. – volume: 251 year: 2022 ident: b101 article-title: Temperature and strain rate sensitivity of yield strength of amorphous polymers: Characterization and modeling publication-title: Polymer – year: 1991 ident: b23 article-title: Non-Linear Finite Element Analysis of Solids and Structures – year: 1997 ident: b88 article-title: Evaluation of a Constitutive Model for Solid Polymeric Materials: Model Selection and Parameter Quantification – volume: 301 start-page: 469 year: 2016 end-page: 485 ident: b103 article-title: A macro-Damaged viscoelastoplastic model for thermomechanical and rate-Dependent behavior of glassy polymers publication-title: Macromol. Mater. Eng. – volume: 30 start-page: 284 year: 1991 end-page: 299 ident: b7 article-title: Calculation of residual stresses in injection molded products publication-title: Rheol. Acta – volume: 36 start-page: 541 year: 1996 end-page: 550 ident: b81 article-title: Mechanical behavior of a ductile polyamide 12 during impact publication-title: Polym. Eng. Sci. – volume: 16 start-page: 361 year: 2012 end-page: 379 ident: b71 article-title: Compression of polypropylene across a wide range of strain rates publication-title: Mech. Time Depend. Mater. – volume: 30 start-page: 1099 year: 1990 end-page: 1114 ident: b27 article-title: A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures publication-title: Internat. J. Numer. Methods Engrg. – volume: 42 start-page: 168 year: 2013 end-page: 193 ident: b15 article-title: An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation publication-title: Int. J. Plast. – volume: 7 start-page: 15 year: 1988 end-page: 33 ident: b16 article-title: Large inelastic deformation of glassy polymers. Part I: Rate dependent constitutive model publication-title: Mech. Mater. – volume: 46 start-page: 2475 year: 2008 end-page: 2481 ident: b34 article-title: Does the strain hardening modulus of glassy polymers scale with the flow stress? publication-title: J. Polym. Sci. B Polym. Phys. – volume: 96 start-page: 192 year: 2016 end-page: 216 ident: b70 article-title: A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers publication-title: Int. J. Solids Struct. – volume: 98 start-page: 197 year: 2017 end-page: 216 ident: b38 article-title: A finite strain thermodynamically-based constitutive framework coupling viscoelasticity and viscoplasticity with application to glassy polymers publication-title: Int. J. Plast. – volume: 43 start-page: 1331 year: 2006 end-page: 1356 ident: b69 article-title: Mechanics of the rate-dependent elastic– Plastic deformation of glassy polymers from low to high strain rates publication-title: Int. J. Solids Struct. – volume: 32 start-page: 627 year: 2000 end-page: 644 ident: b14 article-title: Large strain time-dependent behaviour of filled elastomers publication-title: Mech. Mater. – volume: 46 start-page: 4079 year: 2009 end-page: 4094 ident: b92 article-title: Constitutive equations for thermomechanical deformations of glassy polymers publication-title: Int. J. Solids Struct. – volume: 12 start-page: 2949 year: 2020 ident: b65 article-title: Artificial neural networks-based material parameter identification for numerical simulations of additively manufactured parts by material extrusion publication-title: Polymers – volume: 44 start-page: 7938 year: 2007 end-page: 7954 ident: b77 article-title: Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates publication-title: Int. J. Solids Struct. – volume: 38 start-page: 19 year: 1967 end-page: 27 ident: b58 article-title: Finite-Strain elastic–Plastic theory with application to plane-wave analysis publication-title: J. Appl. Phys. – volume: 35 start-page: 3455 year: 1998 end-page: 3482 ident: b75 article-title: A theory of finite viscoelasticity and numerical aspects publication-title: Int. J. Solids Struct. – volume: 60 start-page: 163 year: 2014 end-page: 181 ident: b52 article-title: A thermodynamically-based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage publication-title: Int. J. Plast. – year: 2023 ident: b19 article-title: Constitutive modeling of amorphous thermoplastics from low to high strain rates: Formulation and critical comparison employing an optimization-based parameter identification publication-title: Int. J. Solids Struct. – year: 2012 ident: b21 article-title: Theory of Viscoelasticity: An Introduction – volume: 31 start-page: 185 year: 1993 end-page: 197 ident: b39 article-title: An investigation of the yield and postyield behavior and corresponding structure of poly(methyl methacrylate) publication-title: J. Polym. Sci. B Polym. Phys. – year: 2006 ident: b68 article-title: Mechanics of Amorphous Polymers and Polymer Nanocomposites during High Rate Deformation – volume: 3 start-page: 172 year: 2005 end-page: 189 ident: b40 article-title: Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue publication-title: Biomech. Model. Mechanobiol. – volume: 124 year: 2018 ident: b48 article-title: A thermo-elasto-viscoplastic constitutive model for polymers publication-title: J. Mech. Phys. Solids – volume: 122 year: 2000 ident: b35 article-title: The influence of intrinsic strain softening on strain localization in polycarbonate: Modeling and experimental validation publication-title: J. Eng. Mater. Technol. Trans. ASME – volume: 245 year: 2021 ident: b20 article-title: Efficient parameters identification of a modified GTN model of ductile fracture using machine learning publication-title: Eng. Fract. Mech. – volume: 32 start-page: 48 year: 2011 end-page: 53 ident: b1 article-title: Parameter identification of an elasto-plastic behaviour using artificial neural networks–genetic algorithm method publication-title: Mater. Des. – volume: 38 start-page: 53 year: 2012 end-page: 58 ident: b17 article-title: Effects of strain rate and temperature on the tension behavior of polycarbonate publication-title: Mater. Des. – volume: 48 start-page: 1464 year: 2010 end-page: 1472 ident: b98 article-title: Strain-hardening modulus of cross-linked glassy poly(methyl methacrylate) publication-title: J. Polym. Sci. B Polym. Phys. – volume: 55 start-page: 6577 year: 2014 end-page: 6593 ident: b102 article-title: A visco-elastoplastic constitutive model for large deformation response of polycarbonate over a wide range of strain rates and temperatures publication-title: Polymer – year: 1996 ident: b86 article-title: Constitutive Modelling of Polymer Glasses: Finite, Nonlinear Viscoelastic Behaviour of Polycarbonate – volume: 58 start-page: 2237 year: 2018 end-page: 2248 ident: b95 article-title: A 3D thermomechanical constitutive model for polycarbonate and its application in ballistic simulation publication-title: Polym. Eng. Sci. – volume: 122 start-page: 31 year: 2019 end-page: 48 ident: b8 article-title: A compact constitutive model to describe the viscoelastic-plastic behaviour of glassy polymers: Comparison with monotonic and cyclic experiments and state-of-the-art models publication-title: Int. J. Plast. – year: 1998 ident: b85 publication-title: Computational Inelasticity – volume: 19 start-page: 193 year: 1995 end-page: 212 ident: b6 article-title: Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers publication-title: Mech. Mater. – volume: 115 start-page: 154 year: 2019 end-page: 177 ident: b53 article-title: Thermo-mechanical coupling of a viscoelastic-viscoplastic model for thermoplastic polymers: Thermodynamical derivation and experimental assessment publication-title: Int. J. Plast. – volume: 55 start-page: 716 year: 2018 end-page: 740 ident: b56 article-title: A new class of plastic flow evolution equations for anisotropic multiplicative elastoplasticity based on the notion of a corrector elastic strain rate publication-title: Appl. Math. Model. – year: 1975 ident: b89 publication-title: The Physics of Rubber Elasticity – volume: 7 start-page: 577 year: 1972 end-page: 584 ident: b9 article-title: Relation between the compression yield stress and the mechanical loss peak of bisphenol-a-polycarbonate in the publication-title: J. Mater. Sci. – volume: 158 year: 2022 ident: b54 article-title: A thermodynamically-based constitutive theory for amorphous glassy polymers at finite deformations publication-title: Int. J. Plast. – volume: 60 start-page: 153 year: 1987 end-page: 173 ident: b84 article-title: On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 156 year: 2022 ident: b100 article-title: Thermomechanical coupling in glassy polymers: An effective temperature theory publication-title: Int. J. Plast. – volume: 135 year: 2019 ident: b22 article-title: Material model parameter estimation with genetic algorithm optimization method and modeling of strain and temperature dependent behavior of epoxy resin with cooperative-VBO model publication-title: Mech. Mater. – volume: 107 start-page: 33 year: 2018 end-page: 39 ident: b83 article-title: A coupled hyperelastic-plastic-continuum damage model for studying cyclic behavior of unfilled engineering polymers publication-title: Int. J. Fatigue – volume: 6 start-page: 615 year: 1965 end-page: 619 ident: b78 article-title: Yield stress behaviour of poly(ethyl methacrylate) in the glass transition region publication-title: Polymer – volume: 21 year: 2017 ident: b97 article-title: Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures publication-title: Mech. Time Depend. Mater. – volume: 95 year: 2017 ident: b99 article-title: Modeling energy storage and structural evolution during finite viscoplastic deformation of glassy polymers publication-title: Phys. Rev. E – volume: 18 start-page: 141 year: 1978 end-page: 146 ident: b3 article-title: A method to produce uniform plane-stress states with applications to fiber-reinforced materials publication-title: Exp. Mech. – volume: 51 start-page: 2539 year: 2014 end-page: 2548 ident: b18 article-title: Experimental investigation and modeling of the tension behavior of polycarbonate with temperature effects from low to high strain rates publication-title: Int. J. Solids Struct. – volume: 53 start-page: 752 year: 2013 end-page: 761 ident: b80 article-title: Constitutive modeling of polycarbonate during high strain rate deformation publication-title: Polym. Eng. Sci. – volume: 94 start-page: 35 year: 1992 end-page: 61 ident: b72 article-title: A model for finite strain elasto-plasticity based on logarithmic strains: Computational issues publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 22 start-page: 1437 year: 1987 end-page: 1442 ident: b32 article-title: The yield behaviour of amorphous polyethylene terephthalate: An activated rate theory approach publication-title: J. Mater. Sci. – volume: 137 year: 2021 ident: b105 article-title: A multiplicative finite strain crystal plasticity formulation based on additive elastic corrector rates: Theory and numerical implementation publication-title: Int. J. Plast. – volume: 22 year: 2018 ident: b96 article-title: Establishment and comparison of four constitutive relationships of PC/ABS from low to high uniaxial strain rates publication-title: Mech. Time Depend. Mater. – volume: 400 year: 2022 ident: b4 article-title: A consistent algorithm for finite-strain visco-hyperelasticity and visco-plasticity of amorphous polymers publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 185 start-page: 225 year: 2000 end-page: 243 ident: b49 article-title: A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 30 start-page: 701 year: 1995 end-page: 711 ident: b26 article-title: Rheology of polypropylene in the solid state publication-title: J. Mater. Sci. – volume: 91 start-page: 109 year: 2017 end-page: 133 ident: b43 article-title: Continuum approach for modeling fatigue in amorphous glassy polymers. Applications to the investigation of damage-ratcheting interaction in polycarbonate publication-title: Int. J. Plast. – volume: 15 start-page: 85 year: 1976 end-page: 98 ident: b59 article-title: Nonequilibrium thermodynamics and rheology of viscoelastic polymer media publication-title: Rheol. Acta – volume: 67 start-page: 102 year: 2015 end-page: 126 ident: b64 article-title: A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66 publication-title: Int. J. Plast. – volume: 163 start-page: 56 year: 2016 end-page: 70 ident: b55 article-title: Fully anisotropic finite strain viscoelasticity based on a reverse multiplicative decomposition and logarithmic strains publication-title: Comput. Struct. – volume: 44 start-page: 3579 year: 2003 end-page: 3591 ident: b91 article-title: Localisation phenomena in glassy polymers: Influence of thermal and mechanical history publication-title: Polymer – year: 2008 ident: b24 article-title: Computational Methods for Plasticity – volume: 121 start-page: 227 year: 2019 end-page: 243 ident: b82 article-title: Thermo-elastic-viscoplastic-damage model for self-heating and mechanical behavior of thermoplastic polymers publication-title: Int. J. Plast. – volume: 25 start-page: 1495 year: 2009 end-page: 1539 ident: b2 article-title: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications publication-title: Int. J. Plast. – year: 2023 ident: b30 article-title: An efficient finite strain constitutive model for amorphous thermoplastics: fully implicit computational implementation and optimization-based parameter calibration publication-title: Comput. Struct. – volume: 166 start-page: 60 year: 2016 end-page: 74 ident: b66 article-title: An elasto-viscoplastic constitutive model for polymers at finite strains: Formulation and computational aspects publication-title: Comput. Struct. – volume: 97 start-page: 331 year: 2019 end-page: 353 ident: b62 article-title: Yield behaviour of high-density polyethylene: Experimental and numerical characterization publication-title: Eng. Fail. Anal. – year: 2015 ident: b12 article-title: Mechanics of Solid Polymers: Theory and Computational Modeling – start-page: 283 year: 1963 end-page: 291 ident: b28 article-title: Viscosity, plasticity, and diffusion as examples of absolute reaction rates publication-title: J. Chem. Phys. – volume: 179 year: 2020 ident: b47 article-title: Constitutive modeling of the rate- and temperature-dependent macro-yield behavior of amorphous glassy polymers publication-title: Int. J. Mech. Sci. – volume: 7 start-page: 1745 year: 1969 end-page: 1754 ident: b10 article-title: Tensile yield-stress behavior of poly(vinyl chloride) and polycarbonate in the glass transition region publication-title: J. Polym. Sci. A-2: Polym. Phys. – volume: 199 start-page: 57 year: 2018 end-page: 73 ident: b42 article-title: Modeling of mechanical behavior of amorphous solids undergoing fatigue loadings, with application to polymers publication-title: Comput. Struct. – volume: 57 start-page: 1943 year: 2003 end-page: 1978 ident: b73 article-title: Back analysis of model parameters in geotechnical engineering by means of soft computing publication-title: Internat. J. Numer. Methods Engrg. – volume: 88 start-page: 159 year: 2017 end-page: 187 ident: b67 article-title: Modelling of the post yield response of amorphous polymers under different stress states publication-title: Int. J. Plast. – volume: 122 start-page: 135 year: 2019 end-page: 163 ident: b94 article-title: A finite strain thermodynamically-based constitutive modeling and analysis of viscoelastic-viscoplastic deformation behavior of glassy polymers publication-title: Int. J. Plast. – volume: 65 start-page: 48 year: 2012 end-page: 63 ident: b31 article-title: A constitutive model for finite deformation of amorphous polymers publication-title: Int. J. Mech. Sci. – volume: 42 start-page: 289 year: 1998 end-page: 311 ident: b79 article-title: A computational model for elasto-viscoplastic solids at finite strain with reference to thin shell applications publication-title: Internat. J. Numer. Methods Engrg. – volume: 302 start-page: 453 year: 1968 end-page: 472 ident: b41 article-title: The use of a mathematical model to describe isothermal stress-Strain curves in glassy thermoplastics publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 113 start-page: 185 year: 2019 end-page: 217 ident: b104 article-title: A simple formulation for large-strain cyclic hyperelasto-plasticity using elastic correctors. Theory and algorithmic implementation publication-title: Int. J. Plast. – volume: 146 year: 2021 ident: b93 article-title: Extending the effective temperature model to the large strain hardening behavior of glassy polymers publication-title: J. Mech. Phys. Solids – volume: 9 start-page: 697 year: 1993 end-page: 720 ident: b5 article-title: Evolution of plastic anisotropy in amorphous polymers during finite straining publication-title: Int. J. Plast. – volume: 26 year: 2012 ident: b50 article-title: Strain rate dependence in plasticized and un-plasticized PVC publication-title: EPJ Web Conf. – volume: 46 start-page: 931 year: 1998 end-page: 954 ident: b13 article-title: Constitutive modeling of the large strain time-dependent behavior of elastomers publication-title: J. Mech. Phys. Solids – volume: 14 start-page: 583 year: 1979 end-page: 591 ident: b37 article-title: Determination of the plastic behaviour of solid polymers at constant true strain rate publication-title: J. Mater. Sci. – start-page: 2314 year: 2017 end-page: 2323 ident: b61 article-title: Global optimization of Lipschitz functions publication-title: Proceedings of the 34th International Conference on Machine Learning - Volume 70 – volume: 36 start-page: 1 year: 1969 end-page: 6 ident: b57 article-title: Elastic-Plastic deformation at finite strains publication-title: J. Appl. Mech. – volume: 163 year: 2023 ident: b60 article-title: A mean-field shear transformation zone theory for amorphous polymers publication-title: Int. J. Plast. – volume: 8 start-page: 968 year: 1973 end-page: 979 ident: b11 article-title: The compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates publication-title: J. Mater. Sci. – volume: 110 start-page: 223 year: 1989 end-page: 229 ident: b36 article-title: Effect of plastic deformation on the microstructure and properties of amorphous polycarbonate publication-title: Mater. Sci. Eng. A – volume: 41 start-page: 1322 year: 2001 end-page: 1328 ident: b25 article-title: A uniform phenomenological constitutive model for glassy and semicrystalline polymers publication-title: Polym. Eng. Sci. – year: 2023 ident: 10.1016/j.ijplas.2023.103712_b30 article-title: An efficient finite strain constitutive model for amorphous thermoplastics: fully implicit computational implementation and optimization-based parameter calibration publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2023.107007 – volume: 44 start-page: 7938 issue: 24 year: 2007 ident: 10.1016/j.ijplas.2023.103712_b77 article-title: Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2007.05.018 – volume: 19 start-page: 193 issue: 2 year: 1995 ident: 10.1016/j.ijplas.2023.103712_b6 article-title: Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers publication-title: Mech. Mater. doi: 10.1016/0167-6636(94)00034-E – volume: 153 year: 2022 ident: 10.1016/j.ijplas.2023.103712_b90 article-title: Viscoelastic-viscoplastic modeling of epoxy based on transient network theory publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2022.103262 – volume: 32 start-page: 48 issue: 1 year: 2011 ident: 10.1016/j.ijplas.2023.103712_b1 article-title: Parameter identification of an elasto-plastic behaviour using artificial neural networks–genetic algorithm method publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.06.039 – volume: 37 start-page: 1703 issue: 5 year: 2020 ident: 10.1016/j.ijplas.2023.103712_b63 article-title: Viscoelastic-viscoplastic combined constitutive model for glassy amorphous polymers under loading/unloading/no-load states publication-title: Eng. Comput. doi: 10.1108/EC-05-2019-0197 – volume: 96 start-page: 192 year: 2016 ident: 10.1016/j.ijplas.2023.103712_b70 article-title: A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2016.06.008 – year: 2000 ident: 10.1016/j.ijplas.2023.103712_b44 – volume: 55 start-page: 716 year: 2018 ident: 10.1016/j.ijplas.2023.103712_b56 article-title: A new class of plastic flow evolution equations for anisotropic multiplicative elastoplasticity based on the notion of a corrector elastic strain rate publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2017.11.003 – year: 2006 ident: 10.1016/j.ijplas.2023.103712_b68 – volume: 199 start-page: 57 year: 2018 ident: 10.1016/j.ijplas.2023.103712_b42 article-title: Modeling of mechanical behavior of amorphous solids undergoing fatigue loadings, with application to polymers publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2018.01.010 – volume: 3 start-page: 172 issue: 3 year: 2005 ident: 10.1016/j.ijplas.2023.103712_b40 article-title: Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-004-0055-6 – volume: 6 start-page: 615 issue: 11 year: 1965 ident: 10.1016/j.ijplas.2023.103712_b78 article-title: Yield stress behaviour of poly(ethyl methacrylate) in the glass transition region publication-title: Polymer doi: 10.1016/0032-3861(65)90056-X – volume: 121 start-page: 227 year: 2019 ident: 10.1016/j.ijplas.2023.103712_b82 article-title: Thermo-elastic-viscoplastic-damage model for self-heating and mechanical behavior of thermoplastic polymers publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.06.003 – volume: 46 start-page: 931 issue: 5 year: 1998 ident: 10.1016/j.ijplas.2023.103712_b13 article-title: Constitutive modeling of the large strain time-dependent behavior of elastomers publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(97)00075-6 – volume: 7 start-page: 15 issue: 1 year: 1988 ident: 10.1016/j.ijplas.2023.103712_b16 article-title: Large inelastic deformation of glassy polymers. Part I: Rate dependent constitutive model publication-title: Mech. Mater. doi: 10.1016/0167-6636(88)90003-8 – volume: 67 start-page: 102 year: 2015 ident: 10.1016/j.ijplas.2023.103712_b64 article-title: A thermo-mechanical large deformation constitutive model for polymers based on material network description: Application to a semi-crystalline polyamide 66 publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2014.10.004 – volume: 21 year: 2017 ident: 10.1016/j.ijplas.2023.103712_b97 article-title: Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures publication-title: Mech. Time Depend. Mater. doi: 10.1007/s11043-016-9320-1 – volume: 122 start-page: 31 year: 2019 ident: 10.1016/j.ijplas.2023.103712_b8 article-title: A compact constitutive model to describe the viscoelastic-plastic behaviour of glassy polymers: Comparison with monotonic and cyclic experiments and state-of-the-art models publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.05.010 – volume: 41 start-page: 1322 issue: 8 year: 2001 ident: 10.1016/j.ijplas.2023.103712_b25 article-title: A uniform phenomenological constitutive model for glassy and semicrystalline polymers publication-title: Polym. Eng. Sci. doi: 10.1002/pen.10832 – volume: 42 start-page: 168 year: 2013 ident: 10.1016/j.ijplas.2023.103712_b15 article-title: An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2012.10.005 – volume: 1 start-page: 269 issue: 3 year: 1998 ident: 10.1016/j.ijplas.2023.103712_b87 article-title: A constitutive equation for the elasto-viscoplastic deformation of glassy polymers publication-title: Mech. Time Depend. Mater. doi: 10.1023/A:1009720708029 – volume: 12 start-page: 2949 year: 2020 ident: 10.1016/j.ijplas.2023.103712_b65 article-title: Artificial neural networks-based material parameter identification for numerical simulations of additively manufactured parts by material extrusion publication-title: Polymers doi: 10.3390/polym12122949 – volume: 55 start-page: 6577 issue: 25 year: 2014 ident: 10.1016/j.ijplas.2023.103712_b102 article-title: A visco-elastoplastic constitutive model for large deformation response of polycarbonate over a wide range of strain rates and temperatures publication-title: Polymer doi: 10.1016/j.polymer.2014.09.071 – volume: 22 start-page: 1437 year: 1987 ident: 10.1016/j.ijplas.2023.103712_b32 article-title: The yield behaviour of amorphous polyethylene terephthalate: An activated rate theory approach publication-title: J. Mater. Sci. doi: 10.1007/BF01233145 – volume: 122 start-page: 135 year: 2019 ident: 10.1016/j.ijplas.2023.103712_b94 article-title: A finite strain thermodynamically-based constitutive modeling and analysis of viscoelastic-viscoplastic deformation behavior of glassy polymers publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2019.06.013 – volume: 166 start-page: 60 year: 2016 ident: 10.1016/j.ijplas.2023.103712_b66 article-title: An elasto-viscoplastic constitutive model for polymers at finite strains: Formulation and computational aspects publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.01.002 – volume: 163 start-page: 56 year: 2016 ident: 10.1016/j.ijplas.2023.103712_b55 article-title: Fully anisotropic finite strain viscoelasticity based on a reverse multiplicative decomposition and logarithmic strains publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2015.09.001 – volume: 97 start-page: 331 year: 2019 ident: 10.1016/j.ijplas.2023.103712_b62 article-title: Yield behaviour of high-density polyethylene: Experimental and numerical characterization publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2019.01.001 – volume: 25 start-page: 1495 issue: 8 year: 2009 ident: 10.1016/j.ijplas.2023.103712_b2 article-title: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: Applications publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2008.11.005 – year: 2012 ident: 10.1016/j.ijplas.2023.103712_b21 – volume: 36 start-page: 541 issue: 4 year: 1996 ident: 10.1016/j.ijplas.2023.103712_b81 article-title: Mechanical behavior of a ductile polyamide 12 during impact publication-title: Polym. Eng. Sci. doi: 10.1002/pen.10440 – volume: 179 year: 2020 ident: 10.1016/j.ijplas.2023.103712_b47 article-title: Constitutive modeling of the rate- and temperature-dependent macro-yield behavior of amorphous glassy polymers publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.105653 – volume: 161–162 year: 2019 ident: 10.1016/j.ijplas.2023.103712_b46 article-title: Finite deformation constitutive model for macro-yield behavior of amorphous glassy polymers with a molecular entanglement-based internal-state variable publication-title: Int. J. Mech. Sci. – volume: 135 year: 2019 ident: 10.1016/j.ijplas.2023.103712_b22 article-title: Material model parameter estimation with genetic algorithm optimization method and modeling of strain and temperature dependent behavior of epoxy resin with cooperative-VBO model publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2019.04.023 – volume: 51 start-page: 2539 issue: 13 year: 2014 ident: 10.1016/j.ijplas.2023.103712_b18 article-title: Experimental investigation and modeling of the tension behavior of polycarbonate with temperature effects from low to high strain rates publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2014.03.026 – volume: 53 start-page: 752 issue: 4 year: 2013 ident: 10.1016/j.ijplas.2023.103712_b80 article-title: Constitutive modeling of polycarbonate during high strain rate deformation publication-title: Polym. Eng. Sci. doi: 10.1002/pen.23315 – year: 2023 ident: 10.1016/j.ijplas.2023.103712_b19 article-title: Constitutive modeling of amorphous thermoplastics from low to high strain rates: Formulation and critical comparison employing an optimization-based parameter identification publication-title: Int. J. Solids Struct. – volume: 57 start-page: 1943 year: 2003 ident: 10.1016/j.ijplas.2023.103712_b73 article-title: Back analysis of model parameters in geotechnical engineering by means of soft computing publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.740 – volume: 11 start-page: 1368 year: 1976 ident: 10.1016/j.ijplas.2023.103712_b33 article-title: Comment on “the compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates” publication-title: J. Mater. Sci. doi: 10.1007/BF00545162 – volume: 94 start-page: 35 issue: 1 year: 1992 ident: 10.1016/j.ijplas.2023.103712_b72 article-title: A model for finite strain elasto-plasticity based on logarithmic strains: Computational issues publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(92)90156-E – volume: 58 start-page: 2237 issue: 12 year: 2018 ident: 10.1016/j.ijplas.2023.103712_b95 article-title: A 3D thermomechanical constitutive model for polycarbonate and its application in ballistic simulation publication-title: Polym. Eng. Sci. doi: 10.1002/pen.24842 – volume: 163 year: 2023 ident: 10.1016/j.ijplas.2023.103712_b60 article-title: A mean-field shear transformation zone theory for amorphous polymers publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2023.103556 – volume: 46 start-page: 2475 issue: 22 year: 2008 ident: 10.1016/j.ijplas.2023.103712_b34 article-title: Does the strain hardening modulus of glassy polymers scale with the flow stress? publication-title: J. Polym. Sci. B Polym. Phys. doi: 10.1002/polb.21579 – volume: 22 year: 2018 ident: 10.1016/j.ijplas.2023.103712_b96 article-title: Establishment and comparison of four constitutive relationships of PC/ABS from low to high uniaxial strain rates publication-title: Mech. Time Depend. Mater. doi: 10.1007/s11043-017-9367-7 – volume: 442 start-page: 125 year: 2013 ident: 10.1016/j.ijplas.2023.103712_b45 article-title: Compression tests of polycarbonate under quasi-static and dynamic loading publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.442.125 – volume: 26 start-page: 793 year: 1955 ident: 10.1016/j.ijplas.2023.103712_b74 article-title: Theory of non-Newtonian flow. I. Solid plastic system publication-title: J. Appl. Phys. doi: 10.1063/1.1722098 – start-page: 283 year: 1963 ident: 10.1016/j.ijplas.2023.103712_b28 article-title: Viscosity, plasticity, and diffusion as examples of absolute reaction rates publication-title: J. Chem. Phys. – volume: 36 start-page: 1 issue: 1 year: 1969 ident: 10.1016/j.ijplas.2023.103712_b57 article-title: Elastic-Plastic deformation at finite strains publication-title: J. Appl. Mech. doi: 10.1115/1.3564580 – volume: 65 start-page: 48 issue: 1 year: 2012 ident: 10.1016/j.ijplas.2023.103712_b31 article-title: A constitutive model for finite deformation of amorphous polymers publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2012.09.003 – volume: 30 start-page: 1099 issue: 6 year: 1990 ident: 10.1016/j.ijplas.2023.103712_b27 article-title: A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1620300602 – volume: 26 year: 2012 ident: 10.1016/j.ijplas.2023.103712_b50 article-title: Strain rate dependence in plasticized and un-plasticized PVC publication-title: EPJ Web Conf. doi: 10.1051/epjconf/20122602009 – volume: 44 start-page: 3579 issue: 12 year: 2003 ident: 10.1016/j.ijplas.2023.103712_b91 article-title: Localisation phenomena in glassy polymers: Influence of thermal and mechanical history publication-title: Polymer doi: 10.1016/S0032-3861(03)00089-2 – volume: 251 year: 2022 ident: 10.1016/j.ijplas.2023.103712_b101 article-title: Temperature and strain rate sensitivity of yield strength of amorphous polymers: Characterization and modeling publication-title: Polymer doi: 10.1016/j.polymer.2022.124936 – volume: 202 year: 2020 ident: 10.1016/j.ijplas.2023.103712_b29 article-title: Modelling strain rate and temperature dependent mechanical response of PMMAs at large deformation from below to above Tg publication-title: Polymer doi: 10.1016/j.polymer.2020.122710 – volume: 60 start-page: 163 year: 2014 ident: 10.1016/j.ijplas.2023.103712_b52 article-title: A thermodynamically-based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2014.04.010 – volume: 30 start-page: 284 year: 1991 ident: 10.1016/j.ijplas.2023.103712_b7 article-title: Calculation of residual stresses in injection molded products publication-title: Rheol. Acta doi: 10.1007/BF00366642 – volume: 14 start-page: 583 issue: 3 year: 1979 ident: 10.1016/j.ijplas.2023.103712_b37 article-title: Determination of the plastic behaviour of solid polymers at constant true strain rate publication-title: J. Mater. Sci. doi: 10.1007/BF00772717 – volume: 185 start-page: 225 issue: 2 year: 2000 ident: 10.1016/j.ijplas.2023.103712_b49 article-title: A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(99)00261-3 – year: 2017 ident: 10.1016/j.ijplas.2023.103712_b51 – volume: 115 start-page: 154 year: 2019 ident: 10.1016/j.ijplas.2023.103712_b53 article-title: Thermo-mechanical coupling of a viscoelastic-viscoplastic model for thermoplastic polymers: Thermodynamical derivation and experimental assessment publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.11.016 – volume: 16 start-page: 361 year: 2012 ident: 10.1016/j.ijplas.2023.103712_b71 article-title: Compression of polypropylene across a wide range of strain rates publication-title: Mech. Time Depend. Mater. doi: 10.1007/s11043-012-9167-z – volume: 38 start-page: 19 issue: 1 year: 1967 ident: 10.1016/j.ijplas.2023.103712_b58 article-title: Finite-Strain elastic–Plastic theory with application to plane-wave analysis publication-title: J. Appl. Phys. doi: 10.1063/1.1708953 – volume: 88 start-page: 159 year: 2017 ident: 10.1016/j.ijplas.2023.103712_b67 article-title: Modelling of the post yield response of amorphous polymers under different stress states publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2016.10.008 – year: 2008 ident: 10.1016/j.ijplas.2023.103712_b24 – volume: 48 start-page: 1464 issue: 13 year: 2010 ident: 10.1016/j.ijplas.2023.103712_b98 article-title: Strain-hardening modulus of cross-linked glassy poly(methyl methacrylate) publication-title: J. Polym. Sci. B Polym. Phys. doi: 10.1002/polb.21979 – volume: 95 year: 2017 ident: 10.1016/j.ijplas.2023.103712_b99 article-title: Modeling energy storage and structural evolution during finite viscoplastic deformation of glassy polymers publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.95.063001 – year: 1975 ident: 10.1016/j.ijplas.2023.103712_b89 – year: 1997 ident: 10.1016/j.ijplas.2023.103712_b88 – volume: 43 start-page: 1331 issue: 5 year: 2006 ident: 10.1016/j.ijplas.2023.103712_b69 article-title: Mechanics of the rate-dependent elastic– Plastic deformation of glassy polymers from low to high strain rates publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2005.04.016 – volume: 91 start-page: 109 year: 2017 ident: 10.1016/j.ijplas.2023.103712_b43 article-title: Continuum approach for modeling fatigue in amorphous glassy polymers. Applications to the investigation of damage-ratcheting interaction in polycarbonate publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2016.12.001 – volume: 46 start-page: 4079 issue: 22 year: 2009 ident: 10.1016/j.ijplas.2023.103712_b92 article-title: Constitutive equations for thermomechanical deformations of glassy polymers publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2009.08.006 – volume: 146 year: 2021 ident: 10.1016/j.ijplas.2023.103712_b93 article-title: Extending the effective temperature model to the large strain hardening behavior of glassy polymers publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2020.104175 – volume: 158 year: 2022 ident: 10.1016/j.ijplas.2023.103712_b54 article-title: A thermodynamically-based constitutive theory for amorphous glassy polymers at finite deformations publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2022.103415 – volume: 35 start-page: 3455 issue: 26 year: 1998 ident: 10.1016/j.ijplas.2023.103712_b75 article-title: A theory of finite viscoelasticity and numerical aspects publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(97)00217-5 – year: 1991 ident: 10.1016/j.ijplas.2023.103712_b23 – start-page: 2314 year: 2017 ident: 10.1016/j.ijplas.2023.103712_b61 article-title: Global optimization of Lipschitz functions – volume: 245 year: 2021 ident: 10.1016/j.ijplas.2023.103712_b20 article-title: Efficient parameters identification of a modified GTN model of ductile fracture using machine learning publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2021.107535 – year: 1998 ident: 10.1016/j.ijplas.2023.103712_b85 – volume: 124 year: 2018 ident: 10.1016/j.ijplas.2023.103712_b48 article-title: A thermo-elasto-viscoplastic constitutive model for polymers publication-title: J. Mech. Phys. Solids – volume: 302 start-page: 453 issue: 1471 year: 1968 ident: 10.1016/j.ijplas.2023.103712_b41 article-title: The use of a mathematical model to describe isothermal stress-Strain curves in glassy thermoplastics publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 7 start-page: 577 year: 1972 ident: 10.1016/j.ijplas.2023.103712_b9 article-title: Relation between the compression yield stress and the mechanical loss peak of bisphenol-a-polycarbonate in the β transition range publication-title: J. Mater. Sci. doi: 10.1007/BF00761956 – volume: 301 start-page: 469 issue: 4 year: 2016 ident: 10.1016/j.ijplas.2023.103712_b103 article-title: A macro-Damaged viscoelastoplastic model for thermomechanical and rate-Dependent behavior of glassy polymers publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201500322 – year: 2015 ident: 10.1016/j.ijplas.2023.103712_b12 – volume: 38 start-page: 53 year: 2012 ident: 10.1016/j.ijplas.2023.103712_b17 article-title: Effects of strain rate and temperature on the tension behavior of polycarbonate publication-title: Mater. Des. doi: 10.1016/j.matdes.2012.02.007 – volume: 98 start-page: 197 year: 2017 ident: 10.1016/j.ijplas.2023.103712_b38 article-title: A finite strain thermodynamically-based constitutive framework coupling viscoelasticity and viscoplasticity with application to glassy polymers publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2017.08.001 – volume: 30 start-page: 701 issue: 3 year: 1995 ident: 10.1016/j.ijplas.2023.103712_b26 article-title: Rheology of polypropylene in the solid state publication-title: J. Mater. Sci. doi: 10.1007/BF00356330 – volume: 31 start-page: 185 issue: 2 year: 1993 ident: 10.1016/j.ijplas.2023.103712_b39 article-title: An investigation of the yield and postyield behavior and corresponding structure of poly(methyl methacrylate) publication-title: J. Polym. Sci. B Polym. Phys. doi: 10.1002/polb.1993.090310207 – volume: 122 year: 2000 ident: 10.1016/j.ijplas.2023.103712_b35 article-title: The influence of intrinsic strain softening on strain localization in polycarbonate: Modeling and experimental validation publication-title: J. Eng. Mater. Technol. Trans. ASME doi: 10.1115/1.482784 – volume: 7 start-page: 1745 issue: 10 year: 1969 ident: 10.1016/j.ijplas.2023.103712_b10 article-title: Tensile yield-stress behavior of poly(vinyl chloride) and polycarbonate in the glass transition region publication-title: J. Polym. Sci. A-2: Polym. Phys. doi: 10.1002/pol.1969.160071010 – volume: 43 start-page: 2318 issue: 7 year: 2006 ident: 10.1016/j.ijplas.2023.103712_b76 article-title: Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2005.06.040 – volume: 32 start-page: 627 year: 2000 ident: 10.1016/j.ijplas.2023.103712_b14 article-title: Large strain time-dependent behaviour of filled elastomers publication-title: Mech. Mater. doi: 10.1016/S0167-6636(00)00028-4 – volume: 137 year: 2021 ident: 10.1016/j.ijplas.2023.103712_b105 article-title: A multiplicative finite strain crystal plasticity formulation based on additive elastic corrector rates: Theory and numerical implementation publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2020.102899 – volume: 156 year: 2022 ident: 10.1016/j.ijplas.2023.103712_b100 article-title: Thermomechanical coupling in glassy polymers: An effective temperature theory publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2022.103361 – volume: 9 start-page: 697 issue: 6 year: 1993 ident: 10.1016/j.ijplas.2023.103712_b5 article-title: Evolution of plastic anisotropy in amorphous polymers during finite straining publication-title: Int. J. Plast. doi: 10.1016/0749-6419(93)90034-N – volume: 110 start-page: 223 year: 1989 ident: 10.1016/j.ijplas.2023.103712_b36 article-title: Effect of plastic deformation on the microstructure and properties of amorphous polycarbonate publication-title: Mater. Sci. Eng. A doi: 10.1016/0921-5093(89)90174-3 – volume: 18 start-page: 141 issue: 4 year: 1978 ident: 10.1016/j.ijplas.2023.103712_b3 article-title: A method to produce uniform plane-stress states with applications to fiber-reinforced materials publication-title: Exp. Mech. doi: 10.1007/BF02324146 – volume: 60 start-page: 153 issue: 2 year: 1987 ident: 10.1016/j.ijplas.2023.103712_b84 article-title: On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(87)90107-1 – volume: 15 start-page: 85 issue: 2 year: 1976 ident: 10.1016/j.ijplas.2023.103712_b59 article-title: Nonequilibrium thermodynamics and rheology of viscoelastic polymer media publication-title: Rheol. Acta doi: 10.1007/BF01517499 – year: 1996 ident: 10.1016/j.ijplas.2023.103712_b86 – volume: 400 year: 2022 ident: 10.1016/j.ijplas.2023.103712_b4 article-title: A consistent algorithm for finite-strain visco-hyperelasticity and visco-plasticity of amorphous polymers publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2022.115528 – volume: 107 start-page: 33 year: 2018 ident: 10.1016/j.ijplas.2023.103712_b83 article-title: A coupled hyperelastic-plastic-continuum damage model for studying cyclic behavior of unfilled engineering polymers publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2017.10.006 – volume: 113 start-page: 185 year: 2019 ident: 10.1016/j.ijplas.2023.103712_b104 article-title: A simple formulation for large-strain cyclic hyperelasto-plasticity using elastic correctors. Theory and algorithmic implementation publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2018.09.013 – volume: 42 start-page: 289 issue: 2 year: 1998 ident: 10.1016/j.ijplas.2023.103712_b79 article-title: A computational model for elasto-viscoplastic solids at finite strain with reference to thin shell applications publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/(SICI)1097-0207(19980530)42:2<289::AID-NME364>3.0.CO;2-9 – volume: 8 start-page: 968 issue: 7 year: 1973 ident: 10.1016/j.ijplas.2023.103712_b11 article-title: The compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates publication-title: J. Mater. Sci. doi: 10.1007/BF00756628 |
| SSID | ssj0005831 |
| Score | 2.4956431 |
| Snippet | In this paper, a recently proposed finite strain visco-elastic visco-plastic (three-dimensional) constitutive model is extended to predict the nonlinear... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103712 |
| SubjectTerms | Amorphous polymers Calibration Finite Element Analysis Implicit integration algorithm Poly(methyl methacrylate) Polycarbonate Strain-rate Visco-elasticity Visco-plasticity |
| Title | A constitutive model for amorphous thermoplastics from low to high strain rates: Formulation and computational aspects |
| URI | https://dx.doi.org/10.1016/j.ijplas.2023.103712 |
| Volume | 169 |
| WOSCitedRecordID | wos001147980800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0749-6419 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0005831 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5tAEF65SQ_NoY-0VdO01R56s0CBtb0mNxTFais18iGVfEMLu6i2CFiYWPlL-ZeZ2QfgpEqbQy_IQuwsMB-z347nQcjXQEgVpKnEjB6JLcwyb6ok94CchxI-TAHDdLMJfnExXSyi-WBw63JhtgUvy-nNTbT-r6qGc6BsTJ19grpboXACfoPS4Qhqh-M_KT7GSHITAYBRQbrVjYmVvKrgpWLIK5K-q2oNxFkXadYpJgX2lquGWL4YE0gE5rkgD0WXwQyIrW3z5fLg1teNcyMKna256dPcXT9jrzqFnXPZtJ78M2xOVPyuhnGxNSYr9l27jy6MaKbqWi1r0ycaRdeyGs79zokha4DDcA4GXMuY-T_9vkMj7ELjnN3jo8ibjKwldUbaNHSxZhaTG0309YMVwDgjVv5yhU_k4wR-d_luwe17C2Ebnugi31aJkZKglMRIeUb2Qz6OwIDux9_PFz-6eKKpaX7p7t7laepgwod382ce1OM2l6_JS7spobEB0xsyUOUheWU3KNSa_80hOehVr3xLtjHtI41qpFFAGm2RRneRRhFpFJBGm4oi0qhBGtVIO6U9nFHAGd3BGbU4e0d-zc4vz755to2HlwG7bzyJ_4WHIlSMSQE2IwgyKbhULJX5SCABlRIIVJ6KQMlxmqYcFpEcCMEklIxNIvae7JVVqT4QmsFmRrFozNQkR8dHdKIyKTlXJwz2zeP8iDD3UpPM1rjH5yiSx1R6RLx21NrUePnL9dzpK7E81fDPBED46MiPT5zpmLzovpBPZK-pr9Vn8jzbNstN_cUi8A7mZb3G |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+constitutive+model+for+amorphous+thermoplastics+from+low+to+high+strain+rates%3A+Formulation+and+computational+aspects&rft.jtitle=International+journal+of+plasticity&rft.au=Carvalho+Alves%2C+A.+Francisca&rft.au=Ferreira%2C+Bernardo+P.&rft.au=Andrade+Pires%2C+F.M.&rft.date=2023-10-01&rft.issn=0749-6419&rft.volume=169&rft.spage=103712&rft_id=info:doi/10.1016%2Fj.ijplas.2023.103712&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijplas_2023_103712 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-6419&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-6419&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-6419&client=summon |