Application of complex networks for monthly rainfall dynamics over central Vietnam

Adequate understanding of the temporal connections in rainfall is important for reliable predictions of rainfall and, hence, for water resources planning and management. This research aims to study the temporal connections in rainfall using complex networks concepts. First, the single-variable rainf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic environmental research and risk assessment Jg. 35; H. 3; S. 535 - 548
Hauptverfasser: Ghorbani, Mohammad Ali, Karimi, Vahid, Ruskeepää, Heikki, Sivakumar, Bellie, Pham, Quoc Bao, Mohammadi, Fatemeh, Yasmin, Nazly
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2021
Springer Nature B.V
Schlagworte:
ISSN:1436-3240, 1436-3259
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Adequate understanding of the temporal connections in rainfall is important for reliable predictions of rainfall and, hence, for water resources planning and management. This research aims to study the temporal connections in rainfall using complex networks concepts. First, the single-variable rainfall time series is represented in a multi-dimensional phase space using delay embedding (i.e. phase-space reconstruction), where the appropriate delay time and optimal embedding dimension of the time series are determined by using average mutual information and false nearest neighbors methods, respectively. Then, this reconstructed phase space is treated as a ‘network,’ with the reconstructed vectors serving as ‘nodes’ and the connections between them serving as ‘links’. Finally, the strength of the nodes are calculated to identify some key properties of the temporal rainfall network. The approach is employed independently to monthly rainfall data observed over a period of 38 years (1979–2016) from 14 rain gauge stations in the Vu Gia Thu Bon River basin in central Vietnam. Moreover, entropy values of the original rainfall time series are calculated for obtaining additional information on the properties of the rainfall dynamics. The average node strengths are also examined in terms of the mean annual rainfall, entropy of the time series, and elevation of the rain gauge station. The results indicate that: (1) while some adjacent stations (i.e. networks) have somewhat similar strength (average node strength) values, several others that are geographically close show significantly different network strengths; (2) similar entropies for adjacent stations are found more frequently than similar average node strengths; (3) there is generally a positive and proportional relationship between average strengths of nodes and entropies; and (4) the average node strengths of different months have some distinct temporal patterns (3-month, 4-month, and 6-month patterns) in rainfall dynamics, depending upon the specific region of the study area. These results have important implications for prediction, interpolation, and extrapolation of rainfall data.
AbstractList Adequate understanding of the temporal connections in rainfall is important for reliable predictions of rainfall and, hence, for water resources planning and management. This research aims to study the temporal connections in rainfall using complex networks concepts. First, the single-variable rainfall time series is represented in a multi-dimensional phase space using delay embedding (i.e. phase-space reconstruction), where the appropriate delay time and optimal embedding dimension of the time series are determined by using average mutual information and false nearest neighbors methods, respectively. Then, this reconstructed phase space is treated as a ‘network,’ with the reconstructed vectors serving as ‘nodes’ and the connections between them serving as ‘links’. Finally, the strength of the nodes are calculated to identify some key properties of the temporal rainfall network. The approach is employed independently to monthly rainfall data observed over a period of 38 years (1979–2016) from 14 rain gauge stations in the Vu Gia Thu Bon River basin in central Vietnam. Moreover, entropy values of the original rainfall time series are calculated for obtaining additional information on the properties of the rainfall dynamics. The average node strengths are also examined in terms of the mean annual rainfall, entropy of the time series, and elevation of the rain gauge station. The results indicate that: (1) while some adjacent stations (i.e. networks) have somewhat similar strength (average node strength) values, several others that are geographically close show significantly different network strengths; (2) similar entropies for adjacent stations are found more frequently than similar average node strengths; (3) there is generally a positive and proportional relationship between average strengths of nodes and entropies; and (4) the average node strengths of different months have some distinct temporal patterns (3-month, 4-month, and 6-month patterns) in rainfall dynamics, depending upon the specific region of the study area. These results have important implications for prediction, interpolation, and extrapolation of rainfall data.
Adequate understanding of the temporal connections in rainfall is important for reliable predictions of rainfall and, hence, for water resources planning and management. This research aims to study the temporal connections in rainfall using complex networks concepts. First, the single-variable rainfall time series is represented in a multi-dimensional phase space using delay embedding (i.e. phase-space reconstruction), where the appropriate delay time and optimal embedding dimension of the time series are determined by using average mutual information and false nearest neighbors methods, respectively. Then, this reconstructed phase space is treated as a ‘network,’ with the reconstructed vectors serving as ‘nodes’ and the connections between them serving as ‘links’. Finally, the strength of the nodes are calculated to identify some key properties of the temporal rainfall network. The approach is employed independently to monthly rainfall data observed over a period of 38 years (1979–2016) from 14 rain gauge stations in the Vu Gia Thu Bon River basin in central Vietnam. Moreover, entropy values of the original rainfall time series are calculated for obtaining additional information on the properties of the rainfall dynamics. The average node strengths are also examined in terms of the mean annual rainfall, entropy of the time series, and elevation of the rain gauge station. The results indicate that: (1) while some adjacent stations (i.e. networks) have somewhat similar strength (average node strength) values, several others that are geographically close show significantly different network strengths; (2) similar entropies for adjacent stations are found more frequently than similar average node strengths; (3) there is generally a positive and proportional relationship between average strengths of nodes and entropies; and (4) the average node strengths of different months have some distinct temporal patterns (3-month, 4-month, and 6-month patterns) in rainfall dynamics, depending upon the specific region of the study area. These results have important implications for prediction, interpolation, and extrapolation of rainfall data.
Author Karimi, Vahid
Sivakumar, Bellie
Mohammadi, Fatemeh
Ruskeepää, Heikki
Pham, Quoc Bao
Yasmin, Nazly
Ghorbani, Mohammad Ali
Author_xml – sequence: 1
  givenname: Mohammad Ali
  surname: Ghorbani
  fullname: Ghorbani, Mohammad Ali
  organization: Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Department of Civil Engineering, Istanbul Technical University
– sequence: 2
  givenname: Vahid
  orcidid: 0000-0002-5265-8395
  surname: Karimi
  fullname: Karimi, Vahid
  email: vahid.karimi22@yahoo.com, vahid.karimi93@ms.tabrizu.ac.ir
  organization: Department of Water Engineering, Faculty of Agriculture, University of Tabriz
– sequence: 3
  givenname: Heikki
  surname: Ruskeepää
  fullname: Ruskeepää, Heikki
  organization: Department of Mathematics and Statistics, University of Turku
– sequence: 4
  givenname: Bellie
  surname: Sivakumar
  fullname: Sivakumar, Bellie
  organization: Department of Civil Engineering, Indian Institute of Technology Bombay, UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, State Key Laboratory of Hydroscience and Engineering, Tsinghua University
– sequence: 5
  givenname: Quoc Bao
  surname: Pham
  fullname: Pham, Quoc Bao
  organization: Institute of Research and Development, Duy Tan University, Faculty of Environmental and Chemical Engineering, Duy Tan University
– sequence: 6
  givenname: Fatemeh
  surname: Mohammadi
  fullname: Mohammadi, Fatemeh
  organization: Department of Water Engineering, Faculty of Agriculture, University of Tabriz
– sequence: 7
  givenname: Nazly
  surname: Yasmin
  fullname: Yasmin, Nazly
  organization: UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales
BookMark eNp9kFtLwzAYhoNMcJv-Aa8CXldzatNejuEJBoKotyFNU81sk5pk6v69cRUFL3b1HXif7_DOwMQ6qwE4xegcI8QvAkKM8wwRlCFcFSQjB2CKGS0ySvJq8pszdARmIawRwpznbAruF8PQGSWjcRa6FirXD53-hFbHD-dfA2ydh72z8aXbQi-NbWXXwWZrZW9UgO5de6i0jV528MnomPrH4DCJgj75iXPweHX5sLzJVnfXt8vFKlM0JzFrUJ1jjinmmjR1iVHNZVVrXheUU1RhSTgri4opLNsC17lUUvMGl01SpVrTOTgb5w7evW10iGLtNt6mlYKwirCi4mn8HJSjSnkXgtetUCbu3k03m05gJL4dFKODIjkodg4KklDyDx286aXf7ofoCIUkts_a_121h_oC4kCGFA
CitedBy_id crossref_primary_10_1016_j_envpol_2025_125834
crossref_primary_10_1007_s00477_023_02578_y
crossref_primary_10_1007_s12517_022_10271_7
crossref_primary_10_1007_s00477_023_02416_1
crossref_primary_10_1016_j_atmosres_2022_106333
crossref_primary_10_1007_s40996_021_00809_2
crossref_primary_10_1016_j_jclepro_2022_131224
crossref_primary_10_5194_hess_26_4823_2022
crossref_primary_10_1007_s00477_024_02842_9
crossref_primary_10_1007_s00704_021_03883_8
crossref_primary_10_1007_s00382_023_06713_x
crossref_primary_10_1007_s11270_021_05270_5
crossref_primary_10_1007_s40996_023_01068_z
crossref_primary_10_1007_s00477_021_02091_0
Cites_doi 10.1007/s13762-018-1674-2
10.1016/S0022-1694(00)00344-9
10.1016/j.jastp.2010.03.007
10.1007/978-90-481-2552-4
10.1016/j.neucom.2012.10.043
10.1016/j.advwatres.2017.12.019
10.1371/journal.pone.0071129
10.1016/j.jhydrol.2018.06.072
10.1016/j.atmosres.2018.07.005
10.2166/hydro.2010.032
10.1016/j.jhydrol.2017.05.029
10.1126/science.286.5439.509
10.1016/S0022-1694(01)00355-9
10.1016/j.envsoft.2015.02.020
10.1080/02626667.2017.1346374
10.1007/s00500-002-0232-4
10.1016/j.jhydrol.2020.124647
10.1029/2000WR900196
10.1103/PhysRevA.45.3403
10.1016/j.jhydrol.2009.03.006
10.1103/PhysRevLett.45.712
10.1007/978-981-10-2624-9_10
10.1002/hyp.9693
10.1016/j.atmosres.2018.05.001
10.1016/j.jhydrol.2019.124185
10.1007/978-1-4612-0763-4
10.1038/30918
10.1007/s11269-019-02473-8
10.1103/PhysRevA.33.1134
10.1002/for.3980100104
10.1016/j.jhydrol.2015.04.035
10.1016/j.atmosres.2004.10.031
10.1029/WR016i001p00173
10.1007/BFb0091924
10.1016/0022-1694(92)90046-X
10.1016/j.jhydrol.2017.09.030
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7ST
7XB
88I
8AO
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L6V
M2P
M7S
PATMY
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
S0W
SOI
DOI 10.1007/s00477-020-01962-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection (subscription)
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium
Civil Engineering Abstracts
ProQuest Engineering Collection
Science Database (subscription)
Engineering Database (subscription)
Environmental Science Database (subscripiton)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Environment Abstracts
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Physics
Computer Science
Environmental Sciences
EISSN 1436-3259
EndPage 548
ExternalDocumentID 10_1007_s00477_020_01962_2
GeographicLocations Vietnam
GeographicLocations_xml – name: Vietnam
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29Q
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5VS
67M
67Z
6NX
7XC
88I
8AO
8FE
8FG
8FH
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FIL
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
L8X
LAS
LLZTM
M2P
M4Y
M7S
MA-
ML.
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9J
OAM
P19
P2P
PATMY
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RIG
RNS
ROL
RPX
RSV
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z83
Z86
Z8M
Z8S
Z8T
Z8U
Z8W
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PQGLB
7ST
7XB
8FD
8FK
C1K
FR3
KR7
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
ID FETCH-LOGICAL-c352t-d0b5171317e2db810b7a9be7b6373091a2748694c1af61b5acae7d18da9b61be3
IEDL.DBID M7S
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614451400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1436-3240
IngestDate Tue Nov 04 23:10:07 EST 2025
Tue Nov 18 21:52:30 EST 2025
Sat Nov 29 02:53:13 EST 2025
Fri Feb 21 02:49:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Rainfall
Entropy
Delay embedding method
Phase space
Network strength
Complex networks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-d0b5171317e2db810b7a9be7b6373091a2748694c1af61b5acae7d18da9b61be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5265-8395
PQID 2492469771
PQPubID 31669
PageCount 14
ParticipantIDs proquest_journals_2492469771
crossref_citationtrail_10_1007_s00477_020_01962_2
crossref_primary_10_1007_s00477_020_01962_2
springer_journals_10_1007_s00477_020_01962_2
PublicationCentury 2000
PublicationDate 20210300
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 3
  year: 2021
  text: 20210300
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Stochastic environmental research and risk assessment
PublicationTitleAbbrev Stoch Environ Res Risk Assess
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References MishraAKÖzgerMSinghVPAn entropy-based investigation into the variability of precipitationJ Hydrol200937013915410.1016/j.jhydrol.2009.03.006
SivakumarBSorooshianSGuptaHVGaoXA chaotic approach to rainfall disaggregationWater Resour Res200137617210.1029/2000WR900196
Danandeh MehrANouraniVKarimi KhosrowshahiVGhorbaniMAA hybrid support vector regression–firefly model for monthly rainfall forecastingInt J Environ Sci Technol20191633534610.1007/s13762-018-1674-2
ChauKWWuCLA hybrid model coupled with singular spectrum analysis for daily rainfall predictionJ Hydroinform20101245847310.2166/hydro.2010.032
FollandCOwenJWardMNColmanAPrediction of seasonal rainfall in the Sahel region using empirical and dynamical methodsJ Forecast199110215610.1002/for.3980100104
SivakumarBWoldemeskelFMA network-based analysis of spatial rainfall connectionsEnviron Model Softw201569556210.1016/j.envsoft.2015.02.020
Ribbe L, Trinh VQ, Firoz ABM, Nguyen AT, Nguyen U, Nauditt A (2017) Integrated river basin management in the Vu Gia Thu Bon basin. In: Land use and climate change interactions in Central Vietnam. Springer, pp 153–170
AliMPrasadRXiangYYaseenZMComplete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecastsJ Hydrol202058412464710.1016/j.jhydrol.2020.124647
SunAYXiaYCaldwellTGHaoZPatterns of precipitation and soil moisture extremes in Texas, US: a complex network analysisAdv Water Resour201811220321310.1016/j.advwatres.2017.12.019
JhaSKSivakumarBComplex networks for rainfall modeling: spatial connections, temporal scale, and network sizeJ Hydrol201755448248910.1016/j.jhydrol.2017.09.030
SivakumarBChaos in hydrology: bridging determinism and stochasticity2017DordrechtSpringer10.1007/978-90-481-2552-4
KawachiTMaruyamaTSinghVPRainfall entropy for delineation of water resources zones in JapanJ Hydrol2001246364410.1016/S0022-1694(01)00355-9
SouvignetMLauxPFreerJRecent climatic trends and linkages to river discharge in Central VietnamHydrol Process2014281587160110.1002/hyp.9693
KennelMBBrownRAbarbanelHDIDetermining embedding dimension for phase-space reconstruction using a geometrical constructionPhys Rev A199245340334111:STN:280:DC%2BC2sjpsVykug%3D%3D10.1103/PhysRevA.45.3403
Jarvis A, Reuter HI, Nelson A, Guevara E (2006) Void-filled seamless SRTM data V3, available from the CGIAR-CSI SRTM 90 m Database
JohnsonERBrasRLMultivariate short-term rainfall predictionWater Resour Res19801617318510.1029/WR016i001p00173
FraserAMSwinneyHLIndependent coordinates for strange attractors from mutual informationPhys Rev A198633113411401:STN:280:DC%2BC2sjosVahsg%3D%3D10.1103/PhysRevA.33.1134
NaufanISivakumarBWoldemeskelFMSpatial connections in regional climate model rainfall outputs at different temporal scales: application of network theoryJ Hydrol20185561232124310.1016/j.jhydrol.2017.05.029
RemyaRUnnikrishnanKChaotic behaviour of interplanetary magnetic field under various geomagnetic conditionsJ Atmos Solar Terrestrial Phys20107266267510.1016/j.jastp.2010.03.007
AbarbanelHDIAnalysis of observed chaotic data1996New YorkSpringer10.1007/978-1-4612-0763-4
WongKWWongPMGedeonTDFungCCRainfall prediction model using soft computing techniqueSoft Comput2003743443810.1007/s00500-002-0232-4
BarabásiA-LAlbertREmergence of scaling in random networksScience19998028650951210.1126/science.286.5439.509
YasminNSivakumarBTemporal streamflow analysis: coupling nonlinear dynamics with complex networksJ Hydrol2018564596710.1016/j.jhydrol.2018.06.072
JhaSKZhaoHWoldemeskelFMSivakumarBNetwork theory and spatial rainfall connections: an interpretationJ Hydrol2015527131910.1016/j.jhydrol.2015.04.035
OualloucheFLazriMAmeurSImprovement of rainfall estimation from MSG data using random forests classification and regressionAtmos Res2018211627210.1016/j.atmosres.2018.05.001
FrenchMNKrajewskiWFCuykendallRRRainfall forecasting in space and time using a neural networkJ Hydrol199213713110.1016/0022-1694(92)90046-X
ScarsoglioSLaioFRidolfiLClimate dynamics: a network-based approach for the analysis of global precipitationPLoS ONE20138e711291:CAS:528:DC%2BC3sXhtlGjtLnJ10.1371/journal.pone.0071129
TiwariSJhaSKSivakumarBReconstruction of daily rainfall data using the concepts of networks: accounting for spatial connections in neighborhood selectionJ Hydrol201957912418510.1016/j.jhydrol.2019.124185
PackardNHCrutchfieldJPFarmerJDShawRSGeometry from a time seriesPhys Rev Lett19804571271610.1103/PhysRevLett.45.712
AliMDeoRCDownsNJMaraseniTMulti-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecastingAtmos Res201821345046410.1016/j.atmosres.2018.07.005
DiopLSamadianfardSBodianAAnnual rainfall forecasting using hybrid artificial intelligence model: integration of multilayer perceptron with whale optimization algorithmWater Resour Manag20203473374610.1007/s11269-019-02473-8
WuJLongJLiuMEvolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithmNeurocomputing201514813614210.1016/j.neucom.2012.10.043
WattsDJStrogatzSHCollective dynamics of ‘small-world’ networksNature19983934404421:CAS:528:DyaK1cXjs1Khsrk%3D10.1038/30918
TothEBrathAMontanariAComparison of short-term rainfall prediction models for real-time flood forecastingJ Hydrol200023913214710.1016/S0022-1694(00)00344-9
VuMTVoNDGourbesvillePHydro-meteorological drought assessment under climate change impact over the Vu Gia-Thu Bon river basinVietnam. Hydrol Sci J2017621654166810.1080/02626667.2017.1346374
Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young LS (eds) Dynamical systems and turbulence, Warwick 1980: proceedings of a symposium held at the University of Warwick 1979/80, Springer, Berlin, pp 366–381
De MicheleCBernardaraPSpectral analysis and modeling of space-time rainfall fieldsAtmos Res20057712413610.1016/j.atmosres.2004.10.031
M Ali (1962_CR2) 2018; 213
SK Jha (1962_CR14) 2017; 554
SK Jha (1962_CR15) 2015; 527
A-L Barabási (1962_CR4) 1999; 80
S Scarsoglio (1962_CR24) 2013; 8
L Diop (1962_CR9) 2020; 34
N Yasmin (1962_CR37) 2018; 564
A Danandeh Mehr (1962_CR7) 2019; 16
KW Chau (1962_CR6) 2010; 12
AY Sun (1962_CR29) 2018; 112
J Wu (1962_CR36) 2015; 148
NH Packard (1962_CR22) 1980; 45
M Souvignet (1962_CR28) 2014; 28
M Ali (1962_CR3) 2020; 584
F Ouallouche (1962_CR21) 2018; 211
AK Mishra (1962_CR19) 2009; 370
B Sivakumar (1962_CR25) 2017
T Kawachi (1962_CR17) 2001; 246
ER Johnson (1962_CR16) 1980; 16
MT Vu (1962_CR33) 2017; 62
E Toth (1962_CR32) 2000; 239
DJ Watts (1962_CR34) 1998; 393
B Sivakumar (1962_CR26) 2015; 69
HDI Abarbanel (1962_CR1) 1996
R Remya (1962_CR23) 2010; 72
MN French (1962_CR12) 1992; 137
AM Fraser (1962_CR11) 1986; 33
MB Kennel (1962_CR18) 1992; 45
1962_CR100
1962_CR13
C Folland (1962_CR10) 1991; 10
KW Wong (1962_CR35) 2003; 7
I Naufan (1962_CR20) 2018; 556
S Tiwari (1962_CR31) 2019; 579
B Sivakumar (1962_CR27) 2001; 37
C De Michele (1962_CR8) 2005; 77
1962_CR30
References_xml – reference: FollandCOwenJWardMNColmanAPrediction of seasonal rainfall in the Sahel region using empirical and dynamical methodsJ Forecast199110215610.1002/for.3980100104
– reference: MishraAKÖzgerMSinghVPAn entropy-based investigation into the variability of precipitationJ Hydrol200937013915410.1016/j.jhydrol.2009.03.006
– reference: FraserAMSwinneyHLIndependent coordinates for strange attractors from mutual informationPhys Rev A198633113411401:STN:280:DC%2BC2sjosVahsg%3D%3D10.1103/PhysRevA.33.1134
– reference: DiopLSamadianfardSBodianAAnnual rainfall forecasting using hybrid artificial intelligence model: integration of multilayer perceptron with whale optimization algorithmWater Resour Manag20203473374610.1007/s11269-019-02473-8
– reference: KawachiTMaruyamaTSinghVPRainfall entropy for delineation of water resources zones in JapanJ Hydrol2001246364410.1016/S0022-1694(01)00355-9
– reference: De MicheleCBernardaraPSpectral analysis and modeling of space-time rainfall fieldsAtmos Res20057712413610.1016/j.atmosres.2004.10.031
– reference: WattsDJStrogatzSHCollective dynamics of ‘small-world’ networksNature19983934404421:CAS:528:DyaK1cXjs1Khsrk%3D10.1038/30918
– reference: OualloucheFLazriMAmeurSImprovement of rainfall estimation from MSG data using random forests classification and regressionAtmos Res2018211627210.1016/j.atmosres.2018.05.001
– reference: JhaSKZhaoHWoldemeskelFMSivakumarBNetwork theory and spatial rainfall connections: an interpretationJ Hydrol2015527131910.1016/j.jhydrol.2015.04.035
– reference: TiwariSJhaSKSivakumarBReconstruction of daily rainfall data using the concepts of networks: accounting for spatial connections in neighborhood selectionJ Hydrol201957912418510.1016/j.jhydrol.2019.124185
– reference: WongKWWongPMGedeonTDFungCCRainfall prediction model using soft computing techniqueSoft Comput2003743443810.1007/s00500-002-0232-4
– reference: AbarbanelHDIAnalysis of observed chaotic data1996New YorkSpringer10.1007/978-1-4612-0763-4
– reference: SivakumarBSorooshianSGuptaHVGaoXA chaotic approach to rainfall disaggregationWater Resour Res200137617210.1029/2000WR900196
– reference: KennelMBBrownRAbarbanelHDIDetermining embedding dimension for phase-space reconstruction using a geometrical constructionPhys Rev A199245340334111:STN:280:DC%2BC2sjpsVykug%3D%3D10.1103/PhysRevA.45.3403
– reference: BarabásiA-LAlbertREmergence of scaling in random networksScience19998028650951210.1126/science.286.5439.509
– reference: PackardNHCrutchfieldJPFarmerJDShawRSGeometry from a time seriesPhys Rev Lett19804571271610.1103/PhysRevLett.45.712
– reference: SivakumarBChaos in hydrology: bridging determinism and stochasticity2017DordrechtSpringer10.1007/978-90-481-2552-4
– reference: YasminNSivakumarBTemporal streamflow analysis: coupling nonlinear dynamics with complex networksJ Hydrol2018564596710.1016/j.jhydrol.2018.06.072
– reference: SouvignetMLauxPFreerJRecent climatic trends and linkages to river discharge in Central VietnamHydrol Process2014281587160110.1002/hyp.9693
– reference: RemyaRUnnikrishnanKChaotic behaviour of interplanetary magnetic field under various geomagnetic conditionsJ Atmos Solar Terrestrial Phys20107266267510.1016/j.jastp.2010.03.007
– reference: VuMTVoNDGourbesvillePHydro-meteorological drought assessment under climate change impact over the Vu Gia-Thu Bon river basinVietnam. Hydrol Sci J2017621654166810.1080/02626667.2017.1346374
– reference: AliMDeoRCDownsNJMaraseniTMulti-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecastingAtmos Res201821345046410.1016/j.atmosres.2018.07.005
– reference: JhaSKSivakumarBComplex networks for rainfall modeling: spatial connections, temporal scale, and network sizeJ Hydrol201755448248910.1016/j.jhydrol.2017.09.030
– reference: NaufanISivakumarBWoldemeskelFMSpatial connections in regional climate model rainfall outputs at different temporal scales: application of network theoryJ Hydrol20185561232124310.1016/j.jhydrol.2017.05.029
– reference: FrenchMNKrajewskiWFCuykendallRRRainfall forecasting in space and time using a neural networkJ Hydrol199213713110.1016/0022-1694(92)90046-X
– reference: SivakumarBWoldemeskelFMA network-based analysis of spatial rainfall connectionsEnviron Model Softw201569556210.1016/j.envsoft.2015.02.020
– reference: JohnsonERBrasRLMultivariate short-term rainfall predictionWater Resour Res19801617318510.1029/WR016i001p00173
– reference: ScarsoglioSLaioFRidolfiLClimate dynamics: a network-based approach for the analysis of global precipitationPLoS ONE20138e711291:CAS:528:DC%2BC3sXhtlGjtLnJ10.1371/journal.pone.0071129
– reference: WuJLongJLiuMEvolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithmNeurocomputing201514813614210.1016/j.neucom.2012.10.043
– reference: Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young LS (eds) Dynamical systems and turbulence, Warwick 1980: proceedings of a symposium held at the University of Warwick 1979/80, Springer, Berlin, pp 366–381
– reference: ChauKWWuCLA hybrid model coupled with singular spectrum analysis for daily rainfall predictionJ Hydroinform20101245847310.2166/hydro.2010.032
– reference: Jarvis A, Reuter HI, Nelson A, Guevara E (2006) Void-filled seamless SRTM data V3, available from the CGIAR-CSI SRTM 90 m Database
– reference: AliMPrasadRXiangYYaseenZMComplete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecastsJ Hydrol202058412464710.1016/j.jhydrol.2020.124647
– reference: SunAYXiaYCaldwellTGHaoZPatterns of precipitation and soil moisture extremes in Texas, US: a complex network analysisAdv Water Resour201811220321310.1016/j.advwatres.2017.12.019
– reference: Danandeh MehrANouraniVKarimi KhosrowshahiVGhorbaniMAA hybrid support vector regression–firefly model for monthly rainfall forecastingInt J Environ Sci Technol20191633534610.1007/s13762-018-1674-2
– reference: TothEBrathAMontanariAComparison of short-term rainfall prediction models for real-time flood forecastingJ Hydrol200023913214710.1016/S0022-1694(00)00344-9
– reference: Ribbe L, Trinh VQ, Firoz ABM, Nguyen AT, Nguyen U, Nauditt A (2017) Integrated river basin management in the Vu Gia Thu Bon basin. In: Land use and climate change interactions in Central Vietnam. Springer, pp 153–170
– volume: 16
  start-page: 335
  year: 2019
  ident: 1962_CR7
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-018-1674-2
– volume: 239
  start-page: 132
  year: 2000
  ident: 1962_CR32
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(00)00344-9
– volume: 72
  start-page: 662
  year: 2010
  ident: 1962_CR23
  publication-title: J Atmos Solar Terrestrial Phys
  doi: 10.1016/j.jastp.2010.03.007
– volume-title: Chaos in hydrology: bridging determinism and stochasticity
  year: 2017
  ident: 1962_CR25
  doi: 10.1007/978-90-481-2552-4
– volume: 148
  start-page: 136
  year: 2015
  ident: 1962_CR36
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.10.043
– volume: 112
  start-page: 203
  year: 2018
  ident: 1962_CR29
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2017.12.019
– volume: 8
  start-page: e71129
  year: 2013
  ident: 1962_CR24
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0071129
– volume: 564
  start-page: 59
  year: 2018
  ident: 1962_CR37
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.06.072
– volume: 213
  start-page: 450
  year: 2018
  ident: 1962_CR2
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2018.07.005
– volume: 12
  start-page: 458
  year: 2010
  ident: 1962_CR6
  publication-title: J Hydroinform
  doi: 10.2166/hydro.2010.032
– volume: 556
  start-page: 1232
  year: 2018
  ident: 1962_CR20
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.05.029
– volume: 80
  start-page: 509
  issue: 286
  year: 1999
  ident: 1962_CR4
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– volume: 246
  start-page: 36
  year: 2001
  ident: 1962_CR17
  publication-title: J Hydrol
  doi: 10.1016/S0022-1694(01)00355-9
– volume: 69
  start-page: 55
  year: 2015
  ident: 1962_CR26
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2015.02.020
– volume: 62
  start-page: 1654
  year: 2017
  ident: 1962_CR33
  publication-title: Vietnam. Hydrol Sci J
  doi: 10.1080/02626667.2017.1346374
– volume: 7
  start-page: 434
  year: 2003
  ident: 1962_CR35
  publication-title: Soft Comput
  doi: 10.1007/s00500-002-0232-4
– volume: 584
  start-page: 124647
  year: 2020
  ident: 1962_CR3
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.124647
– volume: 37
  start-page: 61
  year: 2001
  ident: 1962_CR27
  publication-title: Water Resour Res
  doi: 10.1029/2000WR900196
– volume: 45
  start-page: 3403
  year: 1992
  ident: 1962_CR18
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.45.3403
– volume: 370
  start-page: 139
  year: 2009
  ident: 1962_CR19
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.03.006
– volume: 45
  start-page: 712
  year: 1980
  ident: 1962_CR22
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.45.712
– ident: 1962_CR100
  doi: 10.1007/978-981-10-2624-9_10
– volume: 28
  start-page: 1587
  year: 2014
  ident: 1962_CR28
  publication-title: Hydrol Process
  doi: 10.1002/hyp.9693
– volume: 211
  start-page: 62
  year: 2018
  ident: 1962_CR21
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2018.05.001
– volume: 579
  start-page: 124185
  year: 2019
  ident: 1962_CR31
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124185
– volume-title: Analysis of observed chaotic data
  year: 1996
  ident: 1962_CR1
  doi: 10.1007/978-1-4612-0763-4
– volume: 393
  start-page: 440
  year: 1998
  ident: 1962_CR34
  publication-title: Nature
  doi: 10.1038/30918
– volume: 34
  start-page: 733
  year: 2020
  ident: 1962_CR9
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02473-8
– volume: 33
  start-page: 1134
  year: 1986
  ident: 1962_CR11
  publication-title: Phys Rev A
  doi: 10.1103/PhysRevA.33.1134
– volume: 10
  start-page: 21
  year: 1991
  ident: 1962_CR10
  publication-title: J Forecast
  doi: 10.1002/for.3980100104
– volume: 527
  start-page: 13
  year: 2015
  ident: 1962_CR15
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2015.04.035
– volume: 77
  start-page: 124
  year: 2005
  ident: 1962_CR8
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2004.10.031
– volume: 16
  start-page: 173
  year: 1980
  ident: 1962_CR16
  publication-title: Water Resour Res
  doi: 10.1029/WR016i001p00173
– ident: 1962_CR30
  doi: 10.1007/BFb0091924
– ident: 1962_CR13
– volume: 137
  start-page: 1
  year: 1992
  ident: 1962_CR12
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(92)90046-X
– volume: 554
  start-page: 482
  year: 2017
  ident: 1962_CR14
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.09.030
SSID ssj0017754
ssib007539910
ssib057179955
ssib001127189
Score 2.3276117
Snippet Adequate understanding of the temporal connections in rainfall is important for reliable predictions of rainfall and, hence, for water resources planning and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 535
SubjectTerms Annual rainfall
Aquatic Pollution
Chemistry and Earth Sciences
Computational Intelligence
Computer Science
Delay time
Earth and Environmental Science
Earth Sciences
Elevation
Embedding
Entropy
Environment
Hydrologic data
Interpolation
Math. Appl. in Environmental Science
Mathematical analysis
Networks
Nodes
Original Paper
Physics
Probability Theory and Stochastic Processes
Rain gauges
Rainfall
Resource management
River basins
Stations
Statistics for Engineering
Time series
Waste Water Technology
Water Management
Water Pollution Control
Water resources
SummonAdditionalLinks – databaseName: SpringerLink Contemporary
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_ED_TFaXU4nZIH3zSwpB9pH4ds-CBD_Bh7K0massHYZK3i_nuTLF1RVNDHptdQLpfkjvvd7wAulQiCvJNxnMcyMC3MJNZhUID9jDGiaBT7lqd7eMcGg3g0Su5dUVhRod2rlKQ9qdfFbobYkGET7hhOF4r1wbsVGrYZE6M_Dte5A8PpZmuK_AgbujlXKvP9HJ-vo9rH_JIWtbdNv_G__zyAfeddou7KHA5hQ808aFSdG5DbyB40e3V9m5Z344UHu64p-njpwY5Fh8riCB66dZobzXNkcejqHc1WGPICac8XaXsux9MlMj0ncj6domzV7L5ABiWKHAoUDSeq1OPH8NzvPd3cYteMAUvto5U464iQ6IiWMEUzEZOOYDwRionI14dEQrgOb-MoCSTheUREyCVXLCNxpqX0s_KbsDmbz9QJICm4SKgMOde-DMsDQSMqaR6EIUtibTstINWapNIxlZuGGdN0zbFsdZxqHadWxyltwdX6m5cVT8ev0u1qqVO3Z4vUcCcGkfaHSQuuq6WtX_882-nfxM9gjxpgjAWytWGzXLyqc9iWb-WkWFxYW_4AXnjssQ
  priority: 102
  providerName: Springer Nature
Title Application of complex networks for monthly rainfall dynamics over central Vietnam
URI https://link.springer.com/article/10.1007/s00477-020-01962-2
https://www.proquest.com/docview/2492469771
Volume 35
WOSCitedRecordID wos000614451400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1436-3259
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017754
  issn: 1436-3240
  databaseCode: RSV
  dateStart: 19990401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58gV58i_VRcvCmwSb7yO5JVCoepJSqxduSZLMolLZ2V9F_7yRNuyjoxcvCbrLZhZkkM5lvvgE4MSoMi1YuaZHo0JYw0xTdoJAGuRDM8DgJHE93_050OsnTU9r1B26lh1XO1kS3UOcjbc_Izy2zHbpyOMLF-JXaqlE2uupLaCzCsmVJYA66dz-PIlh2N5ddFMTUEs_5pBmXOmdpEgW1zpNliOGUf9-YamvzR4DU7Ts3G__9401Y9xYnuZyqyBYsmOE27LXrBDds9DO83IZVXxX9-XMHepd1dJuMCuLg5-aDDKfQ8ZKgwUvwK9Xz4JPYUhOFHAxIPq1xXxILDiUe_En6L6bC57vweNN-uL6lvgYD1WiaVTRvqYihI8uE4blKWEsJmSojVBzg2pAyiV5tEqehZrKImYqklkbkLMmxF96bYA-WhqOh2QeilVQp15GUaMKIIlQ85poXYRSJNEGVaQCbCSDTnqDc1skYZHNqZSe0DIWWOaFlvAGn83fGU3qOP3sfzSSV-alaZrWYGnA2k3Xd_PtoB3-Pdghr3OJfHF7tCJaqyZs5hhX9Xr2UkyYsX7U73V4TFZZ3m05t8dq7738BMGTxPQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BbtQwEB2VLVK5FChUbCngA5zAYu04cXKoUIGtWnVZVVWpegu246grLdnSBOj-VL-xY6-zEUj01gPHJM5Ijp_HM5mZNwCvrRaiHBSKlqkRroWZoegGCRoVUjLLkzTyPN2nIzkep2dn2dEKXLe1MC6tstWJXlEXM-P-kb93zHboyqGEDxc_qOsa5aKrbQuNBSwO7fw3umz1zsFnXN83nO8NTz7t09BVgBo0NhpaDHTM0DVj0vJCp2ygpcq0lTqJEO0ZU-inpUkmDFNlwnSsjLKyYGmBo_DaRij3HqyKSCRxD1Y_DsdHx8u4heOT8_VMUUId1V0o0_HFeo6YUVLnrjlOGk75n0dhZ9_-FZL1J93ew__tGz2C9WBTk93FJngMK7bagM1hV8KHD4MOqzdgLfR9P58_gePdLn5PZiXxCfb2ilSL5PiaoElPcFbN-XROXDONUk2npJhX6vvE1MSlv5KQ3kpOJ7bB-0_h653MdRN61ayyz4AYrXTGTawUGmmyFJon3PBSxLHMUtwUfWDtgucmULC7TiDTfEke7UGSI0hyD5Kc9-Ht8p2LBQHJraO3W2TkQRnVeQeLPrxrsdU9_re0rdulvYK1_ZMvo3x0MD58Dg-4y_bx2Xnb0Gsuf9oXcN_8aib15cuwTQh8u2vU3QBKbkvj
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7RpWp7oZSCukBbH-iptVg7DycHhHjsqgi0WqEWcUttxxErbbOUpC371_rrOvY6GxUJbhx6TOKM5PjzeCYz8w3AjlFhWPRySYtEh7aFmaboBoU0yIVghsdJ4Hi6L87EcJhcXqajJfjT1MLYtMpGJzpFnU-1_Ue-a5nt0JVDCbuFT4sYHQ_2r39Q20HKRlqbdhpziJya2W9036q9k2Nc6w-cD_pfjj5T32GAajQ8apr3VMTQTWPC8FwlrKeETJURKg4Q-SmT6LMlcRpqJouYqUhqaUTOkhxH4bUJUO4TWBYBOj0dWD7sD0fnixiG5ZZztU1BTC3tnS_ZcYV7lqRRUOu6WX4aTvm_x2Jr694Jz7pTb_Dyf_5eq7DibW1yMN8cr2DJlGuw0W9L-_Ch123VGjz3_eCvZq_h_KCN65NpQVzivbkl5TxpviJo6hOcVX01mRHbZKOQkwnJZ6X8PtYVsWmxxKe9kouxqfH-Onx9lLluQKecluYNEK2kSrmOpETjTRSh4jHXvAijSKQJbpYusGbxM-2p2W2HkEm2IJV2gMkQMJkDTMa78HHxzvWcmOTB0dsNSjKvpKqshUgXPjU4ax_fL23zYWnv4RlCLTs7GZ5uwQtuk4Bc0t42dOqbn-YtPNW_6nF1887vGALfHht0fwH2iVSm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+complex+networks+for+monthly+rainfall+dynamics+over+central+Vietnam&rft.jtitle=Stochastic+environmental+research+and+risk+assessment&rft.au=Ghorbani%2C+Mohammad+Ali&rft.au=Karimi+Vahid&rft.au=Ruskeep%C3%A4%C3%A4+Heikki&rft.au=Sivakumar+Bellie&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1436-3240&rft.eissn=1436-3259&rft.volume=35&rft.issue=3&rft.spage=535&rft.epage=548&rft_id=info:doi/10.1007%2Fs00477-020-01962-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-3240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-3240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-3240&client=summon