Application of complex networks for monthly rainfall dynamics over central Vietnam
Adequate understanding of the temporal connections in rainfall is important for reliable predictions of rainfall and, hence, for water resources planning and management. This research aims to study the temporal connections in rainfall using complex networks concepts. First, the single-variable rainf...
Gespeichert in:
| Veröffentlicht in: | Stochastic environmental research and risk assessment Jg. 35; H. 3; S. 535 - 548 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.03.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1436-3240, 1436-3259 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Adequate understanding of the temporal connections in rainfall is important for reliable predictions of rainfall and, hence, for water resources planning and management. This research aims to study the temporal connections in rainfall using complex networks concepts. First, the single-variable rainfall time series is represented in a multi-dimensional phase space using delay embedding (i.e. phase-space reconstruction), where the appropriate delay time and optimal embedding dimension of the time series are determined by using average mutual information and false nearest neighbors methods, respectively. Then, this reconstructed phase space is treated as a ‘network,’ with the reconstructed vectors serving as ‘nodes’ and the connections between them serving as ‘links’. Finally, the strength of the nodes are calculated to identify some key properties of the temporal rainfall network. The approach is employed independently to monthly rainfall data observed over a period of 38 years (1979–2016) from 14 rain gauge stations in the Vu Gia Thu Bon River basin in central Vietnam. Moreover, entropy values of the original rainfall time series are calculated for obtaining additional information on the properties of the rainfall dynamics. The average node strengths are also examined in terms of the mean annual rainfall, entropy of the time series, and elevation of the rain gauge station. The results indicate that: (1) while some adjacent stations (i.e. networks) have somewhat similar strength (average node strength) values, several others that are geographically close show significantly different network strengths; (2) similar entropies for adjacent stations are found more frequently than similar average node strengths; (3) there is generally a positive and proportional relationship between average strengths of nodes and entropies; and (4) the average node strengths of different months have some distinct temporal patterns (3-month, 4-month, and 6-month patterns) in rainfall dynamics, depending upon the specific region of the study area. These results have important implications for prediction, interpolation, and extrapolation of rainfall data. |
|---|---|
| AbstractList | Adequate understanding of the temporal connections in rainfall is important for reliable predictions of rainfall and, hence, for water resources planning and management. This research aims to study the temporal connections in rainfall using complex networks concepts. First, the single-variable rainfall time series is represented in a multi-dimensional phase space using delay embedding (i.e. phase-space reconstruction), where the appropriate delay time and optimal embedding dimension of the time series are determined by using average mutual information and false nearest neighbors methods, respectively. Then, this reconstructed phase space is treated as a ‘network,’ with the reconstructed vectors serving as ‘nodes’ and the connections between them serving as ‘links’. Finally, the strength of the nodes are calculated to identify some key properties of the temporal rainfall network. The approach is employed independently to monthly rainfall data observed over a period of 38 years (1979–2016) from 14 rain gauge stations in the Vu Gia Thu Bon River basin in central Vietnam. Moreover, entropy values of the original rainfall time series are calculated for obtaining additional information on the properties of the rainfall dynamics. The average node strengths are also examined in terms of the mean annual rainfall, entropy of the time series, and elevation of the rain gauge station. The results indicate that: (1) while some adjacent stations (i.e. networks) have somewhat similar strength (average node strength) values, several others that are geographically close show significantly different network strengths; (2) similar entropies for adjacent stations are found more frequently than similar average node strengths; (3) there is generally a positive and proportional relationship between average strengths of nodes and entropies; and (4) the average node strengths of different months have some distinct temporal patterns (3-month, 4-month, and 6-month patterns) in rainfall dynamics, depending upon the specific region of the study area. These results have important implications for prediction, interpolation, and extrapolation of rainfall data. Adequate understanding of the temporal connections in rainfall is important for reliable predictions of rainfall and, hence, for water resources planning and management. This research aims to study the temporal connections in rainfall using complex networks concepts. First, the single-variable rainfall time series is represented in a multi-dimensional phase space using delay embedding (i.e. phase-space reconstruction), where the appropriate delay time and optimal embedding dimension of the time series are determined by using average mutual information and false nearest neighbors methods, respectively. Then, this reconstructed phase space is treated as a ‘network,’ with the reconstructed vectors serving as ‘nodes’ and the connections between them serving as ‘links’. Finally, the strength of the nodes are calculated to identify some key properties of the temporal rainfall network. The approach is employed independently to monthly rainfall data observed over a period of 38 years (1979–2016) from 14 rain gauge stations in the Vu Gia Thu Bon River basin in central Vietnam. Moreover, entropy values of the original rainfall time series are calculated for obtaining additional information on the properties of the rainfall dynamics. The average node strengths are also examined in terms of the mean annual rainfall, entropy of the time series, and elevation of the rain gauge station. The results indicate that: (1) while some adjacent stations (i.e. networks) have somewhat similar strength (average node strength) values, several others that are geographically close show significantly different network strengths; (2) similar entropies for adjacent stations are found more frequently than similar average node strengths; (3) there is generally a positive and proportional relationship between average strengths of nodes and entropies; and (4) the average node strengths of different months have some distinct temporal patterns (3-month, 4-month, and 6-month patterns) in rainfall dynamics, depending upon the specific region of the study area. These results have important implications for prediction, interpolation, and extrapolation of rainfall data. |
| Author | Karimi, Vahid Sivakumar, Bellie Mohammadi, Fatemeh Ruskeepää, Heikki Pham, Quoc Bao Yasmin, Nazly Ghorbani, Mohammad Ali |
| Author_xml | – sequence: 1 givenname: Mohammad Ali surname: Ghorbani fullname: Ghorbani, Mohammad Ali organization: Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Department of Civil Engineering, Istanbul Technical University – sequence: 2 givenname: Vahid orcidid: 0000-0002-5265-8395 surname: Karimi fullname: Karimi, Vahid email: vahid.karimi22@yahoo.com, vahid.karimi93@ms.tabrizu.ac.ir organization: Department of Water Engineering, Faculty of Agriculture, University of Tabriz – sequence: 3 givenname: Heikki surname: Ruskeepää fullname: Ruskeepää, Heikki organization: Department of Mathematics and Statistics, University of Turku – sequence: 4 givenname: Bellie surname: Sivakumar fullname: Sivakumar, Bellie organization: Department of Civil Engineering, Indian Institute of Technology Bombay, UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, State Key Laboratory of Hydroscience and Engineering, Tsinghua University – sequence: 5 givenname: Quoc Bao surname: Pham fullname: Pham, Quoc Bao organization: Institute of Research and Development, Duy Tan University, Faculty of Environmental and Chemical Engineering, Duy Tan University – sequence: 6 givenname: Fatemeh surname: Mohammadi fullname: Mohammadi, Fatemeh organization: Department of Water Engineering, Faculty of Agriculture, University of Tabriz – sequence: 7 givenname: Nazly surname: Yasmin fullname: Yasmin, Nazly organization: UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales |
| BookMark | eNp9kFtLwzAYhoNMcJv-Aa8CXldzatNejuEJBoKotyFNU81sk5pk6v69cRUFL3b1HXif7_DOwMQ6qwE4xegcI8QvAkKM8wwRlCFcFSQjB2CKGS0ySvJq8pszdARmIawRwpznbAruF8PQGSWjcRa6FirXD53-hFbHD-dfA2ydh72z8aXbQi-NbWXXwWZrZW9UgO5de6i0jV528MnomPrH4DCJgj75iXPweHX5sLzJVnfXt8vFKlM0JzFrUJ1jjinmmjR1iVHNZVVrXheUU1RhSTgri4opLNsC17lUUvMGl01SpVrTOTgb5w7evW10iGLtNt6mlYKwirCi4mn8HJSjSnkXgtetUCbu3k03m05gJL4dFKODIjkodg4KklDyDx286aXf7ofoCIUkts_a_121h_oC4kCGFA |
| CitedBy_id | crossref_primary_10_1016_j_envpol_2025_125834 crossref_primary_10_1007_s00477_023_02578_y crossref_primary_10_1007_s12517_022_10271_7 crossref_primary_10_1007_s00477_023_02416_1 crossref_primary_10_1016_j_atmosres_2022_106333 crossref_primary_10_1007_s40996_021_00809_2 crossref_primary_10_1016_j_jclepro_2022_131224 crossref_primary_10_5194_hess_26_4823_2022 crossref_primary_10_1007_s00477_024_02842_9 crossref_primary_10_1007_s00704_021_03883_8 crossref_primary_10_1007_s00382_023_06713_x crossref_primary_10_1007_s11270_021_05270_5 crossref_primary_10_1007_s40996_023_01068_z crossref_primary_10_1007_s00477_021_02091_0 |
| Cites_doi | 10.1007/s13762-018-1674-2 10.1016/S0022-1694(00)00344-9 10.1016/j.jastp.2010.03.007 10.1007/978-90-481-2552-4 10.1016/j.neucom.2012.10.043 10.1016/j.advwatres.2017.12.019 10.1371/journal.pone.0071129 10.1016/j.jhydrol.2018.06.072 10.1016/j.atmosres.2018.07.005 10.2166/hydro.2010.032 10.1016/j.jhydrol.2017.05.029 10.1126/science.286.5439.509 10.1016/S0022-1694(01)00355-9 10.1016/j.envsoft.2015.02.020 10.1080/02626667.2017.1346374 10.1007/s00500-002-0232-4 10.1016/j.jhydrol.2020.124647 10.1029/2000WR900196 10.1103/PhysRevA.45.3403 10.1016/j.jhydrol.2009.03.006 10.1103/PhysRevLett.45.712 10.1007/978-981-10-2624-9_10 10.1002/hyp.9693 10.1016/j.atmosres.2018.05.001 10.1016/j.jhydrol.2019.124185 10.1007/978-1-4612-0763-4 10.1038/30918 10.1007/s11269-019-02473-8 10.1103/PhysRevA.33.1134 10.1002/for.3980100104 10.1016/j.jhydrol.2015.04.035 10.1016/j.atmosres.2004.10.031 10.1029/WR016i001p00173 10.1007/BFb0091924 10.1016/0022-1694(92)90046-X 10.1016/j.jhydrol.2017.09.030 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7ST 7XB 88I 8AO 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L6V M2P M7S PATMY PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U S0W SOI |
| DOI | 10.1007/s00477-020-01962-2 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection (subscription) ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Civil Engineering Abstracts ProQuest Engineering Collection Science Database (subscription) Engineering Database (subscription) Environmental Science Database (subscripiton) ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic DELNET Engineering & Technology Collection Environment Abstracts |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Physics Computer Science Environmental Sciences |
| EISSN | 1436-3259 |
| EndPage | 548 |
| ExternalDocumentID | 10_1007_s00477_020_01962_2 |
| GeographicLocations | Vietnam |
| GeographicLocations_xml | – name: Vietnam |
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 2.D 203 29Q 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5VS 67M 67Z 6NX 7XC 88I 8AO 8FE 8FG 8FH 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FIL FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V L8X LAS LLZTM M2P M4Y M7S MA- ML. N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9J OAM P19 P2P PATMY PF0 PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOS R89 R9I RIG RNS ROL RPX RSV S0W S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z83 Z86 Z8M Z8S Z8T Z8U Z8W ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PQGLB 7ST 7XB 8FD 8FK C1K FR3 KR7 PKEHL PQEST PQUKI PRINS Q9U SOI |
| ID | FETCH-LOGICAL-c352t-d0b5171317e2db810b7a9be7b6373091a2748694c1af61b5acae7d18da9b61be3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000614451400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1436-3240 |
| IngestDate | Tue Nov 04 23:10:07 EST 2025 Tue Nov 18 21:52:30 EST 2025 Sat Nov 29 02:53:13 EST 2025 Fri Feb 21 02:49:19 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Rainfall Entropy Delay embedding method Phase space Network strength Complex networks |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-d0b5171317e2db810b7a9be7b6373091a2748694c1af61b5acae7d18da9b61be3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5265-8395 |
| PQID | 2492469771 |
| PQPubID | 31669 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2492469771 crossref_citationtrail_10_1007_s00477_020_01962_2 crossref_primary_10_1007_s00477_020_01962_2 springer_journals_10_1007_s00477_020_01962_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20210300 2021-03-00 20210301 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 3 year: 2021 text: 20210300 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Stochastic environmental research and risk assessment |
| PublicationTitleAbbrev | Stoch Environ Res Risk Assess |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | MishraAKÖzgerMSinghVPAn entropy-based investigation into the variability of precipitationJ Hydrol200937013915410.1016/j.jhydrol.2009.03.006 SivakumarBSorooshianSGuptaHVGaoXA chaotic approach to rainfall disaggregationWater Resour Res200137617210.1029/2000WR900196 Danandeh MehrANouraniVKarimi KhosrowshahiVGhorbaniMAA hybrid support vector regression–firefly model for monthly rainfall forecastingInt J Environ Sci Technol20191633534610.1007/s13762-018-1674-2 ChauKWWuCLA hybrid model coupled with singular spectrum analysis for daily rainfall predictionJ Hydroinform20101245847310.2166/hydro.2010.032 FollandCOwenJWardMNColmanAPrediction of seasonal rainfall in the Sahel region using empirical and dynamical methodsJ Forecast199110215610.1002/for.3980100104 SivakumarBWoldemeskelFMA network-based analysis of spatial rainfall connectionsEnviron Model Softw201569556210.1016/j.envsoft.2015.02.020 Ribbe L, Trinh VQ, Firoz ABM, Nguyen AT, Nguyen U, Nauditt A (2017) Integrated river basin management in the Vu Gia Thu Bon basin. In: Land use and climate change interactions in Central Vietnam. Springer, pp 153–170 AliMPrasadRXiangYYaseenZMComplete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecastsJ Hydrol202058412464710.1016/j.jhydrol.2020.124647 SunAYXiaYCaldwellTGHaoZPatterns of precipitation and soil moisture extremes in Texas, US: a complex network analysisAdv Water Resour201811220321310.1016/j.advwatres.2017.12.019 JhaSKSivakumarBComplex networks for rainfall modeling: spatial connections, temporal scale, and network sizeJ Hydrol201755448248910.1016/j.jhydrol.2017.09.030 SivakumarBChaos in hydrology: bridging determinism and stochasticity2017DordrechtSpringer10.1007/978-90-481-2552-4 KawachiTMaruyamaTSinghVPRainfall entropy for delineation of water resources zones in JapanJ Hydrol2001246364410.1016/S0022-1694(01)00355-9 SouvignetMLauxPFreerJRecent climatic trends and linkages to river discharge in Central VietnamHydrol Process2014281587160110.1002/hyp.9693 KennelMBBrownRAbarbanelHDIDetermining embedding dimension for phase-space reconstruction using a geometrical constructionPhys Rev A199245340334111:STN:280:DC%2BC2sjpsVykug%3D%3D10.1103/PhysRevA.45.3403 Jarvis A, Reuter HI, Nelson A, Guevara E (2006) Void-filled seamless SRTM data V3, available from the CGIAR-CSI SRTM 90 m Database JohnsonERBrasRLMultivariate short-term rainfall predictionWater Resour Res19801617318510.1029/WR016i001p00173 FraserAMSwinneyHLIndependent coordinates for strange attractors from mutual informationPhys Rev A198633113411401:STN:280:DC%2BC2sjosVahsg%3D%3D10.1103/PhysRevA.33.1134 NaufanISivakumarBWoldemeskelFMSpatial connections in regional climate model rainfall outputs at different temporal scales: application of network theoryJ Hydrol20185561232124310.1016/j.jhydrol.2017.05.029 RemyaRUnnikrishnanKChaotic behaviour of interplanetary magnetic field under various geomagnetic conditionsJ Atmos Solar Terrestrial Phys20107266267510.1016/j.jastp.2010.03.007 AbarbanelHDIAnalysis of observed chaotic data1996New YorkSpringer10.1007/978-1-4612-0763-4 WongKWWongPMGedeonTDFungCCRainfall prediction model using soft computing techniqueSoft Comput2003743443810.1007/s00500-002-0232-4 BarabásiA-LAlbertREmergence of scaling in random networksScience19998028650951210.1126/science.286.5439.509 YasminNSivakumarBTemporal streamflow analysis: coupling nonlinear dynamics with complex networksJ Hydrol2018564596710.1016/j.jhydrol.2018.06.072 JhaSKZhaoHWoldemeskelFMSivakumarBNetwork theory and spatial rainfall connections: an interpretationJ Hydrol2015527131910.1016/j.jhydrol.2015.04.035 OualloucheFLazriMAmeurSImprovement of rainfall estimation from MSG data using random forests classification and regressionAtmos Res2018211627210.1016/j.atmosres.2018.05.001 FrenchMNKrajewskiWFCuykendallRRRainfall forecasting in space and time using a neural networkJ Hydrol199213713110.1016/0022-1694(92)90046-X ScarsoglioSLaioFRidolfiLClimate dynamics: a network-based approach for the analysis of global precipitationPLoS ONE20138e711291:CAS:528:DC%2BC3sXhtlGjtLnJ10.1371/journal.pone.0071129 TiwariSJhaSKSivakumarBReconstruction of daily rainfall data using the concepts of networks: accounting for spatial connections in neighborhood selectionJ Hydrol201957912418510.1016/j.jhydrol.2019.124185 PackardNHCrutchfieldJPFarmerJDShawRSGeometry from a time seriesPhys Rev Lett19804571271610.1103/PhysRevLett.45.712 AliMDeoRCDownsNJMaraseniTMulti-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecastingAtmos Res201821345046410.1016/j.atmosres.2018.07.005 DiopLSamadianfardSBodianAAnnual rainfall forecasting using hybrid artificial intelligence model: integration of multilayer perceptron with whale optimization algorithmWater Resour Manag20203473374610.1007/s11269-019-02473-8 WuJLongJLiuMEvolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithmNeurocomputing201514813614210.1016/j.neucom.2012.10.043 WattsDJStrogatzSHCollective dynamics of ‘small-world’ networksNature19983934404421:CAS:528:DyaK1cXjs1Khsrk%3D10.1038/30918 TothEBrathAMontanariAComparison of short-term rainfall prediction models for real-time flood forecastingJ Hydrol200023913214710.1016/S0022-1694(00)00344-9 VuMTVoNDGourbesvillePHydro-meteorological drought assessment under climate change impact over the Vu Gia-Thu Bon river basinVietnam. Hydrol Sci J2017621654166810.1080/02626667.2017.1346374 Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young LS (eds) Dynamical systems and turbulence, Warwick 1980: proceedings of a symposium held at the University of Warwick 1979/80, Springer, Berlin, pp 366–381 De MicheleCBernardaraPSpectral analysis and modeling of space-time rainfall fieldsAtmos Res20057712413610.1016/j.atmosres.2004.10.031 M Ali (1962_CR2) 2018; 213 SK Jha (1962_CR14) 2017; 554 SK Jha (1962_CR15) 2015; 527 A-L Barabási (1962_CR4) 1999; 80 S Scarsoglio (1962_CR24) 2013; 8 L Diop (1962_CR9) 2020; 34 N Yasmin (1962_CR37) 2018; 564 A Danandeh Mehr (1962_CR7) 2019; 16 KW Chau (1962_CR6) 2010; 12 AY Sun (1962_CR29) 2018; 112 J Wu (1962_CR36) 2015; 148 NH Packard (1962_CR22) 1980; 45 M Souvignet (1962_CR28) 2014; 28 M Ali (1962_CR3) 2020; 584 F Ouallouche (1962_CR21) 2018; 211 AK Mishra (1962_CR19) 2009; 370 B Sivakumar (1962_CR25) 2017 T Kawachi (1962_CR17) 2001; 246 ER Johnson (1962_CR16) 1980; 16 MT Vu (1962_CR33) 2017; 62 E Toth (1962_CR32) 2000; 239 DJ Watts (1962_CR34) 1998; 393 B Sivakumar (1962_CR26) 2015; 69 HDI Abarbanel (1962_CR1) 1996 R Remya (1962_CR23) 2010; 72 MN French (1962_CR12) 1992; 137 AM Fraser (1962_CR11) 1986; 33 MB Kennel (1962_CR18) 1992; 45 1962_CR100 1962_CR13 C Folland (1962_CR10) 1991; 10 KW Wong (1962_CR35) 2003; 7 I Naufan (1962_CR20) 2018; 556 S Tiwari (1962_CR31) 2019; 579 B Sivakumar (1962_CR27) 2001; 37 C De Michele (1962_CR8) 2005; 77 1962_CR30 |
| References_xml | – reference: FollandCOwenJWardMNColmanAPrediction of seasonal rainfall in the Sahel region using empirical and dynamical methodsJ Forecast199110215610.1002/for.3980100104 – reference: MishraAKÖzgerMSinghVPAn entropy-based investigation into the variability of precipitationJ Hydrol200937013915410.1016/j.jhydrol.2009.03.006 – reference: FraserAMSwinneyHLIndependent coordinates for strange attractors from mutual informationPhys Rev A198633113411401:STN:280:DC%2BC2sjosVahsg%3D%3D10.1103/PhysRevA.33.1134 – reference: DiopLSamadianfardSBodianAAnnual rainfall forecasting using hybrid artificial intelligence model: integration of multilayer perceptron with whale optimization algorithmWater Resour Manag20203473374610.1007/s11269-019-02473-8 – reference: KawachiTMaruyamaTSinghVPRainfall entropy for delineation of water resources zones in JapanJ Hydrol2001246364410.1016/S0022-1694(01)00355-9 – reference: De MicheleCBernardaraPSpectral analysis and modeling of space-time rainfall fieldsAtmos Res20057712413610.1016/j.atmosres.2004.10.031 – reference: WattsDJStrogatzSHCollective dynamics of ‘small-world’ networksNature19983934404421:CAS:528:DyaK1cXjs1Khsrk%3D10.1038/30918 – reference: OualloucheFLazriMAmeurSImprovement of rainfall estimation from MSG data using random forests classification and regressionAtmos Res2018211627210.1016/j.atmosres.2018.05.001 – reference: JhaSKZhaoHWoldemeskelFMSivakumarBNetwork theory and spatial rainfall connections: an interpretationJ Hydrol2015527131910.1016/j.jhydrol.2015.04.035 – reference: TiwariSJhaSKSivakumarBReconstruction of daily rainfall data using the concepts of networks: accounting for spatial connections in neighborhood selectionJ Hydrol201957912418510.1016/j.jhydrol.2019.124185 – reference: WongKWWongPMGedeonTDFungCCRainfall prediction model using soft computing techniqueSoft Comput2003743443810.1007/s00500-002-0232-4 – reference: AbarbanelHDIAnalysis of observed chaotic data1996New YorkSpringer10.1007/978-1-4612-0763-4 – reference: SivakumarBSorooshianSGuptaHVGaoXA chaotic approach to rainfall disaggregationWater Resour Res200137617210.1029/2000WR900196 – reference: KennelMBBrownRAbarbanelHDIDetermining embedding dimension for phase-space reconstruction using a geometrical constructionPhys Rev A199245340334111:STN:280:DC%2BC2sjpsVykug%3D%3D10.1103/PhysRevA.45.3403 – reference: BarabásiA-LAlbertREmergence of scaling in random networksScience19998028650951210.1126/science.286.5439.509 – reference: PackardNHCrutchfieldJPFarmerJDShawRSGeometry from a time seriesPhys Rev Lett19804571271610.1103/PhysRevLett.45.712 – reference: SivakumarBChaos in hydrology: bridging determinism and stochasticity2017DordrechtSpringer10.1007/978-90-481-2552-4 – reference: YasminNSivakumarBTemporal streamflow analysis: coupling nonlinear dynamics with complex networksJ Hydrol2018564596710.1016/j.jhydrol.2018.06.072 – reference: SouvignetMLauxPFreerJRecent climatic trends and linkages to river discharge in Central VietnamHydrol Process2014281587160110.1002/hyp.9693 – reference: RemyaRUnnikrishnanKChaotic behaviour of interplanetary magnetic field under various geomagnetic conditionsJ Atmos Solar Terrestrial Phys20107266267510.1016/j.jastp.2010.03.007 – reference: VuMTVoNDGourbesvillePHydro-meteorological drought assessment under climate change impact over the Vu Gia-Thu Bon river basinVietnam. Hydrol Sci J2017621654166810.1080/02626667.2017.1346374 – reference: AliMDeoRCDownsNJMaraseniTMulti-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecastingAtmos Res201821345046410.1016/j.atmosres.2018.07.005 – reference: JhaSKSivakumarBComplex networks for rainfall modeling: spatial connections, temporal scale, and network sizeJ Hydrol201755448248910.1016/j.jhydrol.2017.09.030 – reference: NaufanISivakumarBWoldemeskelFMSpatial connections in regional climate model rainfall outputs at different temporal scales: application of network theoryJ Hydrol20185561232124310.1016/j.jhydrol.2017.05.029 – reference: FrenchMNKrajewskiWFCuykendallRRRainfall forecasting in space and time using a neural networkJ Hydrol199213713110.1016/0022-1694(92)90046-X – reference: SivakumarBWoldemeskelFMA network-based analysis of spatial rainfall connectionsEnviron Model Softw201569556210.1016/j.envsoft.2015.02.020 – reference: JohnsonERBrasRLMultivariate short-term rainfall predictionWater Resour Res19801617318510.1029/WR016i001p00173 – reference: ScarsoglioSLaioFRidolfiLClimate dynamics: a network-based approach for the analysis of global precipitationPLoS ONE20138e711291:CAS:528:DC%2BC3sXhtlGjtLnJ10.1371/journal.pone.0071129 – reference: WuJLongJLiuMEvolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithmNeurocomputing201514813614210.1016/j.neucom.2012.10.043 – reference: Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young LS (eds) Dynamical systems and turbulence, Warwick 1980: proceedings of a symposium held at the University of Warwick 1979/80, Springer, Berlin, pp 366–381 – reference: ChauKWWuCLA hybrid model coupled with singular spectrum analysis for daily rainfall predictionJ Hydroinform20101245847310.2166/hydro.2010.032 – reference: Jarvis A, Reuter HI, Nelson A, Guevara E (2006) Void-filled seamless SRTM data V3, available from the CGIAR-CSI SRTM 90 m Database – reference: AliMPrasadRXiangYYaseenZMComplete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecastsJ Hydrol202058412464710.1016/j.jhydrol.2020.124647 – reference: SunAYXiaYCaldwellTGHaoZPatterns of precipitation and soil moisture extremes in Texas, US: a complex network analysisAdv Water Resour201811220321310.1016/j.advwatres.2017.12.019 – reference: Danandeh MehrANouraniVKarimi KhosrowshahiVGhorbaniMAA hybrid support vector regression–firefly model for monthly rainfall forecastingInt J Environ Sci Technol20191633534610.1007/s13762-018-1674-2 – reference: TothEBrathAMontanariAComparison of short-term rainfall prediction models for real-time flood forecastingJ Hydrol200023913214710.1016/S0022-1694(00)00344-9 – reference: Ribbe L, Trinh VQ, Firoz ABM, Nguyen AT, Nguyen U, Nauditt A (2017) Integrated river basin management in the Vu Gia Thu Bon basin. In: Land use and climate change interactions in Central Vietnam. Springer, pp 153–170 – volume: 16 start-page: 335 year: 2019 ident: 1962_CR7 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-018-1674-2 – volume: 239 start-page: 132 year: 2000 ident: 1962_CR32 publication-title: J Hydrol doi: 10.1016/S0022-1694(00)00344-9 – volume: 72 start-page: 662 year: 2010 ident: 1962_CR23 publication-title: J Atmos Solar Terrestrial Phys doi: 10.1016/j.jastp.2010.03.007 – volume-title: Chaos in hydrology: bridging determinism and stochasticity year: 2017 ident: 1962_CR25 doi: 10.1007/978-90-481-2552-4 – volume: 148 start-page: 136 year: 2015 ident: 1962_CR36 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.10.043 – volume: 112 start-page: 203 year: 2018 ident: 1962_CR29 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2017.12.019 – volume: 8 start-page: e71129 year: 2013 ident: 1962_CR24 publication-title: PLoS ONE doi: 10.1371/journal.pone.0071129 – volume: 564 start-page: 59 year: 2018 ident: 1962_CR37 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.06.072 – volume: 213 start-page: 450 year: 2018 ident: 1962_CR2 publication-title: Atmos Res doi: 10.1016/j.atmosres.2018.07.005 – volume: 12 start-page: 458 year: 2010 ident: 1962_CR6 publication-title: J Hydroinform doi: 10.2166/hydro.2010.032 – volume: 556 start-page: 1232 year: 2018 ident: 1962_CR20 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.05.029 – volume: 80 start-page: 509 issue: 286 year: 1999 ident: 1962_CR4 publication-title: Science doi: 10.1126/science.286.5439.509 – volume: 246 start-page: 36 year: 2001 ident: 1962_CR17 publication-title: J Hydrol doi: 10.1016/S0022-1694(01)00355-9 – volume: 69 start-page: 55 year: 2015 ident: 1962_CR26 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2015.02.020 – volume: 62 start-page: 1654 year: 2017 ident: 1962_CR33 publication-title: Vietnam. Hydrol Sci J doi: 10.1080/02626667.2017.1346374 – volume: 7 start-page: 434 year: 2003 ident: 1962_CR35 publication-title: Soft Comput doi: 10.1007/s00500-002-0232-4 – volume: 584 start-page: 124647 year: 2020 ident: 1962_CR3 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.124647 – volume: 37 start-page: 61 year: 2001 ident: 1962_CR27 publication-title: Water Resour Res doi: 10.1029/2000WR900196 – volume: 45 start-page: 3403 year: 1992 ident: 1962_CR18 publication-title: Phys Rev A doi: 10.1103/PhysRevA.45.3403 – volume: 370 start-page: 139 year: 2009 ident: 1962_CR19 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.03.006 – volume: 45 start-page: 712 year: 1980 ident: 1962_CR22 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.45.712 – ident: 1962_CR100 doi: 10.1007/978-981-10-2624-9_10 – volume: 28 start-page: 1587 year: 2014 ident: 1962_CR28 publication-title: Hydrol Process doi: 10.1002/hyp.9693 – volume: 211 start-page: 62 year: 2018 ident: 1962_CR21 publication-title: Atmos Res doi: 10.1016/j.atmosres.2018.05.001 – volume: 579 start-page: 124185 year: 2019 ident: 1962_CR31 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124185 – volume-title: Analysis of observed chaotic data year: 1996 ident: 1962_CR1 doi: 10.1007/978-1-4612-0763-4 – volume: 393 start-page: 440 year: 1998 ident: 1962_CR34 publication-title: Nature doi: 10.1038/30918 – volume: 34 start-page: 733 year: 2020 ident: 1962_CR9 publication-title: Water Resour Manag doi: 10.1007/s11269-019-02473-8 – volume: 33 start-page: 1134 year: 1986 ident: 1962_CR11 publication-title: Phys Rev A doi: 10.1103/PhysRevA.33.1134 – volume: 10 start-page: 21 year: 1991 ident: 1962_CR10 publication-title: J Forecast doi: 10.1002/for.3980100104 – volume: 527 start-page: 13 year: 2015 ident: 1962_CR15 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2015.04.035 – volume: 77 start-page: 124 year: 2005 ident: 1962_CR8 publication-title: Atmos Res doi: 10.1016/j.atmosres.2004.10.031 – volume: 16 start-page: 173 year: 1980 ident: 1962_CR16 publication-title: Water Resour Res doi: 10.1029/WR016i001p00173 – ident: 1962_CR30 doi: 10.1007/BFb0091924 – ident: 1962_CR13 – volume: 137 start-page: 1 year: 1992 ident: 1962_CR12 publication-title: J Hydrol doi: 10.1016/0022-1694(92)90046-X – volume: 554 start-page: 482 year: 2017 ident: 1962_CR14 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.09.030 |
| SSID | ssj0017754 ssib007539910 ssib057179955 ssib001127189 |
| Score | 2.3276117 |
| Snippet | Adequate understanding of the temporal connections in rainfall is important for reliable predictions of rainfall and, hence, for water resources planning and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 535 |
| SubjectTerms | Annual rainfall Aquatic Pollution Chemistry and Earth Sciences Computational Intelligence Computer Science Delay time Earth and Environmental Science Earth Sciences Elevation Embedding Entropy Environment Hydrologic data Interpolation Math. Appl. in Environmental Science Mathematical analysis Networks Nodes Original Paper Physics Probability Theory and Stochastic Processes Rain gauges Rainfall Resource management River basins Stations Statistics for Engineering Time series Waste Water Technology Water Management Water Pollution Control Water resources |
| SummonAdditionalLinks | – databaseName: SpringerLink Contemporary dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_ED_TFaXU4nZIH3zSwpB9pH4ds-CBD_Bh7K0massHYZK3i_nuTLF1RVNDHptdQLpfkjvvd7wAulQiCvJNxnMcyMC3MJNZhUID9jDGiaBT7lqd7eMcGg3g0Su5dUVhRod2rlKQ9qdfFbobYkGET7hhOF4r1wbsVGrYZE6M_Dte5A8PpZmuK_AgbujlXKvP9HJ-vo9rH_JIWtbdNv_G__zyAfeddou7KHA5hQ808aFSdG5DbyB40e3V9m5Z344UHu64p-njpwY5Fh8riCB66dZobzXNkcejqHc1WGPICac8XaXsux9MlMj0ncj6domzV7L5ABiWKHAoUDSeq1OPH8NzvPd3cYteMAUvto5U464iQ6IiWMEUzEZOOYDwRionI14dEQrgOb-MoCSTheUREyCVXLCNxpqX0s_KbsDmbz9QJICm4SKgMOde-DMsDQSMqaR6EIUtibTstINWapNIxlZuGGdN0zbFsdZxqHadWxyltwdX6m5cVT8ev0u1qqVO3Z4vUcCcGkfaHSQuuq6WtX_882-nfxM9gjxpgjAWytWGzXLyqc9iWb-WkWFxYW_4AXnjssQ priority: 102 providerName: Springer Nature |
| Title | Application of complex networks for monthly rainfall dynamics over central Vietnam |
| URI | https://link.springer.com/article/10.1007/s00477-020-01962-2 https://www.proquest.com/docview/2492469771 |
| Volume | 35 |
| WOSCitedRecordID | wos000614451400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1436-3259 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017754 issn: 1436-3240 databaseCode: RSV dateStart: 19990401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58gV58i_VRcvCmwSb7yO5JVCoepJSqxduSZLMolLZ2V9F_7yRNuyjoxcvCbrLZhZkkM5lvvgE4MSoMi1YuaZHo0JYw0xTdoJAGuRDM8DgJHE93_050OsnTU9r1B26lh1XO1kS3UOcjbc_Izy2zHbpyOMLF-JXaqlE2uupLaCzCsmVJYA66dz-PIlh2N5ddFMTUEs_5pBmXOmdpEgW1zpNliOGUf9-YamvzR4DU7Ts3G__9401Y9xYnuZyqyBYsmOE27LXrBDds9DO83IZVXxX9-XMHepd1dJuMCuLg5-aDDKfQ8ZKgwUvwK9Xz4JPYUhOFHAxIPq1xXxILDiUe_En6L6bC57vweNN-uL6lvgYD1WiaVTRvqYihI8uE4blKWEsJmSojVBzg2pAyiV5tEqehZrKImYqklkbkLMmxF96bYA-WhqOh2QeilVQp15GUaMKIIlQ85poXYRSJNEGVaQCbCSDTnqDc1skYZHNqZSe0DIWWOaFlvAGn83fGU3qOP3sfzSSV-alaZrWYGnA2k3Xd_PtoB3-Pdghr3OJfHF7tCJaqyZs5hhX9Xr2UkyYsX7U73V4TFZZ3m05t8dq7738BMGTxPQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BbtQwEB2VLVK5FChUbCngA5zAYu04cXKoUIGtWnVZVVWpegu246grLdnSBOj-VL-xY6-zEUj01gPHJM5Ijp_HM5mZNwCvrRaiHBSKlqkRroWZoegGCRoVUjLLkzTyPN2nIzkep2dn2dEKXLe1MC6tstWJXlEXM-P-kb93zHboyqGEDxc_qOsa5aKrbQuNBSwO7fw3umz1zsFnXN83nO8NTz7t09BVgBo0NhpaDHTM0DVj0vJCp2ygpcq0lTqJEO0ZU-inpUkmDFNlwnSsjLKyYGmBo_DaRij3HqyKSCRxD1Y_DsdHx8u4heOT8_VMUUId1V0o0_HFeo6YUVLnrjlOGk75n0dhZ9_-FZL1J93ew__tGz2C9WBTk93FJngMK7bagM1hV8KHD4MOqzdgLfR9P58_gePdLn5PZiXxCfb2ilSL5PiaoElPcFbN-XROXDONUk2npJhX6vvE1MSlv5KQ3kpOJ7bB-0_h653MdRN61ayyz4AYrXTGTawUGmmyFJon3PBSxLHMUtwUfWDtgucmULC7TiDTfEke7UGSI0hyD5Kc9-Ht8p2LBQHJraO3W2TkQRnVeQeLPrxrsdU9_re0rdulvYK1_ZMvo3x0MD58Dg-4y_bx2Xnb0Gsuf9oXcN_8aib15cuwTQh8u2vU3QBKbkvj |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7RpWp7oZSCukBbH-iptVg7DycHhHjsqgi0WqEWcUttxxErbbOUpC371_rrOvY6GxUJbhx6TOKM5PjzeCYz8w3AjlFhWPRySYtEh7aFmaboBoU0yIVghsdJ4Hi6L87EcJhcXqajJfjT1MLYtMpGJzpFnU-1_Ue-a5nt0JVDCbuFT4sYHQ_2r39Q20HKRlqbdhpziJya2W9036q9k2Nc6w-cD_pfjj5T32GAajQ8apr3VMTQTWPC8FwlrKeETJURKg4Q-SmT6LMlcRpqJouYqUhqaUTOkhxH4bUJUO4TWBYBOj0dWD7sD0fnixiG5ZZztU1BTC3tnS_ZcYV7lqRRUOu6WX4aTvm_x2Jr694Jz7pTb_Dyf_5eq7DibW1yMN8cr2DJlGuw0W9L-_Ch123VGjz3_eCvZq_h_KCN65NpQVzivbkl5TxpviJo6hOcVX01mRHbZKOQkwnJZ6X8PtYVsWmxxKe9kouxqfH-Onx9lLluQKecluYNEK2kSrmOpETjTRSh4jHXvAijSKQJbpYusGbxM-2p2W2HkEm2IJV2gMkQMJkDTMa78HHxzvWcmOTB0dsNSjKvpKqshUgXPjU4ax_fL23zYWnv4RlCLTs7GZ5uwQtuk4Bc0t42dOqbn-YtPNW_6nF1887vGALfHht0fwH2iVSm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+complex+networks+for+monthly+rainfall+dynamics+over+central+Vietnam&rft.jtitle=Stochastic+environmental+research+and+risk+assessment&rft.au=Ghorbani%2C+Mohammad+Ali&rft.au=Karimi+Vahid&rft.au=Ruskeep%C3%A4%C3%A4+Heikki&rft.au=Sivakumar+Bellie&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1436-3240&rft.eissn=1436-3259&rft.volume=35&rft.issue=3&rft.spage=535&rft.epage=548&rft_id=info:doi/10.1007%2Fs00477-020-01962-2&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-3240&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-3240&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-3240&client=summon |