Contrastive Multi-View Kernel Learning
Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the views into a single kernel. However, existing approach...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence Jg. 45; H. 8; S. 9552 - 9566 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the views into a single kernel. However, existing approaches compute the kernels independently for each view. This ignores complementary information across views and thus may result in a bad kernel choice. In contrast, we propose the Contrastive Multi-view Kernel - a novel kernel function based on the emerging contrastive learning framework. The Contrastive Multi-view Kernel implicitly embeds the views into a joint semantic space where all of them resemble each other while promoting to learn diverse views. We validate the method's effectiveness in a large empirical study. It is worth noting that the proposed kernel functions share the types and parameters with traditional ones, making them fully compatible with existing kernel theory and application. On this basis, we also propose a contrastive multi-view clustering framework and instantiate it with multiple kernel <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="liu-ieq1-3253211.gif"/> </inline-formula>-means, achieving a promising performance. To the best of our knowledge, this is the first attempt to explore kernel generation in multi-view setting and the first approach to use contrastive learning for a multi-view kernel learning. |
|---|---|
| AbstractList | Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the views into a single kernel. However, existing approaches compute the kernels independently for each view. This ignores complementary information across views and thus may result in a bad kernel choice. In contrast, we propose the Contrastive Multi-view Kernel - a novel kernel function based on the emerging contrastive learning framework. The Contrastive Multi-view Kernel implicitly embeds the views into a joint semantic space where all of them resemble each other while promoting to learn diverse views. We validate the method's effectiveness in a large empirical study. It is worth noting that the proposed kernel functions share the types and parameters with traditional ones, making them fully compatible with existing kernel theory and application. On this basis, we also propose a contrastive multi-view clustering framework and instantiate it with multiple kernel k-means, achieving a promising performance. To the best of our knowledge, this is the first attempt to explore kernel generation in multi-view setting and the first approach to use contrastive learning for a multi-view kernel learning.Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the views into a single kernel. However, existing approaches compute the kernels independently for each view. This ignores complementary information across views and thus may result in a bad kernel choice. In contrast, we propose the Contrastive Multi-view Kernel - a novel kernel function based on the emerging contrastive learning framework. The Contrastive Multi-view Kernel implicitly embeds the views into a joint semantic space where all of them resemble each other while promoting to learn diverse views. We validate the method's effectiveness in a large empirical study. It is worth noting that the proposed kernel functions share the types and parameters with traditional ones, making them fully compatible with existing kernel theory and application. On this basis, we also propose a contrastive multi-view clustering framework and instantiate it with multiple kernel k-means, achieving a promising performance. To the best of our knowledge, this is the first attempt to explore kernel generation in multi-view setting and the first approach to use contrastive learning for a multi-view kernel learning. Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the views into a single kernel. However, existing approaches compute the kernels independently for each view. This ignores complementary information across views and thus may result in a bad kernel choice. In contrast, we propose the Contrastive Multi-view Kernel - a novel kernel function based on the emerging contrastive learning framework. The Contrastive Multi-view Kernel implicitly embeds the views into a joint semantic space where all of them resemble each other while promoting to learn diverse views. We validate the method's effectiveness in a large empirical study. It is worth noting that the proposed kernel functions share the types and parameters with traditional ones, making them fully compatible with existing kernel theory and application. On this basis, we also propose a contrastive multi-view clustering framework and instantiate it with multiple kernel <inline-formula><tex-math notation="LaTeX">k</tex-math> <mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="liu-ieq1-3253211.gif"/> </inline-formula>-means, achieving a promising performance. To the best of our knowledge, this is the first attempt to explore kernel generation in multi-view setting and the first approach to use contrastive learning for a multi-view kernel learning. Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the views into a single kernel. However, existing approaches compute the kernels independently for each view. This ignores complementary information across views and thus may result in a bad kernel choice. In contrast, we propose the Contrastive Multi-view Kernel - a novel kernel function based on the emerging contrastive learning framework. The Contrastive Multi-view Kernel implicitly embeds the views into a joint semantic space where all of them resemble each other while promoting to learn diverse views. We validate the method's effectiveness in a large empirical study. It is worth noting that the proposed kernel functions share the types and parameters with traditional ones, making them fully compatible with existing kernel theory and application. On this basis, we also propose a contrastive multi-view clustering framework and instantiate it with multiple kernel k-means, achieving a promising performance. To the best of our knowledge, this is the first attempt to explore kernel generation in multi-view setting and the first approach to use contrastive learning for a multi-view kernel learning. Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based multi-view learning algorithms compute a kernel function aggregating and compressing the views into a single kernel. However, existing approaches compute the kernels independently for each view. This ignores complementary information across views and thus may result in a bad kernel choice. In contrast, we propose the Contrastive Multi-view Kernel — a novel kernel function based on the emerging contrastive learning framework. The Contrastive Multi-view Kernel implicitly embeds the views into a joint semantic space where all of them resemble each other while promoting to learn diverse views. We validate the method's effectiveness in a large empirical study. It is worth noting that the proposed kernel functions share the types and parameters with traditional ones, making them fully compatible with existing kernel theory and application. On this basis, we also propose a contrastive multi-view clustering framework and instantiate it with multiple kernel [Formula Omitted]-means, achieving a promising performance. To the best of our knowledge, this is the first attempt to explore kernel generation in multi-view setting and the first approach to use contrastive learning for a multi-view kernel learning. |
| Author | Xia, Yuanqing Liu, Jiyuan Liao, Qing Yang, Yuexiang Liu, Xinwang |
| Author_xml | – sequence: 1 givenname: Jiyuan orcidid: 0000-0001-5702-4941 surname: Liu fullname: Liu, Jiyuan email: liujiyuan13@nudt.edu.cn organization: College of Systems Engineering, National University of Defense Technology, Changsha, Hunan, China – sequence: 2 givenname: Xinwang orcidid: 0000-0001-9066-1475 surname: Liu fullname: Liu, Xinwang email: xinwangliu@nudt.edu.cn organization: College of Computer, National University of Defense Technology, Changsha, Hunan, China – sequence: 3 givenname: Yuexiang surname: Yang fullname: Yang, Yuexiang email: yyx@nudt.edu.cn organization: College of Computer, National University of Defense Technology, Changsha, Hunan, China – sequence: 4 givenname: Qing surname: Liao fullname: Liao, Qing email: liaoqing@hut.edu.cn organization: School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China – sequence: 5 givenname: Yuanqing orcidid: 0000-0002-5977-4911 surname: Xia fullname: Xia, Yuanqing email: xia_yuanqing@bit.edu.cn organization: School of Automation, Beijing Institute of Technology, Beijing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37028046$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1LAzEQhoNUbK3-AREpCOJlazLZj-QoxY9iix6q15DdTiRlu6vJruK_N_1QpAdPc3nemXeeQ9Kp6goJOWF0yBiVV7On6-l4CBT4kEPCgbE90gOW0kiChA7pUZZCJASILjn0fkEpixPKD0iXZxQEjdMeuRjVVeO0b-wHDqZt2djoxeLn4AFdheVggtpVtno9IvtGlx6Pt7NPnm9vZqP7aPJ4Nx5dT6KCJ9BEc5qFJiyPQeoEWJ5LYaTQEBsTByJDhhlCnBep1FpLw2CuBdWGixxMAZL3yeVm75ur31v0jVpaX2BZ6grr1ivIpMjC75QH9HwHXdStq0I7BYKzhAou4kCdbak2X-JcvTm71O5L_RgIAGyAwtXeOzS_CKNqpVmtNauVZrXVHEJiJ1TYRjd27dKW_0dPN1GLiH9u0ZRBKvk3KyeHpQ |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_neunet_2023_11_066 crossref_primary_10_1109_TGRS_2025_3540269 crossref_primary_10_1016_j_ajhg_2024_06_012 crossref_primary_10_1109_TMM_2024_3397038 crossref_primary_10_1109_TPAMI_2025_3526790 crossref_primary_10_1007_s10044_025_01517_7 crossref_primary_10_1038_s41598_025_01873_8 crossref_primary_10_1109_TPAMI_2025_3566169 crossref_primary_10_1109_TFUZZ_2025_3546802 crossref_primary_10_1007_s10462_024_10990_1 crossref_primary_10_1016_j_inffus_2023_101914 crossref_primary_10_1109_TCYB_2025_3557917 crossref_primary_10_3390_rs17183217 crossref_primary_10_1109_TIP_2024_3480701 crossref_primary_10_1109_TIP_2024_3444269 crossref_primary_10_1109_TETCI_2024_3353576 crossref_primary_10_1016_j_ins_2024_120625 crossref_primary_10_1109_TPAMI_2025_3587216 crossref_primary_10_1016_j_inffus_2023_102068 crossref_primary_10_1109_TIP_2024_3416873 crossref_primary_10_1016_j_dsp_2024_104713 crossref_primary_10_1016_j_eswa_2025_129648 crossref_primary_10_1016_j_neucom_2025_131487 crossref_primary_10_1007_s11063_025_11781_7 crossref_primary_10_1016_j_patcog_2025_111399 crossref_primary_10_1109_TCSVT_2024_3516760 crossref_primary_10_1109_TKDE_2024_3443534 crossref_primary_10_1109_TNNLS_2023_3304626 crossref_primary_10_1109_TNNLS_2024_3392484 crossref_primary_10_1016_j_aej_2025_01_089 crossref_primary_10_1016_j_inffus_2025_103151 crossref_primary_10_1109_TPAMI_2025_3582689 crossref_primary_10_1016_j_neucom_2025_130092 crossref_primary_10_1016_j_neunet_2024_106602 crossref_primary_10_1109_TKDE_2025_3592126 crossref_primary_10_1016_j_neucom_2025_130849 crossref_primary_10_1109_TNNLS_2024_3489585 crossref_primary_10_1109_TKDE_2023_3340743 crossref_primary_10_1109_TFUZZ_2023_3335361 crossref_primary_10_1109_TNNLS_2024_3424464 crossref_primary_10_1016_j_patcog_2025_111495 crossref_primary_10_1109_TNNLS_2024_3354731 crossref_primary_10_1007_s40747_025_01982_x |
| Cites_doi | 10.1109/tip.2020.3011846 10.1007/978-3-030-58621-8_45 10.1145/1646396.1646452 10.1007/978-3-642-15883-4_5 10.1109/tkde.2019.2903810 10.1109/icdm.2012.93 10.1109/tcyb.2020.3000947 10.1016/j.neunet.2020.10.014 10.7551/mitpress/3206.001.0001 10.1145/1991996.1992025 10.1080/01431161.2019.1601285 10.1109/tnnls.2018.2851444 10.24963/ijcai.2019/524 10.1109/tpami.2018.2877660 10.1017/CBO9781139176224.010 10.1109/tpami.2019.2892416 10.1007/978-3-031-19809-0_38 10.1145/1143844.1143892 10.1109/cvpr.2009.5206594 10.1007/11776420_14 10.1145/3474085.3475458 10.1109/tfuzz.2011.2170175 10.1007/s11590-017-1170-5 10.1109/tsmcb.2011.2124455 10.1145/1571941.1572103 10.1007/978-3-030-11018-5_47 10.1109/tkde.2020.3014104 10.1609/aaai.v35i10.17051 10.1109/tpami.2005.181 10.1109/tnnls.2020.2991366 10.1007/s10994-013-5377-0 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2023.3253211 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 9566 |
| ExternalDocumentID | 37028046 10_1109_TPAMI_2023_3253211 10061269 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Education Ministry-China Mobile Research Funding grantid: MCM20170404 – fundername: National Key R&D Program of China grantid: 2020AAA0107100 – fundername: National Natural Science Foundation of China grantid: 61922088; 61976196; 62276271 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION NPM RIG 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c352t-d073251b429a521bb98f98a24ff4c357e1e7e24bc69aaa9f12da80af38b2fc293 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001022958600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Thu Oct 02 05:49:24 EDT 2025 Sun Jun 29 12:35:08 EDT 2025 Mon Jul 21 05:27:55 EDT 2025 Sat Nov 29 02:58:23 EST 2025 Tue Nov 18 22:30:36 EST 2025 Wed Aug 27 02:25:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-d073251b429a521bb98f98a24ff4c357e1e7e24bc69aaa9f12da80af38b2fc293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5977-4911 0000-0001-5702-4941 0000-0001-9066-1475 |
| PMID | 37028046 |
| PQID | 2831508384 |
| PQPubID | 85458 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TPAMI_2023_3253211 proquest_miscellaneous_2798710903 ieee_primary_10061269 proquest_journals_2831508384 pubmed_primary_37028046 crossref_citationtrail_10_1109_TPAMI_2023_3253211 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref10 ref17 ref16 Li (ref30) 2021 ref45 ref47 ref42 ref41 ref44 ref43 Sonnenburg (ref11) 2006; 7 ref8 ref7 Lin (ref29) 2021 Du (ref50) 2015 ref40 Oglic (ref48) 2017; 70 ref34 ref37 Chai (ref4) 2021 Leslie (ref5) 2002 ref31 ref33 Liu (ref15) 2016 Liu (ref51) 2017 ref2 ref1 ref39 Zhou (ref18) 2015 ref38 Blei (ref46) 2003; 3 Chen (ref28) 2020; 119 Kumar (ref19) 2011 Xu (ref35) 2021 ref24 ref23 Wang (ref3) 2018 ref26 ref25 ref20 ref22 ref21 Cai (ref36) 2013 Han (ref9) 2021 ref27 Kingma (ref49) 2015 Khosla (ref32) 2020 Schölkopf (ref6) 2002 KloftRückert (ref14) 2010; 6322 |
| References_xml | – ident: ref2 doi: 10.1109/tip.2020.3011846 – start-page: 8547 volume-title: Proc. 31st AAAI Conf. Artif. Intell., 33rd Conf. Innov. Appl. Artif. Intell., 11th Symp. Educ. Adv. Artif. Intell. year: 2021 ident: ref30 article-title: Contrastive clustering – ident: ref34 doi: 10.1007/978-3-030-58621-8_45 – ident: ref44 doi: 10.1145/1646396.1646452 – start-page: 566 volume-title: Proc. 7th Pacific Symp. Biocomputing year: 2002 ident: ref5 article-title: The spectrum kernel: A string kernel for SVM protein classification – volume: 6322 start-page: 66 volume-title: Proc. Knowl. Discov. Databases Eur. Conf. Mach. Learn. year: 2010 ident: ref14 article-title: A unifying view of multiple kernel learning doi: 10.1007/978-3-642-15883-4_5 – ident: ref39 doi: 10.1109/tkde.2019.2903810 – volume: 7 start-page: 1531 volume-title: J. Mach. Learn. Res. year: 2006 ident: ref11 article-title: Large scale multiple kernel learning – start-page: 11174 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit year: 2021 ident: ref29 article-title: COMPLETER: Incomplete multi-view clustering via contrastive prediction – ident: ref41 doi: 10.1109/icdm.2012.93 – start-page: 1248 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. year: 2018 ident: ref3 article-title: Multi-scale location-aware kernel representation for object detection – start-page: 16000 volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. year: 2021 ident: ref4 article-title: To the point: Efficient 3D object detection in the range image with graph convolution kernels – ident: ref22 doi: 10.1109/tcyb.2020.3000947 – volume: 119 start-page: 1597 volume-title: Proc. 37th Int. Conf. Mach. Learn. year: 2020 ident: ref28 article-title: A simple framework for contrastive learning of visual representations – ident: ref20 doi: 10.1016/j.neunet.2020.10.014 – ident: ref7 doi: 10.7551/mitpress/3206.001.0001 – ident: ref43 doi: 10.1145/1991996.1992025 – ident: ref47 doi: 10.1080/01431161.2019.1601285 – ident: ref38 doi: 10.1109/tnnls.2018.2851444 – volume-title: Proc. 9th Int. Conf. Learn. Representations year: 2021 ident: ref9 article-title: Trusted multi-view classification – ident: ref24 doi: 10.24963/ijcai.2019/524 – start-page: 2598 volume-title: Proc. 23rd Int. Joint Conf. Artif. Intell. year: 2013 ident: ref36 article-title: Multi-view K-means clustering on Big Data – ident: ref10 doi: 10.1109/tpami.2018.2877660 – ident: ref8 doi: 10.1017/CBO9781139176224.010 – volume: 70 start-page: 2652 volume-title: Proc. 34th Int. Conf. Mach. Learn. year: 2017 ident: ref48 article-title: Nyström method with kernel K-means samples as landmarks – ident: ref12 doi: 10.1109/tpami.2019.2892416 – ident: ref33 doi: 10.1007/978-3-031-19809-0_38 – start-page: 1888 volume-title: Proc. 13th AAAI Conf. Artif. Intell. year: 2016 ident: ref15 article-title: Multiple kernel K-means clustering with matrix-induced regularization – ident: ref40 doi: 10.1145/1143844.1143892 – ident: ref42 doi: 10.1109/cvpr.2009.5206594 – ident: ref26 doi: 10.1007/11776420_14 – volume-title: Proc. Adv. Neural Inf. Process. Syst. 33: Annu. Conf. Neural Inf. Process. Syst. year: 2020 ident: ref32 article-title: Supervised contrastive learning – ident: ref31 doi: 10.1145/3474085.3475458 – ident: ref13 doi: 10.1109/tfuzz.2011.2170175 – ident: ref27 doi: 10.1007/s11590-017-1170-5 – start-page: 3476 volume-title: Proc. 24th Int. Joint Conf. Artif. Intell. year: 2015 ident: ref50 article-title: Robust multiple kernel K-means using L21-norm – start-page: 1413 volume-title: Proc. Adv. Neural Inf. Process. Syst.: 25th Annu. Conf. Neural Inf. Process. Syst. year: 2011 ident: ref19 article-title: Co-regularized multi-view spectral clustering – ident: ref37 doi: 10.1109/tsmcb.2011.2124455 – volume-title: Learning With Kernels: Support Vector Machines, Regularization, Optimization, and Beyond year: 2002 ident: ref6 – ident: ref23 doi: 10.1145/1571941.1572103 – volume-title: Proc. 3rd Int. Conf. Learn. Representations year: 2015 ident: ref49 article-title: Adam: A method for stochastic optimization – year: 2021 ident: ref35 article-title: Contrastive multi-modal clustering – start-page: 4105 volume-title: Proc. 24th Int. Joint Conf. Artif. Intell. year: 2015 ident: ref18 article-title: Recovery of corrupted multiple kernels for clustering – ident: ref21 doi: 10.1007/978-3-030-11018-5_47 – ident: ref16 doi: 10.1109/tkde.2020.3014104 – ident: ref25 doi: 10.1609/aaai.v35i10.17051 – ident: ref1 doi: 10.1109/tpami.2005.181 – ident: ref17 doi: 10.1109/tnnls.2020.2991366 – ident: ref45 doi: 10.1007/s10994-013-5377-0 – start-page: 2266 volume-title: Proc. 31st AAAI Conf. Artif. Intell. year: 2017 ident: ref51 article-title: Optimal neighborhood kernel clustering with multiple kernels – volume: 3 start-page: 993 year: 2003 ident: ref46 article-title: Latent dirichlet allocation publication-title: J. Mach. Learn. Res. |
| SSID | ssj0014503 |
| Score | 2.6748488 |
| Snippet | Kernel method is a proven technique in multi-view learning. It implicitly defines a Hilbert space where samples can be linearly separated. Most kernel-based... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 9552 |
| SubjectTerms | Algorithms Cluster Analysis Clustering Contrastive learning Fuses Hilbert space Kernel kernel function Kernel functions kernel method Machine learning multi-view clustering multiple kernel clustering Optimization Partitioning algorithms Semantics Support vector machines |
| Title | Contrastive Multi-View Kernel Learning |
| URI | https://ieeexplore.ieee.org/document/10061269 https://www.ncbi.nlm.nih.gov/pubmed/37028046 https://www.proquest.com/docview/2831508384 https://www.proquest.com/docview/2798710903 |
| Volume | 45 |
| WOSCitedRecordID | wos001022958600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60iOjB-jZaSwTxIql5bB57FLEoPvBQpbewm8xKoaTSh_59ZzcPeqngJQQySZadmXzfZnZmAC4jxTNFsOgQXVAOUzlzpJD64ApiC1Eohamu_xy_vibDIX-rktVNLgwims1n2NOnJpafT7KF_lVGHq4BOeLrsB7HUZms1YQMWGjaIBOFIRendUSdIePym8Hb7ctjTzcK7wV-GNCaZws2g1hHFTXxXQIk02FlNdk0oNNv_3O4u7BTsUv7tjSHPVjDYh_adecGu3LkfdheKkN4AFe6RNVUzPSXzzYZuc7HCH_sJ5wWOLarEqyfh_Devx_cPThV_wQnI1o1d3JyX6IvkiBHEEpLyRPFE-EzpRhJxOhhjD6TWcSFEFx5fi4SV6ggkb7KiAccQauYFHgCtieFIhWyUHBkMogIw1iO0o1UEGEo0AKvnsQ0q4qL6x4X49QsMlyeGh2kWgdppQMLrpt7vsrSGn9KH-oZXpIsJ9eCTq2stHK_WUqcydS5T5gFF81lchwdDREFThYkE_NEb0R1AwuOSyU3D69t43TFS89gS4-t3AjYgdZ8usBz2Mi-56PZtEvWOUy6xjp_AQqe3B0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60itaD9VE1PiOIF0lNk81jjyKKxVp6qNJb2E1mRZBU-tC_7-wmKb1U8BICmSTLzk6-bzMvgKtQ8VQRLDpEF5TDVMYcKaQ-uILYQhhIYarrd6NeLx4Oeb9MVje5MIhogs-wpU-NLz8bpTP9q4wsXANyyFdhLWDMc4t0rbnTgAWmETKRGDJy2klUOTIuvx307146Ld0qvOV7gU-7njps-JH2K2rquwBJpsfKcrppYOex8c8B78B2yS_tu2JB7MIK5nvQqHo32KUp78HWQiHCfbjWRarGYqK_fbbJyXXePvDHfsZxjp92WYT1vQmvjw-D-yen7KDgpESspk5GBkwERhLoCMJpKXmseCw8phQjiQjbGKHHZBpyIQRXbS8TsSuUH0tPpcQEDqCWj3I8ArsthSIlskBwZNIPCcVYhtINlR9iINCCdjWJSVqWF9ddLj4Ts81weWJ0kGgdJKUOLLiZ3_NVFNf4U7qpZ3hBsphcC04rZSWlAU4SYk2m0n3MLLicXybT0f4QkeNoRjIRj3UoqutbcFgoef7wam0cL3npBWw-DV66SbfTez6Buh5nERZ4CrXpeIZnsJ5-Tz8m43OzRn8BeNnefA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contrastive+Multi-View+Kernel+Learning&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liu%2C+Jiyuan&rft.au=Liu%2C+Xinwang&rft.au=Yang%2C+Yuexiang&rft.au=Liao%2C+Qing&rft.date=2023-08-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=45&rft.issue=8&rft.spage=9552&rft_id=info:doi/10.1109%2FTPAMI.2023.3253211&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |