Conditional simulation of categorical spatial variables using Gibbs sampling of a truncated multivariate normal distribution subject to linear inequality constraints

This paper introduces a method to generate conditional categorical simulations, given an ensemble of partially conditioned (or unconditional) categorical simulations derived from any simulation process. The proposed conditioning method relies on implicit functions (signed distance functions) for rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic environmental research and risk assessment Jg. 35; H. 2; S. 457 - 480
Hauptverfasser: Fouedjio, Francky, Scheidt, Celine, Yang, Liang, Wang, Yizheng, Caers, Jef
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2021
Springer Nature B.V
Schlagworte:
ISSN:1436-3240, 1436-3259
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a method to generate conditional categorical simulations, given an ensemble of partially conditioned (or unconditional) categorical simulations derived from any simulation process. The proposed conditioning method relies on implicit functions (signed distance functions) for representing the categorical spatial variable of interest. Thus, the conditioning problem is reformulated in terms of signed distance functions. The proposed approach combines aspects of principal component analysis and Gibbs sampling to achieve the conditioning of the unconditional categorical realizations to the data. It is applied to synthetic and real-world datasets and compared to the traditional sequential indicator simulation. It appears that the proposed simulation technique is an effective method to generate conditional categorical simulations from a set of unconditional categorical simulations.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1436-3240
1436-3259
DOI:10.1007/s00477-020-01925-7