GPGPU Implementation of a Genetic Algorithm for Stereo Refinement
During the last decade, the general-purpose computing on graphics processing units Graphics (GPGPU) has turned out to be a useful tool for speeding up many scientific calculations. Computer vision is known to be one of the fields with more penetration of these new techniques. This paper explores the...
Uložené v:
| Vydané v: | International journal of interactive multimedia and artificial intelligence Ročník 3; číslo 2; s. 69 - 76 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IMAI Software
01.03.2015
UNIR-Universidad Internacional de La Rioja Universidad Internacional de La Rioja (UNIR) |
| Predmet: | |
| ISSN: | 1989-1660, 1989-1660 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | During the last decade, the general-purpose computing on graphics processing units Graphics (GPGPU) has turned out to be a useful tool for speeding up many scientific calculations. Computer vision is known to be one of the fields with more penetration of these new techniques. This paper explores the advantages of using GPGPU implementation to speedup a genetic algorithm used for stereo refinement. The main contribution of this paper is analyzing which genetic operators take advantage of a parallel approach and the description of an efficient state-of-the-art implementation for each one. As a result, speed-ups close to x80 can be achieved, demonstrating to be the only way of achieving close to real-time performance. Keywords--Parallel processing, GPGPU, genetic algorithm, stereo. |
|---|---|
| ISSN: | 1989-1660 1989-1660 |
| DOI: | 10.9781/ijimai.2015.329 |