Eco-friendly waste plastic-based mortar incorporating industrial waste powders: Interpretable models for flexural strength
Glass powder, silica fume, and marble powder (MP) were investigated for their potential as sustainable additives to enhance mechanical properties, reduce environmental impact, and improve resource utilization in mortar formulations. This study utilized gene expression programming (GEP) and multi-exp...
Gespeichert in:
| Veröffentlicht in: | Reviews on advanced materials science Jg. 64; H. 1; S. id. 537 - 329 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
De Gruyter
24.09.2025
|
| Schlagworte: | |
| ISSN: | 1605-8127, 1605-8127 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Glass powder, silica fume, and marble powder (MP) were investigated for their potential as sustainable additives to enhance mechanical properties, reduce environmental impact, and improve resource utilization in mortar formulations. This study utilized gene expression programming (GEP) and multi-expression programming (MEP) with experimental data to develop flexural strength models using these materials as eco-friendly mortar cement substitutes. The models were evaluated using
² values, statistical tests, sensitivity analysis, partial dependence plots (PDPs), Taylor’s diagram generation, and test and predicted results. The statistical measures demonstrated that MEP was the more accurate model compared to GEP. The sensitivity study revealed that plastic and sand had the most significant influence on flexural strength prediction, emphasizing the importance of their proportions in the mixture. PDPs further showed that cement, silica fume, and MP positively impact flexural strength, while sand and plastic exhibit optimal levels for enhanced performance. The study also highlighted the particle interaction sensitivity of glass powder, underlining the importance of mix design optimization to achieve improved mechanical behavior. The findings support the use of equation-based modeling and sustainable industrial byproducts to optimize mortar formulations, contributing to greener construction practices and reduced dependence on conventional cement. |
|---|---|
| AbstractList | Glass powder, silica fume, and marble powder (MP) were investigated for their potential as sustainable additives to enhance mechanical properties, reduce environmental impact, and improve resource utilization in mortar formulations. This study utilized gene expression programming (GEP) and multi-expression programming (MEP) with experimental data to develop flexural strength models using these materials as eco-friendly mortar cement substitutes. The models were evaluated using
² values, statistical tests, sensitivity analysis, partial dependence plots (PDPs), Taylor’s diagram generation, and test and predicted results. The statistical measures demonstrated that MEP was the more accurate model compared to GEP. The sensitivity study revealed that plastic and sand had the most significant influence on flexural strength prediction, emphasizing the importance of their proportions in the mixture. PDPs further showed that cement, silica fume, and MP positively impact flexural strength, while sand and plastic exhibit optimal levels for enhanced performance. The study also highlighted the particle interaction sensitivity of glass powder, underlining the importance of mix design optimization to achieve improved mechanical behavior. The findings support the use of equation-based modeling and sustainable industrial byproducts to optimize mortar formulations, contributing to greener construction practices and reduced dependence on conventional cement. Glass powder, silica fume, and marble powder (MP) were investigated for their potential as sustainable additives to enhance mechanical properties, reduce environmental impact, and improve resource utilization in mortar formulations. This study utilized gene expression programming (GEP) and multi-expression programming (MEP) with experimental data to develop flexural strength models using these materials as eco-friendly mortar cement substitutes. The models were evaluated using R² values, statistical tests, sensitivity analysis, partial dependence plots (PDPs), Taylor’s diagram generation, and test and predicted results. The statistical measures demonstrated that MEP was the more accurate model compared to GEP. The sensitivity study revealed that plastic and sand had the most significant influence on flexural strength prediction, emphasizing the importance of their proportions in the mixture. PDPs further showed that cement, silica fume, and MP positively impact flexural strength, while sand and plastic exhibit optimal levels for enhanced performance. The study also highlighted the particle interaction sensitivity of glass powder, underlining the importance of mix design optimization to achieve improved mechanical behavior. The findings support the use of equation-based modeling and sustainable industrial byproducts to optimize mortar formulations, contributing to greener construction practices and reduced dependence on conventional cement. Glass powder, silica fume, and marble powder (MP) were investigated for their potential as sustainable additives to enhance mechanical properties, reduce environmental impact, and improve resource utilization in mortar formulations. This study utilized gene expression programming (GEP) and multi-expression programming (MEP) with experimental data to develop flexural strength models using these materials as eco-friendly mortar cement substitutes. The models were evaluated using R ² values, statistical tests, sensitivity analysis, partial dependence plots (PDPs), Taylor’s diagram generation, and test and predicted results. The statistical measures demonstrated that MEP was the more accurate model compared to GEP. The sensitivity study revealed that plastic and sand had the most significant influence on flexural strength prediction, emphasizing the importance of their proportions in the mixture. PDPs further showed that cement, silica fume, and MP positively impact flexural strength, while sand and plastic exhibit optimal levels for enhanced performance. The study also highlighted the particle interaction sensitivity of glass powder, underlining the importance of mix design optimization to achieve improved mechanical behavior. The findings support the use of equation-based modeling and sustainable industrial byproducts to optimize mortar formulations, contributing to greener construction practices and reduced dependence on conventional cement. |
| Author | Alinsaif, Sadiq Jia, Huina Alsubeai, Ali AlAteah, Ali H. Murtaza, Haseeb Li, Yali |
| Author_xml | – sequence: 1 givenname: Huina surname: Jia fullname: Jia, Huina email: jiahuina713@163.com organization: School of Civil Engineering, Shangqiu Institute of Technology, Shangqiu, 476000, China – sequence: 2 givenname: Yali surname: Li fullname: Li, Yali organization: School of Civil Engineering, Shangqiu Institute of Technology, Shangqiu, 476000, China – sequence: 3 givenname: Ali H. surname: AlAteah fullname: AlAteah, Ali H. organization: Department of Civil Engineering, College of Engineering, University of Hafr Al Batin, Hafr Al Batin, 39524, Saudi Arabia – sequence: 4 givenname: Ali surname: Alsubeai fullname: Alsubeai, Ali organization: Department of Civil Engineering, Jubail Industrial College, Royal Commission of Jubail, Jubail Industrial City, 31961, Saudi Arabia – sequence: 5 givenname: Sadiq surname: Alinsaif fullname: Alinsaif, Sadiq organization: College of Computer Science and Engineering, University of Hafr Al Batin, Hafr Al Batin, 39524, Saudi Arabia – sequence: 6 givenname: Haseeb surname: Murtaza fullname: Murtaza, Haseeb email: engrhaseebmurtaza@gmail.com organization: Department of Civil Engineering, University of Engineering and Technology, Taxila, Pakistan |
| BookMark | eNp1kU9PGzEQxa0KpELg2vN-gaXjXe-_3ipESyQkLnC2xvY4bOSso_FGIXz6OoSiXnqZGY_0e6PndynOpjiREN8k3MhGNt8ZN6msoGpKkA18EReyhabsZdWd_TN_FZcprQGqDrrhQrzd2Vh6Hmly4VDsMc1UbENuoy0NJnLFJvKMXIyTjbyNjPM4rfLL7dLMI4a_TNw74vSjWE4z8ZZpRhMow45CKnzkwgd63XEGMkfTan65EuceQ6Lrj74Qz7_unm7vy4fH38vbnw-lrZtqzlVJ3xpvsgPpCKA3xlMPFSoFXd22toYBh1516MkYsjW53qOHlroavKkXYnnSdRHXesvjBvmgI476fRF5pZGz30AaLdSGSEnbK9XggNIMFqWyXWulzZcW4uakZTmmxOQ_9SToYwr6mII-pqCPKWRgOAF7DPljHK14d8iDXscdT9n2f8BWyfoPIbmVCg |
| Cites_doi | 10.1016/j.jocs.2024.102287 10.1002/psp4.6 10.1016/j.cscm.2025.e04541 10.1016/j.dibe.2024.100361 10.21203/rs.3.rs-898407/v1 10.1016/j.jmrt.2023.07.041 10.4018/978-1-7998-8048-6.ch022 10.1016/j.conbuildmat.2022.126578 10.1061/(ASCE)0899-1561(1994)6:3(390) 10.3390/buildings14092675 10.1016/j.cscm.2025.e04755 10.1080/19942060.2021.1944913 10.3390/infrastructures4020026 10.1016/j.cemconres.2018.09.006 10.1016/j.cageo.2012.07.001 10.1016/j.cscm.2022.e01759 10.1088/1757-899X/1200/1/012003 10.1016/j.solener.2019.02.060 10.1029/2000JD900719 10.3390/ma13194331 10.1016/j.jmrt.2023.04.180 10.3390/cryst11060710 10.1016/j.jclepro.2020.120665 10.1177/11779322211020315 10.1016/j.conbuildmat.2022.129384 10.1016/j.jhazmat.2019.121322 10.1016/j.cscm.2022.e01753 10.1007/s00521-012-1144-6 10.1016/j.jobe.2025.112525 10.1016/j.jclepro.2020.122922 10.1016/j.nanoso.2018.12.001 10.1016/j.mtcomm.2023.107333 10.1016/j.cmpb.2018.05.029 10.1016/j.jclepro.2018.10.118 10.1515/rams-2024-0067 10.3390/ma16227178 10.1016/j.cscm.2024.e03543 10.1016/j.cscm.2023.e02102 10.1146/annurev.energy.26.1.303 10.3390/ma15155435 10.1016/j.jclepro.2020.120578 10.1214/aos/1013203451 10.14382/epitoanyag-jsbcm.2013.17 10.1080/17486025.2014.921333 10.3390/ma14154222 10.1016/j.cscm.2021.e00630 10.1007/s00521-008-0208-0 10.1007/978-3-319-20883-1_2 10.3390/su11020537 10.3390/ma13214757 10.5194/gmd-10-3519-2017 10.3844/ajessp.2008.482.490 10.30955/gnj.005204 10.1016/j.conbuildmat.2023.132887 10.3390/su17062516 10.1016/j.matpr.2023.06.033 10.3390/ma15124180 10.1016/j.cscm.2024.e03869 10.1016/j.gsf.2019.12.003 10.3390/ma17184533 10.1016/j.conbuildmat.2020.120286 10.1016/j.istruc.2024.107931 10.1080/21650373.2024.2432002 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1515/rams-2025-0150 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1605-8127 |
| EndPage | 329 |
| ExternalDocumentID | oai_doaj_org_article_ac03bee41c8445a9a1b9ca14c76c1c6c 10_1515_rams_2025_0150 10_1515_rams_2025_0150641 |
| GroupedDBID | -~X 123 29P 2WC AAFWJ ABFKT ADMLS AEGXH AENEX AFBDD AHGSO ALMA_UNASSIGNED_HOLDINGS E3Z EBS EJD EOJEC GROUPED_DOAJ HH5 KQ8 M48 OBODZ OK1 OVT QD8 RNS SLJYH TR2 TUS XSB AAYXX CITATION |
| ID | FETCH-LOGICAL-c352t-c341f6bfb6051de008bbfe802a4407366c309a9847afebbec3ed8faf06e730fb3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001577517400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1605-8127 |
| IngestDate | Fri Oct 03 12:49:56 EDT 2025 Sat Nov 29 07:28:17 EST 2025 Sat Nov 29 01:27:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-c341f6bfb6051de008bbfe802a4407366c309a9847afebbec3ed8faf06e730fb3 |
| OpenAccessLink | https://doaj.org/article/ac03bee41c8445a9a1b9ca14c76c1c6c |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ac03bee41c8445a9a1b9ca14c76c1c6c crossref_primary_10_1515_rams_2025_0150 walterdegruyter_journals_10_1515_rams_2025_0150641 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-24 |
| PublicationDateYYYYMMDD | 2025-09-24 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationTitle | Reviews on advanced materials science |
| PublicationYear | 2025 |
| Publisher | De Gruyter |
| Publisher_xml | – name: De Gruyter |
| References | Ahmed, W.; Lu, G.; Ng, S. T.; Liu, G. (j_rams-2025-0150_ref_011) 2025; Vol. 22 Rajasekar, A.; Arunachalam, K.; Kottaisamy, M. (j_rams-2025-0150_ref_035) 2019; Vol. 208 Alavi, A. H.; Gandomi, A. H.; Nejad, H. C.; Mollahasani, A.; Rashed, A. (j_rams-2025-0150_ref_059) 2013; Vol. 23 Naqi, A.; Jang, J. G. (j_rams-2025-0150_ref_001) 2019; Vol. 11 Ahmad, W.; Veeraghantla, V. S. S. C. S.; Byrne, A. (j_rams-2025-0150_ref_028) 2025; Vol. 17 Yun, M.; Li, X.; Amin, M. N.; Khan, Z.; Alawi Al-Naghi, A. A.; Latifee, E. R. (j_rams-2025-0150_ref_051) 2024; Vol. 21 Zhang, J.; Huang, Y.; Aslani, F.; Ma, G.; Nener, B. (j_rams-2025-0150_ref_033) 2020; Vol. 273 Alyami, M.; Ullah, I.; AlAteah, A. H.; Alsubeai, A.; Alahmari, T. S.; Farooq, F. (j_rams-2025-0150_ref_039) 2025; Vol. 71 Shahin, M. A. (j_rams-2025-0150_ref_062) 2015; Vol. 10 Amin, M. N.; Ahmad, W.; Khan, K.; Al-Hashem, M. N.; Deifalla, A. F.; Ahmad, A. (j_rams-2025-0150_ref_040) 2022; Vol. 18 AlAteah, A. H. (j_rams-2025-0150_ref_008) 2024; Vol. 63 Zhang, W.; Zhang, R.; Wu, C.; Goh, A. T. C.; Lacasse, S.; Liu, Z. (j_rams-2025-0150_ref_058) 2020; Vol. 11 Amin, M. N.; Arifeen, S. U.; Qadir, M. T.; Alsharari, F.; Faraz, M. I. (j_rams-2025-0150_ref_045) 2025; Vol. 22 Jin, C.; Qian, Y.; Khan, K.; Ahmad, A.; Amin, M. N.; Althoey, F. (j_rams-2025-0150_ref_070) 2023; Vol. 37 Worrell, E.; Price, L. K.; Martin, N.; Hendriks, C.; Meida, L. O. (j_rams-2025-0150_ref_002) 2001; Vol. 26 Zhang, J.; Li, D.; Wang, Y. (j_rams-2025-0150_ref_034) 2020; Vol. 258 Marani, A.; Jamali, A.; Nehdi, M. L. (j_rams-2025-0150_ref_030) 2020; Vol. 13 Mohammadzadeh S, D.; Kazemi, S.-F.; Mosavi, A.; Nasseralshariati, E.; Tah, J. H. M. (j_rams-2025-0150_ref_053) 2019; Vol. 4 Ilie, I.; Dittrich, P.; Carvalhais, N.; Jung, M.; Heinemeyer, A.; Migliavacca, M. (j_rams-2025-0150_ref_049) 2016; Vol. 10 Saxton, H.; Xu, X.; Schenkel, T.; Halliday, I. (j_rams-2025-0150_ref_065) 2024; Vol. 79 Çanakcı, H.; Baykasoğlu, A.; Güllü, H. (j_rams-2025-0150_ref_055) 2009; Vol. 18 Rajesh, A. A.; Prasanthni, P.; Senthilkumar, S.; Priya, B. (j_rams-2025-0150_ref_013) 2024; Vol. 26 Shahin, M. A. (j_rams-2025-0150_ref_054) 2015 Nunez, I.; Marani, A.; Nehdi, M. L. (j_rams-2025-0150_ref_032) 2020; Vol. 13 Alade, I. O.; Abd Rahman, M. A.; Saleh, T. A. (j_rams-2025-0150_ref_056) 2019; Vol. 183 Wang, D.; Amin, M. N.; Khan, K.; Nazar, S.; Gamil, Y.; Najeh, T. (j_rams-2025-0150_ref_025) 2024; Vol. 17 Mallick, S.; Ali, S. M.; Das, B.; Kundu, K.; Chakraborty, S.; Banerjee, D. (j_rams-2025-0150_ref_003) 2023 Ba-Shammakh, M. S.; Caruso, H. G.; Elkamel, A.; Croiset, E.; Douglas, P. L. (j_rams-2025-0150_ref_004) 2008; Vol. 4 Li, T.; Yang, J.; Jiang, P.; AlAteah, A. H.; Alsubeai, A.; Alfares, A. M. (j_rams-2025-0150_ref_029) 2024; Vol. 17 Marani, A.; Nehdi, M. L. (j_rams-2025-0150_ref_031) 2020; Vol. 265 Li, G.; Zrimec, J.; Ji, B.; Geng, J.; Larsbrink, J.; Zelezniak, A. (j_rams-2025-0150_ref_041) 2019; Vol. 15 Maalej, M.; Li, V. C. (j_rams-2025-0150_ref_023) 1994; Vol. 6 Lou, Y.; Khan, K.; Amin, M. N.; Ahmad, W.; Deifalla, A. F.; Ahmad, A. (j_rams-2025-0150_ref_021) 2023; Vol. 18 Tran, V. Q.; Dang, V. Q.; Ho, L. S. (j_rams-2025-0150_ref_067) 2022; Vol. 323 Bouchelil, L.; Jafar, S. B. S.; Khanzadeh Moradllo, M. (j_rams-2025-0150_ref_010) 2025; Vol. 14 Iqbal, M. F.; Liu, Q.-f; Azim, I.; Zhu, X.; Yang, J.; Javed, M. F. (j_rams-2025-0150_ref_052) 2020; Vol. 384 Borosnyói, A.; Kara, P.; Mlinárik, L.; Kase, K. (j_rams-2025-0150_ref_014) 2013; Vol. 65 Alyami, M.; Onyelowe, K.; AlAteah, A. H.; Alahmari, T. S.; Alsubeai, A.; Ullah, I. (j_rams-2025-0150_ref_038) 2024; Vol. 21 Afrin, H.; Huda, N.; Abbasi, R. (j_rams-2025-0150_ref_007) 2021; Vol. 1200 Kumar, K.; Dixit, S.; Arora, R.; Vatin, N. I.; Singh, J.; Soloveva, O. V. (j_rams-2025-0150_ref_012) 2022; Vol. 15 Shah, S.; Houda, M.; Khan, S.; Althoey, F.; Abuhussain, M.; Abuhussain, M. A. (j_rams-2025-0150_ref_047) 2023; Vol. 25 Friedman, J. H. (j_rams-2025-0150_ref_072) 2001; Vol. 29 Alade, I. O.; Bagudu, A.; Oyehan, T. A.; Abd Rahman, M. A.; Saleh, T. A.; Olatunji, S. O. (j_rams-2025-0150_ref_057) 2018; Vol. 163 Zhang, X. Y.; Trame, M. N.; Lesko, L. J.; Schmidt, S. (j_rams-2025-0150_ref_066) 2015; Vol. 4 Qian, Y.; Yang, J.; Yang, W.; Alateah, A. H.; Alsubeai, A.; Alfares, A. M. (j_rams-2025-0150_ref_027) 2024; Vol. 14 Young, B. A.; Hall, A.; Pilon, L.; Gupta, P.; Sant, G. (j_rams-2025-0150_ref_037) 2019; Vol. 115 Li, Y.; Shen, J.; Lin, H.; Li, H.; Lv, J.; Feng, S. (j_rams-2025-0150_ref_068) 2022; Vol. 357 Shah, H. A.; Yuan, Q.; Akmal, U.; Shah, S. A.; Salmi, A.; Awad, Y. A. (j_rams-2025-0150_ref_024) 2022; Vol. 15 Band, S. S.; Heggy, E.; Bateni, S. M.; Karami, H.; Rabiee, M.; Samadianfard, S. (j_rams-2025-0150_ref_063) 2021; Vol. 15 Ahmad, W.; McCormack, S. J.; Byrne, A. (j_rams-2025-0150_ref_009) 2025; Vol. 105 Chen, L.; Wang, Z.; Khan, A. A.; Khan, M.; Javed, M. F.; Alaskar, A. A. (j_rams-2025-0150_ref_026) 2023; Vol. 24 Pétrowski, A.; Ben-Hamida, S. (j_rams-2025-0150_ref_043) 2017 Amin, M. N.; Ahmad, W.; Khan, K.; Deifalla, A. F. (j_rams-2025-0150_ref_069) 2023; Vol. 18 Ibrahim, K. I. M. (j_rams-2025-0150_ref_015) 2021; Vol. 15 Alade, I. O.; Abd Rahman, M. A.; Saleh, T. A. (j_rams-2025-0150_ref_061) 2019; Vol. 17 Prakash, B.; Saravanan, T. J.; Kabeer, K. I. S. A.; Bisht, K. (j_rams-2025-0150_ref_022) 2023; Vol. 401 Kisi, O.; Shiri, J.; Tombul, M. (j_rams-2025-0150_ref_060) 2013; Vol. 51 Taylor, K. E. (j_rams-2025-0150_ref_064) 2001; Vol. 106 Bakhtyar, B.; Kacemi, T.; Nawaz, A. (j_rams-2025-0150_ref_005) 2017; Vol. 7 Qin, D.; Hu, Y.; Li, X. (j_rams-2025-0150_ref_020) 2021; Vol. 11 Naseri, H.; Jahanbakhsh, H.; Hosseini, P.; Nejad, F. M. (j_rams-2025-0150_ref_036) 2020; Vol. 258 Abbas, Y. M.; Khan, M. I. (j_rams-2025-0150_ref_073) 2023; Vol. 16 Ahmad, A.; Ostrowski, K. A.; Maślak, M.; Farooq, F.; Mehmood, I.; Nafees, A. (j_rams-2025-0150_ref_071) 2021; Vol. 14 2025092411595703122_j_rams-2025-0150_ref_005 2025092411595703122_j_rams-2025-0150_ref_049 2025092411595703122_j_rams-2025-0150_ref_006 2025092411595703122_j_rams-2025-0150_ref_003 2025092411595703122_j_rams-2025-0150_ref_047 2025092411595703122_j_rams-2025-0150_ref_004 2025092411595703122_j_rams-2025-0150_ref_048 2025092411595703122_j_rams-2025-0150_ref_009 2025092411595703122_j_rams-2025-0150_ref_007 2025092411595703122_j_rams-2025-0150_ref_008 2025092411595703122_j_rams-2025-0150_ref_041 2025092411595703122_j_rams-2025-0150_ref_042 2025092411595703122_j_rams-2025-0150_ref_040 2025092411595703122_j_rams-2025-0150_ref_001 2025092411595703122_j_rams-2025-0150_ref_045 2025092411595703122_j_rams-2025-0150_ref_002 2025092411595703122_j_rams-2025-0150_ref_046 2025092411595703122_j_rams-2025-0150_ref_043 2025092411595703122_j_rams-2025-0150_ref_044 2025092411595703122_j_rams-2025-0150_ref_038 2025092411595703122_j_rams-2025-0150_ref_039 2025092411595703122_j_rams-2025-0150_ref_036 2025092411595703122_j_rams-2025-0150_ref_037 2025092411595703122_j_rams-2025-0150_ref_070 2025092411595703122_j_rams-2025-0150_ref_071 2025092411595703122_j_rams-2025-0150_ref_030 2025092411595703122_j_rams-2025-0150_ref_031 2025092411595703122_j_rams-2025-0150_ref_072 2025092411595703122_j_rams-2025-0150_ref_073 2025092411595703122_j_rams-2025-0150_ref_034 2025092411595703122_j_rams-2025-0150_ref_035 2025092411595703122_j_rams-2025-0150_ref_032 2025092411595703122_j_rams-2025-0150_ref_033 2025092411595703122_j_rams-2025-0150_ref_027 2025092411595703122_j_rams-2025-0150_ref_028 2025092411595703122_j_rams-2025-0150_ref_025 2025092411595703122_j_rams-2025-0150_ref_069 2025092411595703122_j_rams-2025-0150_ref_026 2025092411595703122_j_rams-2025-0150_ref_029 2025092411595703122_j_rams-2025-0150_ref_060 2025092411595703122_j_rams-2025-0150_ref_063 2025092411595703122_j_rams-2025-0150_ref_020 2025092411595703122_j_rams-2025-0150_ref_064 2025092411595703122_j_rams-2025-0150_ref_061 2025092411595703122_j_rams-2025-0150_ref_062 2025092411595703122_j_rams-2025-0150_ref_023 2025092411595703122_j_rams-2025-0150_ref_067 2025092411595703122_j_rams-2025-0150_ref_024 2025092411595703122_j_rams-2025-0150_ref_068 2025092411595703122_j_rams-2025-0150_ref_021 2025092411595703122_j_rams-2025-0150_ref_065 2025092411595703122_j_rams-2025-0150_ref_022 2025092411595703122_j_rams-2025-0150_ref_066 2025092411595703122_j_rams-2025-0150_ref_016 2025092411595703122_j_rams-2025-0150_ref_017 2025092411595703122_j_rams-2025-0150_ref_014 2025092411595703122_j_rams-2025-0150_ref_058 2025092411595703122_j_rams-2025-0150_ref_015 2025092411595703122_j_rams-2025-0150_ref_059 2025092411595703122_j_rams-2025-0150_ref_018 2025092411595703122_j_rams-2025-0150_ref_019 2025092411595703122_j_rams-2025-0150_ref_052 2025092411595703122_j_rams-2025-0150_ref_053 2025092411595703122_j_rams-2025-0150_ref_050 2025092411595703122_j_rams-2025-0150_ref_051 2025092411595703122_j_rams-2025-0150_ref_012 2025092411595703122_j_rams-2025-0150_ref_056 2025092411595703122_j_rams-2025-0150_ref_013 2025092411595703122_j_rams-2025-0150_ref_057 2025092411595703122_j_rams-2025-0150_ref_010 2025092411595703122_j_rams-2025-0150_ref_054 2025092411595703122_j_rams-2025-0150_ref_011 2025092411595703122_j_rams-2025-0150_ref_055 |
| References_xml | – volume: Vol. 163 start-page: pp. 135 year: 2018 end-page: 142 ident: j_rams-2025-0150_ref_057 article-title: Estimating the refractive index of oxygenated and deoxygenated hemoglobin using genetic algorithm–support vector regression model publication-title: Computer Methods and Programs in Biomedicine – year: 2017 ident: j_rams-2025-0150_ref_043 article-title: Genetic programming for machine learning publication-title: In: Evolutionary Algorithms (part of the Computer Engineering: Metaheuristics series), John Wiley & Sons (Wiley-ISTE) – volume: Vol. 357 start-page: id. 129384 year: 2022 ident: j_rams-2025-0150_ref_068 article-title: The data-driven research on bond strength between fly ash-based geopolymer concrete and reinforcing bars publication-title: Construction and Building Materials – volume: Vol. 21 start-page: id. e03869 year: 2024 ident: j_rams-2025-0150_ref_038 article-title: Innovative hybrid machine learning models for estimating the compressive strength of copper mine tailings concrete publication-title: Case Studies in Construction Materials – volume: Vol. 6 start-page: pp. 390 year: 1994 end-page: 406 ident: j_rams-2025-0150_ref_023 article-title: Flexural strength of fiber cementitious composites publication-title: Journal of Materials in Civil Engineering – volume: Vol. 323 start-page: id. 126578 year: 2022 ident: j_rams-2025-0150_ref_067 article-title: Evaluating compressive strength of concrete made with recycled concrete aggregates using machine learning approach publication-title: Construction and Building Materials – volume: Vol. 18 start-page: pp. 1031 year: 2009 end-page: 1041 ident: j_rams-2025-0150_ref_055 article-title: Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming publication-title: Neural Computing and Applications – volume: Vol. 105 start-page: id. 112525 year: 2025 ident: j_rams-2025-0150_ref_009 article-title: Biocomposites for sustainable construction: A review of material properties, applications, research gaps, and contribution to circular economy publication-title: Journal of Building Engineering – volume: Vol. 10 start-page: pp. 109 year: 2015 end-page: 125 ident: j_rams-2025-0150_ref_062 article-title: Use of evolutionary computing for modelling some complex problems in geotechnical engineering publication-title: Geomechanics and Geoengineering – volume: Vol. 273 start-page: id. 122922 year: 2020 ident: j_rams-2025-0150_ref_033 article-title: A hybrid intelligent system for designing optimal proportions of recycled aggregate concrete publication-title: Journal of Cleaner Production – volume: Vol. 115 start-page: pp. 379 year: 2019 end-page: 388 ident: j_rams-2025-0150_ref_037 article-title: Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods publication-title: Cement and Concrete Research – volume: Vol. 16 start-page: id. 7178 year: 2023 ident: j_rams-2025-0150_ref_073 article-title: Robust machine learning framework for modeling the compressive strength of SFRC: Database compilation, predictive analysis, and empirical verification publication-title: Materials – volume: Vol. 106 start-page: pp. 7183 year: 2001 end-page: 7192 ident: j_rams-2025-0150_ref_064 article-title: Summarizing multiple aspects of model performance in a single diagram publication-title: Journal of Geophysical Research: Atmospheres – volume: Vol. 15 start-page: id. 4180 year: 2022 ident: j_rams-2025-0150_ref_012 article-title: Comparative analysis of waste materials for their potential utilization in green concrete applications publication-title: Materials – volume: Vol. 17 start-page: id. 2516 year: 2025 ident: j_rams-2025-0150_ref_028 article-title: Advancing sustainable concrete using biochar: Experimental and modelling study for mechanical strength evaluation publication-title: Sustainability – volume: Vol. 63 start-page: id. 20240067 year: 2024 ident: j_rams-2025-0150_ref_008 article-title: Investigation of nano-basic oxygen furnace slag and nano-banded iron formation on properties of high-performance geopolymer concrete publication-title: Reviews on Advanced Materials Science – volume: Vol. 7 start-page: pp. 282 year: 2017 end-page: 286 ident: j_rams-2025-0150_ref_005 article-title: A review on carbon emissions in Malaysian cement industry publication-title: International Journal of Energy Economics and Policy – volume: Vol. 22 start-page: id. e04541 year: 2025 ident: j_rams-2025-0150_ref_011 article-title: Innovative valorization of solid waste materials for production of sustainable low-carbon pavement: A systematic review and scientometric analysis publication-title: Case Studies in Construction Materials – year: 2015 ident: j_rams-2025-0150_ref_054 publication-title: Genetic programming for modelling of geotechnical engineering systems – volume: Vol. 18 start-page: id. e02102 year: 2023 ident: j_rams-2025-0150_ref_069 article-title: Optimizing compressive strength prediction models for rice husk ash concrete with evolutionary machine intelligence techniques publication-title: Case Studies in Construction Materials – volume: Vol. 208 start-page: pp. 402 year: 2019 end-page: 414 ident: j_rams-2025-0150_ref_035 article-title: Assessment of strength and durability characteristics of copper slag incorporated ultra high strength concrete publication-title: Journal of Cleaner Production – volume: Vol. 14 start-page: id. 2675 year: 2024 ident: j_rams-2025-0150_ref_027 article-title: Prediction of ultra-high-performance concrete (UHPC) properties using gene expression programming (GEP) publication-title: Buildings – volume: Vol. 17 start-page: id. 100361 year: 2024 ident: j_rams-2025-0150_ref_025 article-title: Comparing the efficacy of GEP and MEP algorithms in predicting concrete strength incorporating waste eggshell and waste glass powder publication-title: Developments in the Built Environment – volume: Vol. 21 start-page: id. e03543 year: 2024 ident: j_rams-2025-0150_ref_051 article-title: Experimenting the effectiveness of waste materials in improving the compressive strength of plastic-based mortar publication-title: Case Studies in Construction Materials – volume: Vol. 11 start-page: pp. 1095 year: 2020 end-page: 1106 ident: j_rams-2025-0150_ref_058 article-title: State-of-the-art review of soft computing applications in underground excavations publication-title: Geoscience Frontiers – volume: Vol. 384 start-page: id. 121322 year: 2020 ident: j_rams-2025-0150_ref_052 article-title: Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming publication-title: Journal of Hazardous Materials – volume: Vol. 15 start-page: pp. 1147 year: 2021 end-page: 1158 ident: j_rams-2025-0150_ref_063 article-title: Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression publication-title: Engineering Applications of Computational Fluid Mechanics – volume: Vol. 79 start-page: id. 102287 year: 2024 ident: j_rams-2025-0150_ref_065 article-title: Assessing input parameter hyperspace and parameter identifiability in a cardiovascular system model via sensitivity analysis publication-title: Journal of Computational Science – volume: Vol. 65 start-page: pp. 90 year: 2013 end-page: 94 ident: j_rams-2025-0150_ref_014 article-title: Performance of waste glass powder (WGP) supplementary cementitious material (SCM) - workability and compressive strength publication-title: Epitoanyag-Journal of Silicate Based and Composite Materials – volume: Vol. 29 start-page: pp. 1189 year: 2001 end-page: 1232 ident: j_rams-2025-0150_ref_072 article-title: Greedy function approximation: A gradient boosting machine publication-title: Annals of Statistics – volume: Vol. 258 start-page: id. 120665 year: 2020 ident: j_rams-2025-0150_ref_034 article-title: Toward intelligent construction: Prediction of mechanical properties of manufactured-sand concrete using tree-based models publication-title: Journal of Cleaner Production – volume: Vol. 22 start-page: id. e04755 year: 2025 ident: j_rams-2025-0150_ref_045 article-title: AI-powered interpretable models for the abrasion resistance of steel fiber-reinforced concrete in hydraulic conditions publication-title: Case Studies in Construction Materials – volume: Vol. 4 start-page: id. 26 year: 2019 ident: j_rams-2025-0150_ref_053 article-title: Prediction of compression index of fine-grained soils using a gene expression programming model publication-title: Infrastructures – volume: Vol. 265 start-page: id. 120286 year: 2020 ident: j_rams-2025-0150_ref_031 article-title: Machine learning prediction of compressive strength for phase change materials integrated cementitious composites publication-title: Construction and Building Materials – volume: Vol. 26 start-page: pp. 303 year: 2001 end-page: 329 ident: j_rams-2025-0150_ref_002 article-title: Carbon dioxide emissions from the global cement industry publication-title: Annual Review of Energy and The Environment – volume: Vol. 1200 year: 2021 ident: j_rams-2025-0150_ref_007 article-title: An overview of eco-friendly alternatives as the replacement of cement in concrete publication-title: IOP Conference Series: Materials Science and Engineering – volume: Vol. 26 issue: No. 5 year: 2024 ident: j_rams-2025-0150_ref_013 article-title: Environment friendly sustainable concrete produced from marble waste powder publication-title: Global NEST: The International Journal – volume: Vol. 11 start-page: id. 710 year: 2021 ident: j_rams-2025-0150_ref_020 article-title: Waste glass utilization in cement-based materials for sustainable construction: A review publication-title: Crystals – volume: Vol. 51 start-page: pp. 108 year: 2013 end-page: 117 ident: j_rams-2025-0150_ref_060 article-title: Modeling rainfall-runoff process using soft computing techniques publication-title: Computers & Geosciences – volume: Vol. 18 start-page: id. e01753 year: 2023 ident: j_rams-2025-0150_ref_021 article-title: Performance characteristics of cementitious composites modified with silica fume: A systematic review publication-title: Case Studies in Construction Materials – volume: Vol. 71 start-page: id. 107931 year: 2025 ident: j_rams-2025-0150_ref_039 article-title: Machine learning models for predicting the compressive strength of cement-based mortar materials: Hyper tuning and optimization publication-title: Structures – volume: Vol. 258 start-page: id. 120578 year: 2020 ident: j_rams-2025-0150_ref_036 article-title: Designing sustainable concrete mixture by developing a new machine learning technique publication-title: Journal of Cleaner Production – volume: Vol. 15 start-page: id. e00630 year: 2021 ident: j_rams-2025-0150_ref_015 article-title: Recycled waste glass powder as a partial replacement of cement in concrete containing silica fume and fly ash publication-title: Case Studies in Construction Materials – volume: Vol. 24 start-page: pp. 6391 year: 2023 end-page: 6410 ident: j_rams-2025-0150_ref_026 article-title: Development of predictive models for sustainable concrete via genetic programming-based algorithms publication-title: Journal of Materials Research and Technology – volume: Vol. 23 start-page: pp. 1771 year: 2013 end-page: 1786 ident: j_rams-2025-0150_ref_059 article-title: Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems publication-title: Neural Computing and Applications – volume: Vol. 37 start-page: id. 107333 year: 2023 ident: j_rams-2025-0150_ref_070 article-title: Predicting the damage to cementitious composites due to acid attack and evaluating the effectiveness of eggshell powder using interpretable artificial intelligence models publication-title: Materials Today Communications – volume: Vol. 401 start-page: id. 132887 year: 2023 ident: j_rams-2025-0150_ref_022 article-title: Exploring the potential of waste marble powder as a sustainable substitute to cement in cement-based composites: A review publication-title: Construction and Building Materials – volume: Vol. 25 year: 2023 ident: j_rams-2025-0150_ref_047 article-title: Mechanical behavior of E-waste aggregate concrete using a novel machine learning algorithm: Multi expression programming (MEP) publication-title: Journal of Materials Research and Technology – volume: Vol. 14 start-page: id. 4222 year: 2021 ident: j_rams-2025-0150_ref_071 article-title: Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature publication-title: Materials – volume: Vol. 13 start-page: id. 4331 year: 2020 ident: j_rams-2025-0150_ref_032 article-title: Mixture optimization of recycled aggregate concrete using hybrid machine learning model publication-title: Materials – volume: Vol. 15 year: 2019 ident: j_rams-2025-0150_ref_041 article-title: Performance of regression models as a function of experiment noise publication-title: Bioinformatics and Biology Insights – volume: Vol. 17 start-page: pp. 103 year: 2019 end-page: 111 ident: j_rams-2025-0150_ref_061 article-title: Modeling and prediction of the specific heat capacity of Al2O3/water nanofluids using hybrid genetic algorithm/support vector regression model publication-title: Nano-Structures & Nano-Objects – volume: Vol. 14 start-page: pp. 198 year: 2025 end-page: 208 ident: j_rams-2025-0150_ref_010 article-title: Evaluating the performance of internally cured limestone calcined clay concrete mixtures publication-title: Journal of Sustainable Cement-Based Materials – volume: Vol. 11 start-page: id. 537 issue: No. 2 year: 2019 ident: j_rams-2025-0150_ref_001 article-title: Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: A review publication-title: Sustainability – volume: Vol. 4 start-page: pp. 482 year: 2008 end-page: 490 ident: j_rams-2025-0150_ref_004 article-title: Analysis and optimization of carbon dioxide emission mitigation options in the cement industry publication-title: American Journal of Environmental Sciences – volume: Vol. 183 start-page: pp. 74 year: 2019 end-page: 82 ident: j_rams-2025-0150_ref_056 article-title: Predicting the specific heat capacity of alumina/ethylene glycol nanofluids using support vector regression model optimized with Bayesian algorithm publication-title: Solar Energy – year: 2023 ident: j_rams-2025-0150_ref_003 article-title: Design of an environmentally friendly concrete mix by partial replacement of fine aggregate with industrial waste glass in powdered form and cement with fly-ash publication-title: Materials Today: Proceedings – volume: Vol. 13 start-page: id. 4757 year: 2020 ident: j_rams-2025-0150_ref_030 article-title: Predicting ultra-high-performance concrete compressive strength using tabular generative adversarial networks publication-title: Materials – volume: Vol. 15 year: 2022 ident: j_rams-2025-0150_ref_024 article-title: Application of machine learning techniques for predicting compressive, splitting tensile, and flexural strengths of concrete with Metakaolin publication-title: Materials – volume: Vol. 17 start-page: id. 4533 year: 2024 ident: j_rams-2025-0150_ref_029 article-title: Predicting high-strength concrete’s compressive strength: a comparative study of artificial neural networks, adaptive neuro-fuzzy inference system, and response surface methodology publication-title: Materials – volume: Vol. 10 start-page: pp. 3519 year: 2016 end-page: 3545 ident: j_rams-2025-0150_ref_049 article-title: Reverse engineering model structures for soil and ecosystem respiration: the potential of gene expression programming publication-title: Geoscientific Model Development – volume: Vol. 4 start-page: pp. 69 year: 2015 end-page: 79 ident: j_rams-2025-0150_ref_066 article-title: Sobol sensitivity analysis: a tool to guide the development and evaluation of systems pharmacology models publication-title: CPT: Pharmacometrics & Systems Pharmacology – volume: Vol. 18 year: 2022 ident: j_rams-2025-0150_ref_040 article-title: Testing and modeling methods to experiment the flexural performance of cement mortar modified with eggshell powder publication-title: Case Studies in Construction Materials – ident: 2025092411595703122_j_rams-2025-0150_ref_005 – ident: 2025092411595703122_j_rams-2025-0150_ref_065 doi: 10.1016/j.jocs.2024.102287 – ident: 2025092411595703122_j_rams-2025-0150_ref_066 doi: 10.1002/psp4.6 – ident: 2025092411595703122_j_rams-2025-0150_ref_011 doi: 10.1016/j.cscm.2025.e04541 – ident: 2025092411595703122_j_rams-2025-0150_ref_025 doi: 10.1016/j.dibe.2024.100361 – ident: 2025092411595703122_j_rams-2025-0150_ref_046 doi: 10.21203/rs.3.rs-898407/v1 – ident: 2025092411595703122_j_rams-2025-0150_ref_047 doi: 10.1016/j.jmrt.2023.07.041 – ident: 2025092411595703122_j_rams-2025-0150_ref_048 doi: 10.4018/978-1-7998-8048-6.ch022 – ident: 2025092411595703122_j_rams-2025-0150_ref_067 doi: 10.1016/j.conbuildmat.2022.126578 – ident: 2025092411595703122_j_rams-2025-0150_ref_023 doi: 10.1061/(ASCE)0899-1561(1994)6:3(390) – ident: 2025092411595703122_j_rams-2025-0150_ref_018 – ident: 2025092411595703122_j_rams-2025-0150_ref_044 – ident: 2025092411595703122_j_rams-2025-0150_ref_027 doi: 10.3390/buildings14092675 – ident: 2025092411595703122_j_rams-2025-0150_ref_050 – ident: 2025092411595703122_j_rams-2025-0150_ref_045 doi: 10.1016/j.cscm.2025.e04755 – ident: 2025092411595703122_j_rams-2025-0150_ref_063 doi: 10.1080/19942060.2021.1944913 – ident: 2025092411595703122_j_rams-2025-0150_ref_053 doi: 10.3390/infrastructures4020026 – ident: 2025092411595703122_j_rams-2025-0150_ref_037 doi: 10.1016/j.cemconres.2018.09.006 – ident: 2025092411595703122_j_rams-2025-0150_ref_060 doi: 10.1016/j.cageo.2012.07.001 – ident: 2025092411595703122_j_rams-2025-0150_ref_040 doi: 10.1016/j.cscm.2022.e01759 – ident: 2025092411595703122_j_rams-2025-0150_ref_006 – ident: 2025092411595703122_j_rams-2025-0150_ref_007 doi: 10.1088/1757-899X/1200/1/012003 – ident: 2025092411595703122_j_rams-2025-0150_ref_056 doi: 10.1016/j.solener.2019.02.060 – ident: 2025092411595703122_j_rams-2025-0150_ref_064 doi: 10.1029/2000JD900719 – ident: 2025092411595703122_j_rams-2025-0150_ref_032 doi: 10.3390/ma13194331 – ident: 2025092411595703122_j_rams-2025-0150_ref_026 doi: 10.1016/j.jmrt.2023.04.180 – ident: 2025092411595703122_j_rams-2025-0150_ref_020 doi: 10.3390/cryst11060710 – ident: 2025092411595703122_j_rams-2025-0150_ref_017 – ident: 2025092411595703122_j_rams-2025-0150_ref_034 doi: 10.1016/j.jclepro.2020.120665 – ident: 2025092411595703122_j_rams-2025-0150_ref_041 doi: 10.1177/11779322211020315 – ident: 2025092411595703122_j_rams-2025-0150_ref_068 doi: 10.1016/j.conbuildmat.2022.129384 – ident: 2025092411595703122_j_rams-2025-0150_ref_052 doi: 10.1016/j.jhazmat.2019.121322 – ident: 2025092411595703122_j_rams-2025-0150_ref_021 doi: 10.1016/j.cscm.2022.e01753 – ident: 2025092411595703122_j_rams-2025-0150_ref_059 doi: 10.1007/s00521-012-1144-6 – ident: 2025092411595703122_j_rams-2025-0150_ref_009 doi: 10.1016/j.jobe.2025.112525 – ident: 2025092411595703122_j_rams-2025-0150_ref_033 doi: 10.1016/j.jclepro.2020.122922 – ident: 2025092411595703122_j_rams-2025-0150_ref_061 doi: 10.1016/j.nanoso.2018.12.001 – ident: 2025092411595703122_j_rams-2025-0150_ref_070 doi: 10.1016/j.mtcomm.2023.107333 – ident: 2025092411595703122_j_rams-2025-0150_ref_057 doi: 10.1016/j.cmpb.2018.05.029 – ident: 2025092411595703122_j_rams-2025-0150_ref_035 doi: 10.1016/j.jclepro.2018.10.118 – ident: 2025092411595703122_j_rams-2025-0150_ref_008 doi: 10.1515/rams-2024-0067 – ident: 2025092411595703122_j_rams-2025-0150_ref_073 doi: 10.3390/ma16227178 – ident: 2025092411595703122_j_rams-2025-0150_ref_051 doi: 10.1016/j.cscm.2024.e03543 – ident: 2025092411595703122_j_rams-2025-0150_ref_069 doi: 10.1016/j.cscm.2023.e02102 – ident: 2025092411595703122_j_rams-2025-0150_ref_042 – ident: 2025092411595703122_j_rams-2025-0150_ref_002 doi: 10.1146/annurev.energy.26.1.303 – ident: 2025092411595703122_j_rams-2025-0150_ref_024 doi: 10.3390/ma15155435 – ident: 2025092411595703122_j_rams-2025-0150_ref_036 doi: 10.1016/j.jclepro.2020.120578 – ident: 2025092411595703122_j_rams-2025-0150_ref_072 doi: 10.1214/aos/1013203451 – ident: 2025092411595703122_j_rams-2025-0150_ref_014 doi: 10.14382/epitoanyag-jsbcm.2013.17 – ident: 2025092411595703122_j_rams-2025-0150_ref_016 – ident: 2025092411595703122_j_rams-2025-0150_ref_062 doi: 10.1080/17486025.2014.921333 – ident: 2025092411595703122_j_rams-2025-0150_ref_071 doi: 10.3390/ma14154222 – ident: 2025092411595703122_j_rams-2025-0150_ref_015 doi: 10.1016/j.cscm.2021.e00630 – ident: 2025092411595703122_j_rams-2025-0150_ref_055 doi: 10.1007/s00521-008-0208-0 – ident: 2025092411595703122_j_rams-2025-0150_ref_054 doi: 10.1007/978-3-319-20883-1_2 – ident: 2025092411595703122_j_rams-2025-0150_ref_001 doi: 10.3390/su11020537 – ident: 2025092411595703122_j_rams-2025-0150_ref_030 doi: 10.3390/ma13214757 – ident: 2025092411595703122_j_rams-2025-0150_ref_049 doi: 10.5194/gmd-10-3519-2017 – ident: 2025092411595703122_j_rams-2025-0150_ref_004 doi: 10.3844/ajessp.2008.482.490 – ident: 2025092411595703122_j_rams-2025-0150_ref_013 doi: 10.30955/gnj.005204 – ident: 2025092411595703122_j_rams-2025-0150_ref_019 – ident: 2025092411595703122_j_rams-2025-0150_ref_043 – ident: 2025092411595703122_j_rams-2025-0150_ref_022 doi: 10.1016/j.conbuildmat.2023.132887 – ident: 2025092411595703122_j_rams-2025-0150_ref_028 doi: 10.3390/su17062516 – ident: 2025092411595703122_j_rams-2025-0150_ref_003 doi: 10.1016/j.matpr.2023.06.033 – ident: 2025092411595703122_j_rams-2025-0150_ref_012 doi: 10.3390/ma15124180 – ident: 2025092411595703122_j_rams-2025-0150_ref_038 doi: 10.1016/j.cscm.2024.e03869 – ident: 2025092411595703122_j_rams-2025-0150_ref_058 doi: 10.1016/j.gsf.2019.12.003 – ident: 2025092411595703122_j_rams-2025-0150_ref_029 doi: 10.3390/ma17184533 – ident: 2025092411595703122_j_rams-2025-0150_ref_031 doi: 10.1016/j.conbuildmat.2020.120286 – ident: 2025092411595703122_j_rams-2025-0150_ref_039 doi: 10.1016/j.istruc.2024.107931 – ident: 2025092411595703122_j_rams-2025-0150_ref_010 doi: 10.1080/21650373.2024.2432002 |
| SSID | ssj0027079 |
| Score | 2.3902545 |
| Snippet | Glass powder, silica fume, and marble powder (MP) were investigated for their potential as sustainable additives to enhance mechanical properties, reduce... |
| SourceID | doaj crossref walterdegruyter |
| SourceType | Open Website Index Database Publisher |
| StartPage | id. 537 |
| SubjectTerms | equation-based models flexural strength sustainable mortar |
| Title | Eco-friendly waste plastic-based mortar incorporating industrial waste powders: Interpretable models for flexural strength |
| URI | https://www.degruyter.com/doi/10.1515/rams-2025-0150 https://doaj.org/article/ac03bee41c8445a9a1b9ca14c76c1c6c |
| Volume | 64 |
| WOSCitedRecordID | wos001577517400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1605-8127 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027079 issn: 1605-8127 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yeNDD4hPXFzkInsq2TTZtvamseFo8KOytTNJEhX3RVlf99c70oYsgXrwUWpomzJd0viGTbxg7AwOhH0XgGSdDClBiT0daeUYZDRlGzcLFVbGJaDSKx-PkbqXUF-WE1fLAteH6YHyhrZWBiaUcQAKBTgwE0kTKBPhF-vsi62mDqTbU8qOkkWhEh93PYVrgfAgpT41O2K-4oEqpf5N1l9XudGYf85f3st0NrZzMzRbrNuyQX9aj2mZrdrbDNlc0A3fZx9DMPUfqxNnknS8BUeILpMDYwiOXlPEpMeqck-xCrVKM7fCuLdHRtpkvKYf5gn-nHeqJ5VVlnIIjleVuYt9IlIPTeZLZY_m0xx5uhvfXt15TQMEzyKtKvMrAKe00xixBZtHda-1s7IcgMY4TShnhJ5CggwJnNaIpbBY7cL6yuPCdFvusM5vP7AHjIfhigDgolQkJCkmJEIMsGQiQ1k9C12PnrU3TRa2TkVJ8gdZPyfopWT8l6_fYFZn86y3St64eIOppg3r6F-o9Fv4ALG3WXvFLt0oGh__R8xHbqCcSbUwds06Zv9gTtm5ey-ciP61m4SfB_eiu |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eco-friendly+waste+plastic-based+mortar+incorporating+industrial+waste+powders%3A+Interpretable+models+for+flexural+strength&rft.jtitle=Reviews+on+advanced+materials+science&rft.au=Jia%2C+Huina&rft.au=Li%2C+Yali&rft.au=AlAteah%2C+Ali+H.&rft.au=Alsubeai%2C+Ali&rft.date=2025-09-24&rft.issn=1605-8127&rft.eissn=1605-8127&rft.volume=64&rft.issue=1&rft_id=info:doi/10.1515%2Frams-2025-0150&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_rams_2025_0150 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1605-8127&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1605-8127&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1605-8127&client=summon |