Eco-friendly waste plastic-based mortar incorporating industrial waste powders: Interpretable models for flexural strength

Glass powder, silica fume, and marble powder (MP) were investigated for their potential as sustainable additives to enhance mechanical properties, reduce environmental impact, and improve resource utilization in mortar formulations. This study utilized gene expression programming (GEP) and multi-exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reviews on advanced materials science Jg. 64; H. 1; S. id. 537 - 329
Hauptverfasser: Jia, Huina, Li, Yali, AlAteah, Ali H., Alsubeai, Ali, Alinsaif, Sadiq, Murtaza, Haseeb
Format: Journal Article
Sprache:Englisch
Veröffentlicht: De Gruyter 24.09.2025
Schlagworte:
ISSN:1605-8127, 1605-8127
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Glass powder, silica fume, and marble powder (MP) were investigated for their potential as sustainable additives to enhance mechanical properties, reduce environmental impact, and improve resource utilization in mortar formulations. This study utilized gene expression programming (GEP) and multi-expression programming (MEP) with experimental data to develop flexural strength models using these materials as eco-friendly mortar cement substitutes. The models were evaluated using ² values, statistical tests, sensitivity analysis, partial dependence plots (PDPs), Taylor’s diagram generation, and test and predicted results. The statistical measures demonstrated that MEP was the more accurate model compared to GEP. The sensitivity study revealed that plastic and sand had the most significant influence on flexural strength prediction, emphasizing the importance of their proportions in the mixture. PDPs further showed that cement, silica fume, and MP positively impact flexural strength, while sand and plastic exhibit optimal levels for enhanced performance. The study also highlighted the particle interaction sensitivity of glass powder, underlining the importance of mix design optimization to achieve improved mechanical behavior. The findings support the use of equation-based modeling and sustainable industrial byproducts to optimize mortar formulations, contributing to greener construction practices and reduced dependence on conventional cement.
AbstractList Glass powder, silica fume, and marble powder (MP) were investigated for their potential as sustainable additives to enhance mechanical properties, reduce environmental impact, and improve resource utilization in mortar formulations. This study utilized gene expression programming (GEP) and multi-expression programming (MEP) with experimental data to develop flexural strength models using these materials as eco-friendly mortar cement substitutes. The models were evaluated using ² values, statistical tests, sensitivity analysis, partial dependence plots (PDPs), Taylor’s diagram generation, and test and predicted results. The statistical measures demonstrated that MEP was the more accurate model compared to GEP. The sensitivity study revealed that plastic and sand had the most significant influence on flexural strength prediction, emphasizing the importance of their proportions in the mixture. PDPs further showed that cement, silica fume, and MP positively impact flexural strength, while sand and plastic exhibit optimal levels for enhanced performance. The study also highlighted the particle interaction sensitivity of glass powder, underlining the importance of mix design optimization to achieve improved mechanical behavior. The findings support the use of equation-based modeling and sustainable industrial byproducts to optimize mortar formulations, contributing to greener construction practices and reduced dependence on conventional cement.
Glass powder, silica fume, and marble powder (MP) were investigated for their potential as sustainable additives to enhance mechanical properties, reduce environmental impact, and improve resource utilization in mortar formulations. This study utilized gene expression programming (GEP) and multi-expression programming (MEP) with experimental data to develop flexural strength models using these materials as eco-friendly mortar cement substitutes. The models were evaluated using R² values, statistical tests, sensitivity analysis, partial dependence plots (PDPs), Taylor’s diagram generation, and test and predicted results. The statistical measures demonstrated that MEP was the more accurate model compared to GEP. The sensitivity study revealed that plastic and sand had the most significant influence on flexural strength prediction, emphasizing the importance of their proportions in the mixture. PDPs further showed that cement, silica fume, and MP positively impact flexural strength, while sand and plastic exhibit optimal levels for enhanced performance. The study also highlighted the particle interaction sensitivity of glass powder, underlining the importance of mix design optimization to achieve improved mechanical behavior. The findings support the use of equation-based modeling and sustainable industrial byproducts to optimize mortar formulations, contributing to greener construction practices and reduced dependence on conventional cement.
Glass powder, silica fume, and marble powder (MP) were investigated for their potential as sustainable additives to enhance mechanical properties, reduce environmental impact, and improve resource utilization in mortar formulations. This study utilized gene expression programming (GEP) and multi-expression programming (MEP) with experimental data to develop flexural strength models using these materials as eco-friendly mortar cement substitutes. The models were evaluated using R ² values, statistical tests, sensitivity analysis, partial dependence plots (PDPs), Taylor’s diagram generation, and test and predicted results. The statistical measures demonstrated that MEP was the more accurate model compared to GEP. The sensitivity study revealed that plastic and sand had the most significant influence on flexural strength prediction, emphasizing the importance of their proportions in the mixture. PDPs further showed that cement, silica fume, and MP positively impact flexural strength, while sand and plastic exhibit optimal levels for enhanced performance. The study also highlighted the particle interaction sensitivity of glass powder, underlining the importance of mix design optimization to achieve improved mechanical behavior. The findings support the use of equation-based modeling and sustainable industrial byproducts to optimize mortar formulations, contributing to greener construction practices and reduced dependence on conventional cement.
Author Alinsaif, Sadiq
Jia, Huina
Alsubeai, Ali
AlAteah, Ali H.
Murtaza, Haseeb
Li, Yali
Author_xml – sequence: 1
  givenname: Huina
  surname: Jia
  fullname: Jia, Huina
  email: jiahuina713@163.com
  organization: School of Civil Engineering, Shangqiu Institute of Technology, Shangqiu, 476000, China
– sequence: 2
  givenname: Yali
  surname: Li
  fullname: Li, Yali
  organization: School of Civil Engineering, Shangqiu Institute of Technology, Shangqiu, 476000, China
– sequence: 3
  givenname: Ali H.
  surname: AlAteah
  fullname: AlAteah, Ali H.
  organization: Department of Civil Engineering, College of Engineering, University of Hafr Al Batin, Hafr Al Batin, 39524, Saudi Arabia
– sequence: 4
  givenname: Ali
  surname: Alsubeai
  fullname: Alsubeai, Ali
  organization: Department of Civil Engineering, Jubail Industrial College, Royal Commission of Jubail, Jubail Industrial City, 31961, Saudi Arabia
– sequence: 5
  givenname: Sadiq
  surname: Alinsaif
  fullname: Alinsaif, Sadiq
  organization: College of Computer Science and Engineering, University of Hafr Al Batin, Hafr Al Batin, 39524, Saudi Arabia
– sequence: 6
  givenname: Haseeb
  surname: Murtaza
  fullname: Murtaza, Haseeb
  email: engrhaseebmurtaza@gmail.com
  organization: Department of Civil Engineering, University of Engineering and Technology, Taxila, Pakistan
BookMark eNp1kU9PGzEQxa0KpELg2vN-gaXjXe-_3ipESyQkLnC2xvY4bOSso_FGIXz6OoSiXnqZGY_0e6PndynOpjiREN8k3MhGNt8ZN6msoGpKkA18EReyhabsZdWd_TN_FZcprQGqDrrhQrzd2Vh6Hmly4VDsMc1UbENuoy0NJnLFJvKMXIyTjbyNjPM4rfLL7dLMI4a_TNw74vSjWE4z8ZZpRhMow45CKnzkwgd63XEGMkfTan65EuceQ6Lrj74Qz7_unm7vy4fH38vbnw-lrZtqzlVJ3xpvsgPpCKA3xlMPFSoFXd22toYBh1516MkYsjW53qOHlroavKkXYnnSdRHXesvjBvmgI476fRF5pZGz30AaLdSGSEnbK9XggNIMFqWyXWulzZcW4uakZTmmxOQ_9SToYwr6mII-pqCPKWRgOAF7DPljHK14d8iDXscdT9n2f8BWyfoPIbmVCg
Cites_doi 10.1016/j.jocs.2024.102287
10.1002/psp4.6
10.1016/j.cscm.2025.e04541
10.1016/j.dibe.2024.100361
10.21203/rs.3.rs-898407/v1
10.1016/j.jmrt.2023.07.041
10.4018/978-1-7998-8048-6.ch022
10.1016/j.conbuildmat.2022.126578
10.1061/(ASCE)0899-1561(1994)6:3(390)
10.3390/buildings14092675
10.1016/j.cscm.2025.e04755
10.1080/19942060.2021.1944913
10.3390/infrastructures4020026
10.1016/j.cemconres.2018.09.006
10.1016/j.cageo.2012.07.001
10.1016/j.cscm.2022.e01759
10.1088/1757-899X/1200/1/012003
10.1016/j.solener.2019.02.060
10.1029/2000JD900719
10.3390/ma13194331
10.1016/j.jmrt.2023.04.180
10.3390/cryst11060710
10.1016/j.jclepro.2020.120665
10.1177/11779322211020315
10.1016/j.conbuildmat.2022.129384
10.1016/j.jhazmat.2019.121322
10.1016/j.cscm.2022.e01753
10.1007/s00521-012-1144-6
10.1016/j.jobe.2025.112525
10.1016/j.jclepro.2020.122922
10.1016/j.nanoso.2018.12.001
10.1016/j.mtcomm.2023.107333
10.1016/j.cmpb.2018.05.029
10.1016/j.jclepro.2018.10.118
10.1515/rams-2024-0067
10.3390/ma16227178
10.1016/j.cscm.2024.e03543
10.1016/j.cscm.2023.e02102
10.1146/annurev.energy.26.1.303
10.3390/ma15155435
10.1016/j.jclepro.2020.120578
10.1214/aos/1013203451
10.14382/epitoanyag-jsbcm.2013.17
10.1080/17486025.2014.921333
10.3390/ma14154222
10.1016/j.cscm.2021.e00630
10.1007/s00521-008-0208-0
10.1007/978-3-319-20883-1_2
10.3390/su11020537
10.3390/ma13214757
10.5194/gmd-10-3519-2017
10.3844/ajessp.2008.482.490
10.30955/gnj.005204
10.1016/j.conbuildmat.2023.132887
10.3390/su17062516
10.1016/j.matpr.2023.06.033
10.3390/ma15124180
10.1016/j.cscm.2024.e03869
10.1016/j.gsf.2019.12.003
10.3390/ma17184533
10.1016/j.conbuildmat.2020.120286
10.1016/j.istruc.2024.107931
10.1080/21650373.2024.2432002
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/rams-2025-0150
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1605-8127
EndPage 329
ExternalDocumentID oai_doaj_org_article_ac03bee41c8445a9a1b9ca14c76c1c6c
10_1515_rams_2025_0150
10_1515_rams_2025_0150641
GroupedDBID -~X
123
29P
2WC
AAFWJ
ABFKT
ADMLS
AEGXH
AENEX
AFBDD
AHGSO
ALMA_UNASSIGNED_HOLDINGS
E3Z
EBS
EJD
EOJEC
GROUPED_DOAJ
HH5
KQ8
M48
OBODZ
OK1
OVT
QD8
RNS
SLJYH
TR2
TUS
XSB
AAYXX
CITATION
ID FETCH-LOGICAL-c352t-c341f6bfb6051de008bbfe802a4407366c309a9847afebbec3ed8faf06e730fb3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001577517400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1605-8127
IngestDate Fri Oct 03 12:49:56 EDT 2025
Sat Nov 29 07:28:17 EST 2025
Sat Nov 29 01:27:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-c341f6bfb6051de008bbfe802a4407366c309a9847afebbec3ed8faf06e730fb3
OpenAccessLink https://doaj.org/article/ac03bee41c8445a9a1b9ca14c76c1c6c
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_ac03bee41c8445a9a1b9ca14c76c1c6c
crossref_primary_10_1515_rams_2025_0150
walterdegruyter_journals_10_1515_rams_2025_0150641
PublicationCentury 2000
PublicationDate 2025-09-24
PublicationDateYYYYMMDD 2025-09-24
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-24
  day: 24
PublicationDecade 2020
PublicationTitle Reviews on advanced materials science
PublicationYear 2025
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References Ahmed, W.; Lu, G.; Ng, S. T.; Liu, G. (j_rams-2025-0150_ref_011) 2025; Vol. 22
Rajasekar, A.; Arunachalam, K.; Kottaisamy, M. (j_rams-2025-0150_ref_035) 2019; Vol. 208
Alavi, A. H.; Gandomi, A. H.; Nejad, H. C.; Mollahasani, A.; Rashed, A. (j_rams-2025-0150_ref_059) 2013; Vol. 23
Naqi, A.; Jang, J. G. (j_rams-2025-0150_ref_001) 2019; Vol. 11
Ahmad, W.; Veeraghantla, V. S. S. C. S.; Byrne, A. (j_rams-2025-0150_ref_028) 2025; Vol. 17
Yun, M.; Li, X.; Amin, M. N.; Khan, Z.; Alawi Al-Naghi, A. A.; Latifee, E. R. (j_rams-2025-0150_ref_051) 2024; Vol. 21
Zhang, J.; Huang, Y.; Aslani, F.; Ma, G.; Nener, B. (j_rams-2025-0150_ref_033) 2020; Vol. 273
Alyami, M.; Ullah, I.; AlAteah, A. H.; Alsubeai, A.; Alahmari, T. S.; Farooq, F. (j_rams-2025-0150_ref_039) 2025; Vol. 71
Shahin, M. A. (j_rams-2025-0150_ref_062) 2015; Vol. 10
Amin, M. N.; Ahmad, W.; Khan, K.; Al-Hashem, M. N.; Deifalla, A. F.; Ahmad, A. (j_rams-2025-0150_ref_040) 2022; Vol. 18
AlAteah, A. H. (j_rams-2025-0150_ref_008) 2024; Vol. 63
Zhang, W.; Zhang, R.; Wu, C.; Goh, A. T. C.; Lacasse, S.; Liu, Z. (j_rams-2025-0150_ref_058) 2020; Vol. 11
Amin, M. N.; Arifeen, S. U.; Qadir, M. T.; Alsharari, F.; Faraz, M. I. (j_rams-2025-0150_ref_045) 2025; Vol. 22
Jin, C.; Qian, Y.; Khan, K.; Ahmad, A.; Amin, M. N.; Althoey, F. (j_rams-2025-0150_ref_070) 2023; Vol. 37
Worrell, E.; Price, L. K.; Martin, N.; Hendriks, C.; Meida, L. O. (j_rams-2025-0150_ref_002) 2001; Vol. 26
Zhang, J.; Li, D.; Wang, Y. (j_rams-2025-0150_ref_034) 2020; Vol. 258
Marani, A.; Jamali, A.; Nehdi, M. L. (j_rams-2025-0150_ref_030) 2020; Vol. 13
Mohammadzadeh S, D.; Kazemi, S.-F.; Mosavi, A.; Nasseralshariati, E.; Tah, J. H. M. (j_rams-2025-0150_ref_053) 2019; Vol. 4
Ilie, I.; Dittrich, P.; Carvalhais, N.; Jung, M.; Heinemeyer, A.; Migliavacca, M. (j_rams-2025-0150_ref_049) 2016; Vol. 10
Saxton, H.; Xu, X.; Schenkel, T.; Halliday, I. (j_rams-2025-0150_ref_065) 2024; Vol. 79
Çanakcı, H.; Baykasoğlu, A.; Güllü, H. (j_rams-2025-0150_ref_055) 2009; Vol. 18
Rajesh, A. A.; Prasanthni, P.; Senthilkumar, S.; Priya, B. (j_rams-2025-0150_ref_013) 2024; Vol. 26
Shahin, M. A. (j_rams-2025-0150_ref_054) 2015
Nunez, I.; Marani, A.; Nehdi, M. L. (j_rams-2025-0150_ref_032) 2020; Vol. 13
Alade, I. O.; Abd Rahman, M. A.; Saleh, T. A. (j_rams-2025-0150_ref_056) 2019; Vol. 183
Wang, D.; Amin, M. N.; Khan, K.; Nazar, S.; Gamil, Y.; Najeh, T. (j_rams-2025-0150_ref_025) 2024; Vol. 17
Mallick, S.; Ali, S. M.; Das, B.; Kundu, K.; Chakraborty, S.; Banerjee, D. (j_rams-2025-0150_ref_003) 2023
Ba-Shammakh, M. S.; Caruso, H. G.; Elkamel, A.; Croiset, E.; Douglas, P. L. (j_rams-2025-0150_ref_004) 2008; Vol. 4
Li, T.; Yang, J.; Jiang, P.; AlAteah, A. H.; Alsubeai, A.; Alfares, A. M. (j_rams-2025-0150_ref_029) 2024; Vol. 17
Marani, A.; Nehdi, M. L. (j_rams-2025-0150_ref_031) 2020; Vol. 265
Li, G.; Zrimec, J.; Ji, B.; Geng, J.; Larsbrink, J.; Zelezniak, A. (j_rams-2025-0150_ref_041) 2019; Vol. 15
Maalej, M.; Li, V. C. (j_rams-2025-0150_ref_023) 1994; Vol. 6
Lou, Y.; Khan, K.; Amin, M. N.; Ahmad, W.; Deifalla, A. F.; Ahmad, A. (j_rams-2025-0150_ref_021) 2023; Vol. 18
Tran, V. Q.; Dang, V. Q.; Ho, L. S. (j_rams-2025-0150_ref_067) 2022; Vol. 323
Bouchelil, L.; Jafar, S. B. S.; Khanzadeh Moradllo, M. (j_rams-2025-0150_ref_010) 2025; Vol. 14
Iqbal, M. F.; Liu, Q.-f; Azim, I.; Zhu, X.; Yang, J.; Javed, M. F. (j_rams-2025-0150_ref_052) 2020; Vol. 384
Borosnyói, A.; Kara, P.; Mlinárik, L.; Kase, K. (j_rams-2025-0150_ref_014) 2013; Vol. 65
Alyami, M.; Onyelowe, K.; AlAteah, A. H.; Alahmari, T. S.; Alsubeai, A.; Ullah, I. (j_rams-2025-0150_ref_038) 2024; Vol. 21
Afrin, H.; Huda, N.; Abbasi, R. (j_rams-2025-0150_ref_007) 2021; Vol. 1200
Kumar, K.; Dixit, S.; Arora, R.; Vatin, N. I.; Singh, J.; Soloveva, O. V. (j_rams-2025-0150_ref_012) 2022; Vol. 15
Shah, S.; Houda, M.; Khan, S.; Althoey, F.; Abuhussain, M.; Abuhussain, M. A. (j_rams-2025-0150_ref_047) 2023; Vol. 25
Friedman, J. H. (j_rams-2025-0150_ref_072) 2001; Vol. 29
Alade, I. O.; Bagudu, A.; Oyehan, T. A.; Abd Rahman, M. A.; Saleh, T. A.; Olatunji, S. O. (j_rams-2025-0150_ref_057) 2018; Vol. 163
Zhang, X. Y.; Trame, M. N.; Lesko, L. J.; Schmidt, S. (j_rams-2025-0150_ref_066) 2015; Vol. 4
Qian, Y.; Yang, J.; Yang, W.; Alateah, A. H.; Alsubeai, A.; Alfares, A. M. (j_rams-2025-0150_ref_027) 2024; Vol. 14
Young, B. A.; Hall, A.; Pilon, L.; Gupta, P.; Sant, G. (j_rams-2025-0150_ref_037) 2019; Vol. 115
Li, Y.; Shen, J.; Lin, H.; Li, H.; Lv, J.; Feng, S. (j_rams-2025-0150_ref_068) 2022; Vol. 357
Shah, H. A.; Yuan, Q.; Akmal, U.; Shah, S. A.; Salmi, A.; Awad, Y. A. (j_rams-2025-0150_ref_024) 2022; Vol. 15
Band, S. S.; Heggy, E.; Bateni, S. M.; Karami, H.; Rabiee, M.; Samadianfard, S. (j_rams-2025-0150_ref_063) 2021; Vol. 15
Ahmad, W.; McCormack, S. J.; Byrne, A. (j_rams-2025-0150_ref_009) 2025; Vol. 105
Chen, L.; Wang, Z.; Khan, A. A.; Khan, M.; Javed, M. F.; Alaskar, A. A. (j_rams-2025-0150_ref_026) 2023; Vol. 24
Pétrowski, A.; Ben-Hamida, S. (j_rams-2025-0150_ref_043) 2017
Amin, M. N.; Ahmad, W.; Khan, K.; Deifalla, A. F. (j_rams-2025-0150_ref_069) 2023; Vol. 18
Ibrahim, K. I. M. (j_rams-2025-0150_ref_015) 2021; Vol. 15
Alade, I. O.; Abd Rahman, M. A.; Saleh, T. A. (j_rams-2025-0150_ref_061) 2019; Vol. 17
Prakash, B.; Saravanan, T. J.; Kabeer, K. I. S. A.; Bisht, K. (j_rams-2025-0150_ref_022) 2023; Vol. 401
Kisi, O.; Shiri, J.; Tombul, M. (j_rams-2025-0150_ref_060) 2013; Vol. 51
Taylor, K. E. (j_rams-2025-0150_ref_064) 2001; Vol. 106
Bakhtyar, B.; Kacemi, T.; Nawaz, A. (j_rams-2025-0150_ref_005) 2017; Vol. 7
Qin, D.; Hu, Y.; Li, X. (j_rams-2025-0150_ref_020) 2021; Vol. 11
Naseri, H.; Jahanbakhsh, H.; Hosseini, P.; Nejad, F. M. (j_rams-2025-0150_ref_036) 2020; Vol. 258
Abbas, Y. M.; Khan, M. I. (j_rams-2025-0150_ref_073) 2023; Vol. 16
Ahmad, A.; Ostrowski, K. A.; Maślak, M.; Farooq, F.; Mehmood, I.; Nafees, A. (j_rams-2025-0150_ref_071) 2021; Vol. 14
2025092411595703122_j_rams-2025-0150_ref_005
2025092411595703122_j_rams-2025-0150_ref_049
2025092411595703122_j_rams-2025-0150_ref_006
2025092411595703122_j_rams-2025-0150_ref_003
2025092411595703122_j_rams-2025-0150_ref_047
2025092411595703122_j_rams-2025-0150_ref_004
2025092411595703122_j_rams-2025-0150_ref_048
2025092411595703122_j_rams-2025-0150_ref_009
2025092411595703122_j_rams-2025-0150_ref_007
2025092411595703122_j_rams-2025-0150_ref_008
2025092411595703122_j_rams-2025-0150_ref_041
2025092411595703122_j_rams-2025-0150_ref_042
2025092411595703122_j_rams-2025-0150_ref_040
2025092411595703122_j_rams-2025-0150_ref_001
2025092411595703122_j_rams-2025-0150_ref_045
2025092411595703122_j_rams-2025-0150_ref_002
2025092411595703122_j_rams-2025-0150_ref_046
2025092411595703122_j_rams-2025-0150_ref_043
2025092411595703122_j_rams-2025-0150_ref_044
2025092411595703122_j_rams-2025-0150_ref_038
2025092411595703122_j_rams-2025-0150_ref_039
2025092411595703122_j_rams-2025-0150_ref_036
2025092411595703122_j_rams-2025-0150_ref_037
2025092411595703122_j_rams-2025-0150_ref_070
2025092411595703122_j_rams-2025-0150_ref_071
2025092411595703122_j_rams-2025-0150_ref_030
2025092411595703122_j_rams-2025-0150_ref_031
2025092411595703122_j_rams-2025-0150_ref_072
2025092411595703122_j_rams-2025-0150_ref_073
2025092411595703122_j_rams-2025-0150_ref_034
2025092411595703122_j_rams-2025-0150_ref_035
2025092411595703122_j_rams-2025-0150_ref_032
2025092411595703122_j_rams-2025-0150_ref_033
2025092411595703122_j_rams-2025-0150_ref_027
2025092411595703122_j_rams-2025-0150_ref_028
2025092411595703122_j_rams-2025-0150_ref_025
2025092411595703122_j_rams-2025-0150_ref_069
2025092411595703122_j_rams-2025-0150_ref_026
2025092411595703122_j_rams-2025-0150_ref_029
2025092411595703122_j_rams-2025-0150_ref_060
2025092411595703122_j_rams-2025-0150_ref_063
2025092411595703122_j_rams-2025-0150_ref_020
2025092411595703122_j_rams-2025-0150_ref_064
2025092411595703122_j_rams-2025-0150_ref_061
2025092411595703122_j_rams-2025-0150_ref_062
2025092411595703122_j_rams-2025-0150_ref_023
2025092411595703122_j_rams-2025-0150_ref_067
2025092411595703122_j_rams-2025-0150_ref_024
2025092411595703122_j_rams-2025-0150_ref_068
2025092411595703122_j_rams-2025-0150_ref_021
2025092411595703122_j_rams-2025-0150_ref_065
2025092411595703122_j_rams-2025-0150_ref_022
2025092411595703122_j_rams-2025-0150_ref_066
2025092411595703122_j_rams-2025-0150_ref_016
2025092411595703122_j_rams-2025-0150_ref_017
2025092411595703122_j_rams-2025-0150_ref_014
2025092411595703122_j_rams-2025-0150_ref_058
2025092411595703122_j_rams-2025-0150_ref_015
2025092411595703122_j_rams-2025-0150_ref_059
2025092411595703122_j_rams-2025-0150_ref_018
2025092411595703122_j_rams-2025-0150_ref_019
2025092411595703122_j_rams-2025-0150_ref_052
2025092411595703122_j_rams-2025-0150_ref_053
2025092411595703122_j_rams-2025-0150_ref_050
2025092411595703122_j_rams-2025-0150_ref_051
2025092411595703122_j_rams-2025-0150_ref_012
2025092411595703122_j_rams-2025-0150_ref_056
2025092411595703122_j_rams-2025-0150_ref_013
2025092411595703122_j_rams-2025-0150_ref_057
2025092411595703122_j_rams-2025-0150_ref_010
2025092411595703122_j_rams-2025-0150_ref_054
2025092411595703122_j_rams-2025-0150_ref_011
2025092411595703122_j_rams-2025-0150_ref_055
References_xml – volume: Vol. 163
  start-page: pp. 135
  year: 2018
  end-page: 142
  ident: j_rams-2025-0150_ref_057
  article-title: Estimating the refractive index of oxygenated and deoxygenated hemoglobin using genetic algorithm–support vector regression model
  publication-title: Computer Methods and Programs in Biomedicine
– year: 2017
  ident: j_rams-2025-0150_ref_043
  article-title: Genetic programming for machine learning
  publication-title: In: Evolutionary Algorithms (part of the Computer Engineering: Metaheuristics series), John Wiley & Sons (Wiley-ISTE)
– volume: Vol. 357
  start-page: id. 129384
  year: 2022
  ident: j_rams-2025-0150_ref_068
  article-title: The data-driven research on bond strength between fly ash-based geopolymer concrete and reinforcing bars
  publication-title: Construction and Building Materials
– volume: Vol. 21
  start-page: id. e03869
  year: 2024
  ident: j_rams-2025-0150_ref_038
  article-title: Innovative hybrid machine learning models for estimating the compressive strength of copper mine tailings concrete
  publication-title: Case Studies in Construction Materials
– volume: Vol. 6
  start-page: pp. 390
  year: 1994
  end-page: 406
  ident: j_rams-2025-0150_ref_023
  article-title: Flexural strength of fiber cementitious composites
  publication-title: Journal of Materials in Civil Engineering
– volume: Vol. 323
  start-page: id. 126578
  year: 2022
  ident: j_rams-2025-0150_ref_067
  article-title: Evaluating compressive strength of concrete made with recycled concrete aggregates using machine learning approach
  publication-title: Construction and Building Materials
– volume: Vol. 18
  start-page: pp. 1031
  year: 2009
  end-page: 1041
  ident: j_rams-2025-0150_ref_055
  article-title: Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming
  publication-title: Neural Computing and Applications
– volume: Vol. 105
  start-page: id. 112525
  year: 2025
  ident: j_rams-2025-0150_ref_009
  article-title: Biocomposites for sustainable construction: A review of material properties, applications, research gaps, and contribution to circular economy
  publication-title: Journal of Building Engineering
– volume: Vol. 10
  start-page: pp. 109
  year: 2015
  end-page: 125
  ident: j_rams-2025-0150_ref_062
  article-title: Use of evolutionary computing for modelling some complex problems in geotechnical engineering
  publication-title: Geomechanics and Geoengineering
– volume: Vol. 273
  start-page: id. 122922
  year: 2020
  ident: j_rams-2025-0150_ref_033
  article-title: A hybrid intelligent system for designing optimal proportions of recycled aggregate concrete
  publication-title: Journal of Cleaner Production
– volume: Vol. 115
  start-page: pp. 379
  year: 2019
  end-page: 388
  ident: j_rams-2025-0150_ref_037
  article-title: Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods
  publication-title: Cement and Concrete Research
– volume: Vol. 16
  start-page: id. 7178
  year: 2023
  ident: j_rams-2025-0150_ref_073
  article-title: Robust machine learning framework for modeling the compressive strength of SFRC: Database compilation, predictive analysis, and empirical verification
  publication-title: Materials
– volume: Vol. 106
  start-page: pp. 7183
  year: 2001
  end-page: 7192
  ident: j_rams-2025-0150_ref_064
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: Vol. 15
  start-page: id. 4180
  year: 2022
  ident: j_rams-2025-0150_ref_012
  article-title: Comparative analysis of waste materials for their potential utilization in green concrete applications
  publication-title: Materials
– volume: Vol. 17
  start-page: id. 2516
  year: 2025
  ident: j_rams-2025-0150_ref_028
  article-title: Advancing sustainable concrete using biochar: Experimental and modelling study for mechanical strength evaluation
  publication-title: Sustainability
– volume: Vol. 63
  start-page: id. 20240067
  year: 2024
  ident: j_rams-2025-0150_ref_008
  article-title: Investigation of nano-basic oxygen furnace slag and nano-banded iron formation on properties of high-performance geopolymer concrete
  publication-title: Reviews on Advanced Materials Science
– volume: Vol. 7
  start-page: pp. 282
  year: 2017
  end-page: 286
  ident: j_rams-2025-0150_ref_005
  article-title: A review on carbon emissions in Malaysian cement industry
  publication-title: International Journal of Energy Economics and Policy
– volume: Vol. 22
  start-page: id. e04541
  year: 2025
  ident: j_rams-2025-0150_ref_011
  article-title: Innovative valorization of solid waste materials for production of sustainable low-carbon pavement: A systematic review and scientometric analysis
  publication-title: Case Studies in Construction Materials
– year: 2015
  ident: j_rams-2025-0150_ref_054
  publication-title: Genetic programming for modelling of geotechnical engineering systems
– volume: Vol. 18
  start-page: id. e02102
  year: 2023
  ident: j_rams-2025-0150_ref_069
  article-title: Optimizing compressive strength prediction models for rice husk ash concrete with evolutionary machine intelligence techniques
  publication-title: Case Studies in Construction Materials
– volume: Vol. 208
  start-page: pp. 402
  year: 2019
  end-page: 414
  ident: j_rams-2025-0150_ref_035
  article-title: Assessment of strength and durability characteristics of copper slag incorporated ultra high strength concrete
  publication-title: Journal of Cleaner Production
– volume: Vol. 14
  start-page: id. 2675
  year: 2024
  ident: j_rams-2025-0150_ref_027
  article-title: Prediction of ultra-high-performance concrete (UHPC) properties using gene expression programming (GEP)
  publication-title: Buildings
– volume: Vol. 17
  start-page: id. 100361
  year: 2024
  ident: j_rams-2025-0150_ref_025
  article-title: Comparing the efficacy of GEP and MEP algorithms in predicting concrete strength incorporating waste eggshell and waste glass powder
  publication-title: Developments in the Built Environment
– volume: Vol. 21
  start-page: id. e03543
  year: 2024
  ident: j_rams-2025-0150_ref_051
  article-title: Experimenting the effectiveness of waste materials in improving the compressive strength of plastic-based mortar
  publication-title: Case Studies in Construction Materials
– volume: Vol. 11
  start-page: pp. 1095
  year: 2020
  end-page: 1106
  ident: j_rams-2025-0150_ref_058
  article-title: State-of-the-art review of soft computing applications in underground excavations
  publication-title: Geoscience Frontiers
– volume: Vol. 384
  start-page: id. 121322
  year: 2020
  ident: j_rams-2025-0150_ref_052
  article-title: Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming
  publication-title: Journal of Hazardous Materials
– volume: Vol. 15
  start-page: pp. 1147
  year: 2021
  end-page: 1158
  ident: j_rams-2025-0150_ref_063
  article-title: Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression
  publication-title: Engineering Applications of Computational Fluid Mechanics
– volume: Vol. 79
  start-page: id. 102287
  year: 2024
  ident: j_rams-2025-0150_ref_065
  article-title: Assessing input parameter hyperspace and parameter identifiability in a cardiovascular system model via sensitivity analysis
  publication-title: Journal of Computational Science
– volume: Vol. 65
  start-page: pp. 90
  year: 2013
  end-page: 94
  ident: j_rams-2025-0150_ref_014
  article-title: Performance of waste glass powder (WGP) supplementary cementitious material (SCM) - workability and compressive strength
  publication-title: Epitoanyag-Journal of Silicate Based and Composite Materials
– volume: Vol. 29
  start-page: pp. 1189
  year: 2001
  end-page: 1232
  ident: j_rams-2025-0150_ref_072
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Annals of Statistics
– volume: Vol. 258
  start-page: id. 120665
  year: 2020
  ident: j_rams-2025-0150_ref_034
  article-title: Toward intelligent construction: Prediction of mechanical properties of manufactured-sand concrete using tree-based models
  publication-title: Journal of Cleaner Production
– volume: Vol. 22
  start-page: id. e04755
  year: 2025
  ident: j_rams-2025-0150_ref_045
  article-title: AI-powered interpretable models for the abrasion resistance of steel fiber-reinforced concrete in hydraulic conditions
  publication-title: Case Studies in Construction Materials
– volume: Vol. 4
  start-page: id. 26
  year: 2019
  ident: j_rams-2025-0150_ref_053
  article-title: Prediction of compression index of fine-grained soils using a gene expression programming model
  publication-title: Infrastructures
– volume: Vol. 265
  start-page: id. 120286
  year: 2020
  ident: j_rams-2025-0150_ref_031
  article-title: Machine learning prediction of compressive strength for phase change materials integrated cementitious composites
  publication-title: Construction and Building Materials
– volume: Vol. 26
  start-page: pp. 303
  year: 2001
  end-page: 329
  ident: j_rams-2025-0150_ref_002
  article-title: Carbon dioxide emissions from the global cement industry
  publication-title: Annual Review of Energy and The Environment
– volume: Vol. 1200
  year: 2021
  ident: j_rams-2025-0150_ref_007
  article-title: An overview of eco-friendly alternatives as the replacement of cement in concrete
  publication-title: IOP Conference Series: Materials Science and Engineering
– volume: Vol. 26
  issue: No. 5
  year: 2024
  ident: j_rams-2025-0150_ref_013
  article-title: Environment friendly sustainable concrete produced from marble waste powder
  publication-title: Global NEST: The International Journal
– volume: Vol. 11
  start-page: id. 710
  year: 2021
  ident: j_rams-2025-0150_ref_020
  article-title: Waste glass utilization in cement-based materials for sustainable construction: A review
  publication-title: Crystals
– volume: Vol. 51
  start-page: pp. 108
  year: 2013
  end-page: 117
  ident: j_rams-2025-0150_ref_060
  article-title: Modeling rainfall-runoff process using soft computing techniques
  publication-title: Computers & Geosciences
– volume: Vol. 18
  start-page: id. e01753
  year: 2023
  ident: j_rams-2025-0150_ref_021
  article-title: Performance characteristics of cementitious composites modified with silica fume: A systematic review
  publication-title: Case Studies in Construction Materials
– volume: Vol. 71
  start-page: id. 107931
  year: 2025
  ident: j_rams-2025-0150_ref_039
  article-title: Machine learning models for predicting the compressive strength of cement-based mortar materials: Hyper tuning and optimization
  publication-title: Structures
– volume: Vol. 258
  start-page: id. 120578
  year: 2020
  ident: j_rams-2025-0150_ref_036
  article-title: Designing sustainable concrete mixture by developing a new machine learning technique
  publication-title: Journal of Cleaner Production
– volume: Vol. 15
  start-page: id. e00630
  year: 2021
  ident: j_rams-2025-0150_ref_015
  article-title: Recycled waste glass powder as a partial replacement of cement in concrete containing silica fume and fly ash
  publication-title: Case Studies in Construction Materials
– volume: Vol. 24
  start-page: pp. 6391
  year: 2023
  end-page: 6410
  ident: j_rams-2025-0150_ref_026
  article-title: Development of predictive models for sustainable concrete via genetic programming-based algorithms
  publication-title: Journal of Materials Research and Technology
– volume: Vol. 23
  start-page: pp. 1771
  year: 2013
  end-page: 1786
  ident: j_rams-2025-0150_ref_059
  article-title: Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems
  publication-title: Neural Computing and Applications
– volume: Vol. 37
  start-page: id. 107333
  year: 2023
  ident: j_rams-2025-0150_ref_070
  article-title: Predicting the damage to cementitious composites due to acid attack and evaluating the effectiveness of eggshell powder using interpretable artificial intelligence models
  publication-title: Materials Today Communications
– volume: Vol. 401
  start-page: id. 132887
  year: 2023
  ident: j_rams-2025-0150_ref_022
  article-title: Exploring the potential of waste marble powder as a sustainable substitute to cement in cement-based composites: A review
  publication-title: Construction and Building Materials
– volume: Vol. 25
  year: 2023
  ident: j_rams-2025-0150_ref_047
  article-title: Mechanical behavior of E-waste aggregate concrete using a novel machine learning algorithm: Multi expression programming (MEP)
  publication-title: Journal of Materials Research and Technology
– volume: Vol. 14
  start-page: id. 4222
  year: 2021
  ident: j_rams-2025-0150_ref_071
  article-title: Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature
  publication-title: Materials
– volume: Vol. 13
  start-page: id. 4331
  year: 2020
  ident: j_rams-2025-0150_ref_032
  article-title: Mixture optimization of recycled aggregate concrete using hybrid machine learning model
  publication-title: Materials
– volume: Vol. 15
  year: 2019
  ident: j_rams-2025-0150_ref_041
  article-title: Performance of regression models as a function of experiment noise
  publication-title: Bioinformatics and Biology Insights
– volume: Vol. 17
  start-page: pp. 103
  year: 2019
  end-page: 111
  ident: j_rams-2025-0150_ref_061
  article-title: Modeling and prediction of the specific heat capacity of Al2O3/water nanofluids using hybrid genetic algorithm/support vector regression model
  publication-title: Nano-Structures & Nano-Objects
– volume: Vol. 14
  start-page: pp. 198
  year: 2025
  end-page: 208
  ident: j_rams-2025-0150_ref_010
  article-title: Evaluating the performance of internally cured limestone calcined clay concrete mixtures
  publication-title: Journal of Sustainable Cement-Based Materials
– volume: Vol. 11
  start-page: id. 537
  issue: No. 2
  year: 2019
  ident: j_rams-2025-0150_ref_001
  article-title: Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: A review
  publication-title: Sustainability
– volume: Vol. 4
  start-page: pp. 482
  year: 2008
  end-page: 490
  ident: j_rams-2025-0150_ref_004
  article-title: Analysis and optimization of carbon dioxide emission mitigation options in the cement industry
  publication-title: American Journal of Environmental Sciences
– volume: Vol. 183
  start-page: pp. 74
  year: 2019
  end-page: 82
  ident: j_rams-2025-0150_ref_056
  article-title: Predicting the specific heat capacity of alumina/ethylene glycol nanofluids using support vector regression model optimized with Bayesian algorithm
  publication-title: Solar Energy
– year: 2023
  ident: j_rams-2025-0150_ref_003
  article-title: Design of an environmentally friendly concrete mix by partial replacement of fine aggregate with industrial waste glass in powdered form and cement with fly-ash
  publication-title: Materials Today: Proceedings
– volume: Vol. 13
  start-page: id. 4757
  year: 2020
  ident: j_rams-2025-0150_ref_030
  article-title: Predicting ultra-high-performance concrete compressive strength using tabular generative adversarial networks
  publication-title: Materials
– volume: Vol. 15
  year: 2022
  ident: j_rams-2025-0150_ref_024
  article-title: Application of machine learning techniques for predicting compressive, splitting tensile, and flexural strengths of concrete with Metakaolin
  publication-title: Materials
– volume: Vol. 17
  start-page: id. 4533
  year: 2024
  ident: j_rams-2025-0150_ref_029
  article-title: Predicting high-strength concrete’s compressive strength: a comparative study of artificial neural networks, adaptive neuro-fuzzy inference system, and response surface methodology
  publication-title: Materials
– volume: Vol. 10
  start-page: pp. 3519
  year: 2016
  end-page: 3545
  ident: j_rams-2025-0150_ref_049
  article-title: Reverse engineering model structures for soil and ecosystem respiration: the potential of gene expression programming
  publication-title: Geoscientific Model Development
– volume: Vol. 4
  start-page: pp. 69
  year: 2015
  end-page: 79
  ident: j_rams-2025-0150_ref_066
  article-title: Sobol sensitivity analysis: a tool to guide the development and evaluation of systems pharmacology models
  publication-title: CPT: Pharmacometrics & Systems Pharmacology
– volume: Vol. 18
  year: 2022
  ident: j_rams-2025-0150_ref_040
  article-title: Testing and modeling methods to experiment the flexural performance of cement mortar modified with eggshell powder
  publication-title: Case Studies in Construction Materials
– ident: 2025092411595703122_j_rams-2025-0150_ref_005
– ident: 2025092411595703122_j_rams-2025-0150_ref_065
  doi: 10.1016/j.jocs.2024.102287
– ident: 2025092411595703122_j_rams-2025-0150_ref_066
  doi: 10.1002/psp4.6
– ident: 2025092411595703122_j_rams-2025-0150_ref_011
  doi: 10.1016/j.cscm.2025.e04541
– ident: 2025092411595703122_j_rams-2025-0150_ref_025
  doi: 10.1016/j.dibe.2024.100361
– ident: 2025092411595703122_j_rams-2025-0150_ref_046
  doi: 10.21203/rs.3.rs-898407/v1
– ident: 2025092411595703122_j_rams-2025-0150_ref_047
  doi: 10.1016/j.jmrt.2023.07.041
– ident: 2025092411595703122_j_rams-2025-0150_ref_048
  doi: 10.4018/978-1-7998-8048-6.ch022
– ident: 2025092411595703122_j_rams-2025-0150_ref_067
  doi: 10.1016/j.conbuildmat.2022.126578
– ident: 2025092411595703122_j_rams-2025-0150_ref_023
  doi: 10.1061/(ASCE)0899-1561(1994)6:3(390)
– ident: 2025092411595703122_j_rams-2025-0150_ref_018
– ident: 2025092411595703122_j_rams-2025-0150_ref_044
– ident: 2025092411595703122_j_rams-2025-0150_ref_027
  doi: 10.3390/buildings14092675
– ident: 2025092411595703122_j_rams-2025-0150_ref_050
– ident: 2025092411595703122_j_rams-2025-0150_ref_045
  doi: 10.1016/j.cscm.2025.e04755
– ident: 2025092411595703122_j_rams-2025-0150_ref_063
  doi: 10.1080/19942060.2021.1944913
– ident: 2025092411595703122_j_rams-2025-0150_ref_053
  doi: 10.3390/infrastructures4020026
– ident: 2025092411595703122_j_rams-2025-0150_ref_037
  doi: 10.1016/j.cemconres.2018.09.006
– ident: 2025092411595703122_j_rams-2025-0150_ref_060
  doi: 10.1016/j.cageo.2012.07.001
– ident: 2025092411595703122_j_rams-2025-0150_ref_040
  doi: 10.1016/j.cscm.2022.e01759
– ident: 2025092411595703122_j_rams-2025-0150_ref_006
– ident: 2025092411595703122_j_rams-2025-0150_ref_007
  doi: 10.1088/1757-899X/1200/1/012003
– ident: 2025092411595703122_j_rams-2025-0150_ref_056
  doi: 10.1016/j.solener.2019.02.060
– ident: 2025092411595703122_j_rams-2025-0150_ref_064
  doi: 10.1029/2000JD900719
– ident: 2025092411595703122_j_rams-2025-0150_ref_032
  doi: 10.3390/ma13194331
– ident: 2025092411595703122_j_rams-2025-0150_ref_026
  doi: 10.1016/j.jmrt.2023.04.180
– ident: 2025092411595703122_j_rams-2025-0150_ref_020
  doi: 10.3390/cryst11060710
– ident: 2025092411595703122_j_rams-2025-0150_ref_017
– ident: 2025092411595703122_j_rams-2025-0150_ref_034
  doi: 10.1016/j.jclepro.2020.120665
– ident: 2025092411595703122_j_rams-2025-0150_ref_041
  doi: 10.1177/11779322211020315
– ident: 2025092411595703122_j_rams-2025-0150_ref_068
  doi: 10.1016/j.conbuildmat.2022.129384
– ident: 2025092411595703122_j_rams-2025-0150_ref_052
  doi: 10.1016/j.jhazmat.2019.121322
– ident: 2025092411595703122_j_rams-2025-0150_ref_021
  doi: 10.1016/j.cscm.2022.e01753
– ident: 2025092411595703122_j_rams-2025-0150_ref_059
  doi: 10.1007/s00521-012-1144-6
– ident: 2025092411595703122_j_rams-2025-0150_ref_009
  doi: 10.1016/j.jobe.2025.112525
– ident: 2025092411595703122_j_rams-2025-0150_ref_033
  doi: 10.1016/j.jclepro.2020.122922
– ident: 2025092411595703122_j_rams-2025-0150_ref_061
  doi: 10.1016/j.nanoso.2018.12.001
– ident: 2025092411595703122_j_rams-2025-0150_ref_070
  doi: 10.1016/j.mtcomm.2023.107333
– ident: 2025092411595703122_j_rams-2025-0150_ref_057
  doi: 10.1016/j.cmpb.2018.05.029
– ident: 2025092411595703122_j_rams-2025-0150_ref_035
  doi: 10.1016/j.jclepro.2018.10.118
– ident: 2025092411595703122_j_rams-2025-0150_ref_008
  doi: 10.1515/rams-2024-0067
– ident: 2025092411595703122_j_rams-2025-0150_ref_073
  doi: 10.3390/ma16227178
– ident: 2025092411595703122_j_rams-2025-0150_ref_051
  doi: 10.1016/j.cscm.2024.e03543
– ident: 2025092411595703122_j_rams-2025-0150_ref_069
  doi: 10.1016/j.cscm.2023.e02102
– ident: 2025092411595703122_j_rams-2025-0150_ref_042
– ident: 2025092411595703122_j_rams-2025-0150_ref_002
  doi: 10.1146/annurev.energy.26.1.303
– ident: 2025092411595703122_j_rams-2025-0150_ref_024
  doi: 10.3390/ma15155435
– ident: 2025092411595703122_j_rams-2025-0150_ref_036
  doi: 10.1016/j.jclepro.2020.120578
– ident: 2025092411595703122_j_rams-2025-0150_ref_072
  doi: 10.1214/aos/1013203451
– ident: 2025092411595703122_j_rams-2025-0150_ref_014
  doi: 10.14382/epitoanyag-jsbcm.2013.17
– ident: 2025092411595703122_j_rams-2025-0150_ref_016
– ident: 2025092411595703122_j_rams-2025-0150_ref_062
  doi: 10.1080/17486025.2014.921333
– ident: 2025092411595703122_j_rams-2025-0150_ref_071
  doi: 10.3390/ma14154222
– ident: 2025092411595703122_j_rams-2025-0150_ref_015
  doi: 10.1016/j.cscm.2021.e00630
– ident: 2025092411595703122_j_rams-2025-0150_ref_055
  doi: 10.1007/s00521-008-0208-0
– ident: 2025092411595703122_j_rams-2025-0150_ref_054
  doi: 10.1007/978-3-319-20883-1_2
– ident: 2025092411595703122_j_rams-2025-0150_ref_001
  doi: 10.3390/su11020537
– ident: 2025092411595703122_j_rams-2025-0150_ref_030
  doi: 10.3390/ma13214757
– ident: 2025092411595703122_j_rams-2025-0150_ref_049
  doi: 10.5194/gmd-10-3519-2017
– ident: 2025092411595703122_j_rams-2025-0150_ref_004
  doi: 10.3844/ajessp.2008.482.490
– ident: 2025092411595703122_j_rams-2025-0150_ref_013
  doi: 10.30955/gnj.005204
– ident: 2025092411595703122_j_rams-2025-0150_ref_019
– ident: 2025092411595703122_j_rams-2025-0150_ref_043
– ident: 2025092411595703122_j_rams-2025-0150_ref_022
  doi: 10.1016/j.conbuildmat.2023.132887
– ident: 2025092411595703122_j_rams-2025-0150_ref_028
  doi: 10.3390/su17062516
– ident: 2025092411595703122_j_rams-2025-0150_ref_003
  doi: 10.1016/j.matpr.2023.06.033
– ident: 2025092411595703122_j_rams-2025-0150_ref_012
  doi: 10.3390/ma15124180
– ident: 2025092411595703122_j_rams-2025-0150_ref_038
  doi: 10.1016/j.cscm.2024.e03869
– ident: 2025092411595703122_j_rams-2025-0150_ref_058
  doi: 10.1016/j.gsf.2019.12.003
– ident: 2025092411595703122_j_rams-2025-0150_ref_029
  doi: 10.3390/ma17184533
– ident: 2025092411595703122_j_rams-2025-0150_ref_031
  doi: 10.1016/j.conbuildmat.2020.120286
– ident: 2025092411595703122_j_rams-2025-0150_ref_039
  doi: 10.1016/j.istruc.2024.107931
– ident: 2025092411595703122_j_rams-2025-0150_ref_010
  doi: 10.1080/21650373.2024.2432002
SSID ssj0027079
Score 2.3902545
Snippet Glass powder, silica fume, and marble powder (MP) were investigated for their potential as sustainable additives to enhance mechanical properties, reduce...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Index Database
Publisher
StartPage id. 537
SubjectTerms equation-based models
flexural strength
sustainable mortar
Title Eco-friendly waste plastic-based mortar incorporating industrial waste powders: Interpretable models for flexural strength
URI https://www.degruyter.com/doi/10.1515/rams-2025-0150
https://doaj.org/article/ac03bee41c8445a9a1b9ca14c76c1c6c
Volume 64
WOSCitedRecordID wos001577517400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1605-8127
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027079
  issn: 1605-8127
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yeHAPi09cX-QgeCrb9JG23lRWPC0eFPZWknSyCvui23Vdf70zfegiiBcvhYamLd8kmW_I5BvGLn0dagFaOhZXfyfwLDixCCPHxl4Wau1BWBebiAaDeDhMHjdKfVFOWCUPXAHXU8b1NUAgTBwEoUqU0IlRIjCRNMJIQ6svsp4mmGpCLTdKaolGdNi9XE0WOB48ylOjE_YbLqhU6m-zzqrcnc5glC_XRbMbWjqZ-13Wqdkhv6n-ao9twXSftTc0Aw_YR9_MHEvqxNl4zVcKrcTnSIGxh0MuKeMTYtQ5J9mFSqUY--FdU6Kj6TNbUQ7zNf9OO9Rj4GVlnAVHKsvtGN5JlIPTeZLpqHg5ZM_3_ae7B6cuoOAY5FUFXgNhpbYaYxaRAbp7rS3ErqcCjON8KY3vJipBB6UsaLSmD1lslXUl4MS32j9irelsCseMG2wKPXyVkhJDMqEiQG4Zu1pkdAoo6rKrBtN0XulkpBRfIPopoZ8S-imh32W3BPnXU6RvXTag1dPa6ulfVu8y74fB0nruLX75rAzEyX98-ZTtVAOJNqbOWKvIl3DOts1b8brIL8pR-AnBK-hO
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eco-friendly+waste+plastic-based+mortar+incorporating+industrial+waste+powders%3A+Interpretable+models+for+flexural+strength&rft.jtitle=Reviews+on+advanced+materials+science&rft.au=Jia%2C+Huina&rft.au=Li%2C+Yali&rft.au=AlAteah%2C+Ali+H.&rft.au=Alsubeai%2C+Ali&rft.date=2025-09-24&rft.issn=1605-8127&rft.eissn=1605-8127&rft.volume=64&rft.issue=1&rft_id=info:doi/10.1515%2Frams-2025-0150&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_rams_2025_0150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1605-8127&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1605-8127&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1605-8127&client=summon