Enhancement of traffic forecasting through graph neural network-based information fusion techniques

•This study investigates information fusion methods for GNN-based traffic predictions, including their benefits and challenges.•A GNN-based information fusion technique improves traffic forecasting accuracy over conventional methods.•Integration of multi-source data improves traffic forecasting mode...

Full description

Saved in:
Bibliographic Details
Published in:Information fusion Vol. 110; p. 102466
Main Authors: Ahmed, Shams Forruque, Kuldeep, Sweety Angela, Rafa, Sabiha Jannat, Fazal, Javeria, Hoque, Mahfara, Liu, Gang, Gandomi, Amir H.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.10.2024
Subjects:
ISSN:1566-2535, 1872-6305
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •This study investigates information fusion methods for GNN-based traffic predictions, including their benefits and challenges.•A GNN-based information fusion technique improves traffic forecasting accuracy over conventional methods.•Integration of multi-source data improves traffic forecasting models.•Integration of GNNs with AI methods like evolutionary algorithms or reinforcement learning could be effective.•Hybrid models could improve overall performance and flexibility in challenging traffic situations. To improve forecasting accuracy and capture complex interactions within transportation networks, information fusion approaches are crucial for traffic predictions based on graph neural networks (GNNs). GNNs offer a potentially effective framework for capturing complex patterns and interactions among diverse elements, such as road segments and crossings, by considering both temporal and geographical dependencies. Although GNN-based traffic forecasting has recently been investigated in many studies, there is a need for comprehensive reviews that examine information fusion approaches for GNN-based traffic predictions, including an analysis of their benefits and challenges. This study addresses this knowledge gap and offers future insights into the potential advancements and developing fields of research in GNN-based fusion techniques, as well as their implications in urban planning and smart cities. Existing research demonstrates that the accuracy of traffic forecasting is substantially enhanced by information fusion techniques based on GNNs in comparison to more conventional approaches. By integrating information fusion methods with GNNs, the model is capable of capturing complex temporal and spatial relationships between various locations in a traffic network. Multi-source data integration benefits traffic forecasting models, including social events, weather conditions, real-time traffic sensor data, and historical traffic patterns. In addition, combining GNNs with other artificial intelligence (AI) methods like evolutionary algorithms or reinforcement learning could be an efficient strategy. With the potential to combine the best features of several methods, hybrid models could improve overall performance and flexibility in challenging traffic situations.
AbstractList •This study investigates information fusion methods for GNN-based traffic predictions, including their benefits and challenges.•A GNN-based information fusion technique improves traffic forecasting accuracy over conventional methods.•Integration of multi-source data improves traffic forecasting models.•Integration of GNNs with AI methods like evolutionary algorithms or reinforcement learning could be effective.•Hybrid models could improve overall performance and flexibility in challenging traffic situations. To improve forecasting accuracy and capture complex interactions within transportation networks, information fusion approaches are crucial for traffic predictions based on graph neural networks (GNNs). GNNs offer a potentially effective framework for capturing complex patterns and interactions among diverse elements, such as road segments and crossings, by considering both temporal and geographical dependencies. Although GNN-based traffic forecasting has recently been investigated in many studies, there is a need for comprehensive reviews that examine information fusion approaches for GNN-based traffic predictions, including an analysis of their benefits and challenges. This study addresses this knowledge gap and offers future insights into the potential advancements and developing fields of research in GNN-based fusion techniques, as well as their implications in urban planning and smart cities. Existing research demonstrates that the accuracy of traffic forecasting is substantially enhanced by information fusion techniques based on GNNs in comparison to more conventional approaches. By integrating information fusion methods with GNNs, the model is capable of capturing complex temporal and spatial relationships between various locations in a traffic network. Multi-source data integration benefits traffic forecasting models, including social events, weather conditions, real-time traffic sensor data, and historical traffic patterns. In addition, combining GNNs with other artificial intelligence (AI) methods like evolutionary algorithms or reinforcement learning could be an efficient strategy. With the potential to combine the best features of several methods, hybrid models could improve overall performance and flexibility in challenging traffic situations.
ArticleNumber 102466
Author Liu, Gang
Hoque, Mahfara
Gandomi, Amir H.
Rafa, Sabiha Jannat
Kuldeep, Sweety Angela
Fazal, Javeria
Ahmed, Shams Forruque
Author_xml – sequence: 1
  givenname: Shams Forruque
  orcidid: 0000-0003-3360-3636
  surname: Ahmed
  fullname: Ahmed, Shams Forruque
  email: shams.forruque@northsouth.edu
  organization: Department of Mathematics & Physics, North South University, Dhaka, 1229, Bangladesh
– sequence: 2
  givenname: Sweety Angela
  surname: Kuldeep
  fullname: Kuldeep, Sweety Angela
  organization: Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
– sequence: 3
  givenname: Sabiha Jannat
  surname: Rafa
  fullname: Rafa, Sabiha Jannat
  organization: Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
– sequence: 4
  givenname: Javeria
  surname: Fazal
  fullname: Fazal, Javeria
  organization: Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
– sequence: 5
  givenname: Mahfara
  surname: Hoque
  fullname: Hoque, Mahfara
  organization: Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
– sequence: 6
  givenname: Gang
  surname: Liu
  fullname: Liu, Gang
  organization: School of Energy Science and Engineering, Central South University, Changsha, 410083, China
– sequence: 7
  givenname: Amir H.
  orcidid: 0000-0002-2798-0104
  surname: Gandomi
  fullname: Gandomi, Amir H.
  email: gandomi@uts.edu.au
  organization: Faculty of Engineering & Information Technology, University of Technology Sydney, NSW, 2007, Australia
BookMark eNqFkM1OwzAQhC1UJNrCG3DIC6Q4duwkHJBQVX6kSlzgbLn2unFp7WI7IN4el3LiAKdZrTSzO98EjZx3gNBlhWcVrvjVZmadMUOcEUzqvCI15ydoXLUNKTnFbJRnxnlJGGVnaBLjBuOqwbQaI7VwvXQKduBS4U2RgjTGqsL4AErGZN26SH3ww7ov1kHu-8LBEOQ2S_rw4bVcyQi6yPd92MlkvSvyIwdJoHpn3waI5-jUyG2Eix-dope7xfP8oVw-3T_Ob5elooykUpFVzcG0HdWKm0p1rGN1o01TS64ZMN2wWteMmIZASwG3pOm4ppzKxrSGAp2i-pirgo8xgBH7YHcyfIoKiwMosRFHUOIAShxBZdv1L5uy6btKhmG3_5lvjmbIxd4tBBGVhQxU2wwwCe3t3wFfzv6LdA
CitedBy_id crossref_primary_10_54097_1gw77589
crossref_primary_10_1007_s13177_024_00413_4
crossref_primary_10_1016_j_inffus_2025_103677
crossref_primary_10_1016_j_inffus_2025_103143
crossref_primary_10_1016_j_inffus_2025_103495
crossref_primary_10_1109_ACCESS_2024_3518474
crossref_primary_10_1007_s44327_025_00112_z
crossref_primary_10_1016_j_aei_2025_103722
crossref_primary_10_2478_amns_2025_0114
crossref_primary_10_1111_mice_70078
crossref_primary_10_1016_j_engappai_2025_110561
crossref_primary_10_1016_j_neunet_2024_107102
crossref_primary_10_1016_j_inffus_2025_103329
crossref_primary_10_1177_24056456241297357
crossref_primary_10_1016_j_eswa_2025_129223
crossref_primary_10_1016_j_inffus_2024_102607
Cites_doi 10.70094/VIIT2597
10.1007/s00500-021-06521-7
10.3390/ijgi12030100
10.3390/info14020086
10.1109/ACCESS.2020.3027375
10.1109/ACCESS.2020.2989443
10.1016/j.knosys.2022.108752
10.22541/au.169216747.76954745/v1
10.24963/ijcai.2021/498
10.1016/j.ins.2022.02.031
10.1093/comjnl/bxz129
10.1109/ACCESS.2022.3195353
10.1109/ACCESS.2019.2915364
10.1080/13658816.2023.2234959
10.1146/annurev-statistics-060116-054114
10.1007/s10462-023-10466-8
10.1007/s10489-021-02587-w
10.3390/s23218936
10.1177/03611981221112673
10.1016/j.ijforecast.2021.11.001
10.1016/j.eswa.2022.117921
10.1016/j.inffus.2021.09.017
10.1016/j.physa.2023.128913
10.1109/TITS.2020.3026836
10.5604/01.3001.0010.6873
10.1007/978-3-319-23862-3_54
10.1109/TITS.2021.3090851
10.1109/ACCESS.2022.3228735
10.3390/su151511893
10.1609/aaai.v35i17.17761
10.1016/j.inffus.2021.11.018
10.1016/j.inffus.2020.07.004
10.1016/j.ins.2023.119269
10.1016/j.heliyon.2023.e17887
10.1016/j.trac.2020.115901
10.1201/9781420053098.ch3
10.1007/s12652-020-02807-0
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.inffus.2024.102466
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6305
ExternalDocumentID 10_1016_j_inffus_2024_102466
S1566253524002446
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c352t-c2b46ef893dc6f1c959547df74a6d5e5d754d452f72e83e082796d363a7f8f3e3
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001345212600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1566-2535
IngestDate Sat Nov 29 06:25:34 EST 2025
Tue Nov 18 21:39:33 EST 2025
Tue Jun 18 08:51:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Spatial–temporal graph
Graph neural networks
Traffic forecasting
GNNs
Graph convolution network
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-c2b46ef893dc6f1c959547df74a6d5e5d754d452f72e83e082796d363a7f8f3e3
ORCID 0000-0002-2798-0104
0000-0003-3360-3636
OpenAccessLink https://dx.doi.org/10.1016/j.inffus.2024.102466
ParticipantIDs crossref_primary_10_1016_j_inffus_2024_102466
crossref_citationtrail_10_1016_j_inffus_2024_102466
elsevier_sciencedirect_doi_10_1016_j_inffus_2024_102466
PublicationCentury 2000
PublicationDate October 2024
2024-10-00
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: October 2024
PublicationDecade 2020
PublicationTitle Information fusion
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cavallari, Zheng, Cai, Chang, Cambria (bib0023) 2017
Yuan, Li, Bao, Feng (bib0048) 2021
Safwat, Magnanti (bib0061) 1988
George, Santra (bib0015) 2020
Wang, Chen, Zhang, Wang, Zhou, Wang (bib0068) 2023
Yao, Tang, Wei, Zheng, Li (bib0014) 2019
He, Luo, Du, Zhao, He, Fu, Li (bib0074) 2023; 623
Jiang, Luo, He, Gu (bib0005) 2023; 12
Vázquez, Arjona, Linares, Casanovas-Garcia (bib0041) 2020
Huang, Yi, Wang, Li, Peng, Xiong (bib0057) 2022; 594
Wu, Sun, Zhang, Xie, Cui (bib0080) 2022; 55
Zhao, Gao, Liu, Zhao, Xu (bib0066) 2020; 8
Gutiérrez, Rampérez, Paggi, Lara, Soriano (bib0033) 2022; 78
W. Zhang, R. Xiao, J. Deng, Research of traffic flow forecasting based on the information fusion of BP network sequence, in: 2015: pp. 548–558
Kumar, Hariharan (bib0011) 2022; 81
Zhang, Wang, Gao, Chen, Zhang (bib0063) 2020
Lu, Yi, Wu, Rui, Ran (bib0009) 2022; 593
X. Chen, J. Wang, K. Xie, Trafficstream: a streaming traffic flow forecasting framework based on graph neural networks and continual learning, (2021).
Westny, Oskarsson, Olofsson, Frisk (bib0070) 2023
Li, Xiong, Tian, Lv, Chen, Hui, Su (bib0035) 2022; 23
Saeedi, Sankaranarayanasamy, Vishwakarma, Singh, Vennelakanti (bib0071) 2020
M. Owais, Toward mobility as a service in large cities, Moussa, S. Ghada . (2022).
Hilmani, Maizate, Hassouni (bib0007) 2020
Petropoulos, Apiletti, Assimakopoulos, Babai, Barrow, Ben Taieb, Bergmeir, Bessa, Bijak, Boylan, Browell, Carnevale, Castle, Cirillo, Clements, Cordeiro, Cyrino Oliveira, De Baets, Dokumentov, Ellison, Fiszeder, Franses, Frazier, Gilliland, Gönül, Goodwin, Grossi, Grushka-Cockayne, Guidolin, Guidolin, Gunter, Guo, Guseo, Harvey, Hendry, Hollyman, Januschowski, Jeon, Jose, Kang, Koehler, Kolassa, Kourentzes, Leva, Li, Litsiou, Makridakis, Martin, Martinez, Meeran, Modis, Nikolopoulos, Önkal, Paccagnini, Panagiotelis, Panapakidis, Pavía, Pedio, Pedregal, Pinson, Ramos, Rapach, Reade, Rostami-Tabar, Rubaszek, Sermpinis, Shang, Spiliotis, Syntetos, Talagala, Talagala, Tashman, Thomakos, Thorarinsdottir, Todini, Trapero Arenas, Wang, Winkler, Yusupova, Ziel (bib0018) 2022; 38
.
Lu, Ding, Ji, Sze, He (bib0060) 2021
Sayed, Abdel-Hamid, Hefny (bib0017) 2023; 10
Koźlak (bib0003) 2017; 72
Gao, Zhou, Rong, Wang, Liu (bib0044) 2022; 10
Brimos, Karamanou, Kalampokis, Tarabanis (bib0078) 2023
Ahasan, Hoda, Alam, Nirzhar, Kabir (bib0001) 2023; 9
X. Zhang, C. Huang, Y. Xu, L. Xia, P. Dai, L. Bo, J. Zhang, Y. Zheng, Traffic flow forecasting with spatial-temporal graph diffusion network. (2021).
Shi, Tang, Zhu, Huang, Wilson, Zhuang, Liu (bib0022) 2022; 247
Jin, Ruan, Wu, Xu, Dong, Chen, Wang, Du, Wu (bib0045) 2021
Sharma, Sharma, Nikashina, Gavrilenko, Tselykh, Bozhenyuk, Masud, Meshref (bib0020) 2023; 15
Liang, Qian, Yu, Griffith, Golmie (bib0027) 2022; 2022
Wang, Sun, Bai (bib0079) 2023
Li, Yang, Jabari (bib0004) 2020; 2020
Zhang, Sjarif, Ibrahim (bib0028) 2023
Zhang, Zhao, Gao, Raubal (bib0043) 2023; 37
Lu, Lv, Cao, Xie, Peng, Du (bib0046) 2020
J. Rico, J. Barateiro, A. Oliveira, Graph neural networks for traffic forecasting, (2021).
Bui, Cho, Yi (bib0025) 2022; 52
Keller, Korkmaz, Orr, Schroeder, Shipp (bib0032) 2017; 4
J. Chenz, L. Liuz, H. Wu, J. Zhen, G. Li, L. Lin, Physical-virtual collaboration graph network for station-level metro ridership prediction, ArXiv. (2020).
Zafeiropoulos, Bitilis, Tsekouras, Kotis (bib0029) 2023; 23
Wang, Lian, Liu, Wen, Chen, Wang (bib0021) 2022; 25
Deep Graph Structure Learning for Robust Representations: A Survey, (n.d.).
Zhang, Jiang, Yue, Wan, Guizani (bib0036) 2022; 81
Wen, Li, Wang, Xu (bib0058) 2023; 643
Chen, Chen, Lai, Jin, Liu, Li, Wei, Wang, Tang, Huang, Hua (bib0016) 2020; 8
Micheli, Sperduti, Starita (bib0024) 2007
Zhu, Xie, He, Sun, Zhu, Zhou, Ma (bib0052) 2020
Baghbani, Bouguila, Patterson (bib0053) 2023
B.S. Neyigapula, Graph neural networks for traffic prediction and smart city applications graph neural networks for traffic prediction and smart city applications, (2023) 1–29.
Jiang, Xiao, Liu, Liu, Li (bib0073) 2022
Zhang, Liu, Zhang (bib0065) 2022; 26
Ata, Khan, Abbas, Khan, Ahmad (bib0012) 2021; 64
Li, Lu, Yi, Gong (bib0072) 2022; 23
Salcedo-Sanz, Ghamisi, Piles, Werner, Cuadra, Moreno-Martínez, Izquierdo-Verdiguier, Muñoz-Marí, Mosavi, Camps-Valls (bib0034) 2020; 63
Iqbal, Khan, Abbas, Hasan, Fatima (bib0006) 2018; 9
Zhuang, Wang, Koutsopoulos, Zhao (bib0056) 2022
Mallick, Balaprakash, Rask, Macfarlane (bib0077) 2020
A. Steinberg, C. Bowman, Revisions to the JDL data fusion model, 2008, 45–67
Sun, Cheng, Ma, Goswami (bib0039) 2018
Bulusu, Onat, Sengupta, Yedavalli, MacFarlane (bib0059) 2021
Yao, Ma, Feng, Shen, Zhang, Yao (bib0054) 2022; 9
Thornton, Flowers, Dey (bib0067) 2022; 10
Qi, Zhao, Tanin, Cui, Nassir, Sarvi (bib0069) 2022
Zhang, Li, Song, Dong (bib0047) 2021
Florian, Nguyen (bib0062) 1978
Li, Zhang, Li, Su, Huang, Jin, Chen, Huang, Yoo (bib0075) 2021
Bloch (bib0031) 2002
Xie, Lv, Huang, Lu, Du, Huang (bib0064) 2020; 8
Xia, Zheng, Tang, Cai, Chen, Sun (bib0008) 2022; 605
Zhou, Chen, Lin (bib0013) 2022
Zhou, Zhang, Qiu, He (bib0037) 2020; 127
Wang, Ma, Wang, Jin, Wang, Tang, Jia, Yu (bib0049) 2020
Lopukhova, Abdulnagimov, Voronkov, Kutluyarov, Grakhova (bib0010) 2023; 14
W. Jiang, J. Luo, Graph neural network for traffic forecasting: a survey, 207 (2021), 117921
Ahmed, Bin Alam, Hassan, Rozbu, Ishtiak, Rafa, Mofijur, Ali, Gandomi (bib0019) 2023; 56
Zhuang (10.1016/j.inffus.2024.102466_bib0056) 2022
10.1016/j.inffus.2024.102466_bib0026
Zafeiropoulos (10.1016/j.inffus.2024.102466_bib0029) 2023; 23
Zhang (10.1016/j.inffus.2024.102466_bib0047) 2021
Florian (10.1016/j.inffus.2024.102466_bib0062) 1978
10.1016/j.inffus.2024.102466_bib0030
Kumar (10.1016/j.inffus.2024.102466_bib0011) 2022; 81
Chen (10.1016/j.inffus.2024.102466_bib0016) 2020; 8
10.1016/j.inffus.2024.102466_bib0076
Ahasan (10.1016/j.inffus.2024.102466_bib0001) 2023; 9
Lu (10.1016/j.inffus.2024.102466_bib0009) 2022; 593
Sharma (10.1016/j.inffus.2024.102466_bib0020) 2023; 15
Wang (10.1016/j.inffus.2024.102466_bib0049) 2020
Ata (10.1016/j.inffus.2024.102466_bib0012) 2021; 64
Zhu (10.1016/j.inffus.2024.102466_bib0052) 2020
Wen (10.1016/j.inffus.2024.102466_bib0058) 2023; 643
Li (10.1016/j.inffus.2024.102466_bib0072) 2022; 23
Yuan (10.1016/j.inffus.2024.102466_bib0048) 2021
Hilmani (10.1016/j.inffus.2024.102466_bib0007) 2020
Lopukhova (10.1016/j.inffus.2024.102466_bib0010) 2023; 14
10.1016/j.inffus.2024.102466_bib0038
Qi (10.1016/j.inffus.2024.102466_bib0069) 2022
Mallick (10.1016/j.inffus.2024.102466_bib0077) 2020
Wang (10.1016/j.inffus.2024.102466_bib0021) 2022; 25
Zhou (10.1016/j.inffus.2024.102466_bib0037) 2020; 127
10.1016/j.inffus.2024.102466_bib0040
Baghbani (10.1016/j.inffus.2024.102466_bib0053) 2023
Yao (10.1016/j.inffus.2024.102466_bib0054) 2022; 9
Westny (10.1016/j.inffus.2024.102466_bib0070) 2023
10.1016/j.inffus.2024.102466_bib0042
Huang (10.1016/j.inffus.2024.102466_bib0057) 2022; 594
Li (10.1016/j.inffus.2024.102466_bib0004) 2020; 2020
Zhang (10.1016/j.inffus.2024.102466_bib0063) 2020
Bulusu (10.1016/j.inffus.2024.102466_bib0059) 2021
Micheli (10.1016/j.inffus.2024.102466_bib0024) 2007
Zhang (10.1016/j.inffus.2024.102466_bib0065) 2022; 26
Jiang (10.1016/j.inffus.2024.102466_bib0005) 2023; 12
Safwat (10.1016/j.inffus.2024.102466_bib0061) 1988
Saeedi (10.1016/j.inffus.2024.102466_bib0071) 2020
Sayed (10.1016/j.inffus.2024.102466_bib0017) 2023; 10
Li (10.1016/j.inffus.2024.102466_bib0035) 2022; 23
Cavallari (10.1016/j.inffus.2024.102466_bib0023) 2017
Sun (10.1016/j.inffus.2024.102466_bib0039) 2018
He (10.1016/j.inffus.2024.102466_bib0074) 2023; 623
10.1016/j.inffus.2024.102466_bib0002
Zhao (10.1016/j.inffus.2024.102466_bib0066) 2020; 8
Xia (10.1016/j.inffus.2024.102466_bib0008) 2022; 605
10.1016/j.inffus.2024.102466_bib0051
Zhang (10.1016/j.inffus.2024.102466_bib0036) 2022; 81
Liang (10.1016/j.inffus.2024.102466_bib0027) 2022; 2022
10.1016/j.inffus.2024.102466_bib0050
Koźlak (10.1016/j.inffus.2024.102466_bib0003) 2017; 72
Gutiérrez (10.1016/j.inffus.2024.102466_bib0033) 2022; 78
Salcedo-Sanz (10.1016/j.inffus.2024.102466_bib0034) 2020; 63
Gao (10.1016/j.inffus.2024.102466_bib0044) 2022; 10
Wu (10.1016/j.inffus.2024.102466_bib0080) 2022; 55
Wang (10.1016/j.inffus.2024.102466_bib0079) 2023
Bui (10.1016/j.inffus.2024.102466_bib0025) 2022; 52
Shi (10.1016/j.inffus.2024.102466_bib0022) 2022; 247
10.1016/j.inffus.2024.102466_bib0055
Yao (10.1016/j.inffus.2024.102466_bib0014) 2019
Brimos (10.1016/j.inffus.2024.102466_bib0078) 2023
George (10.1016/j.inffus.2024.102466_bib0015) 2020
Vázquez (10.1016/j.inffus.2024.102466_bib0041) 2020
Lu (10.1016/j.inffus.2024.102466_bib0060) 2021
Iqbal (10.1016/j.inffus.2024.102466_bib0006) 2018; 9
Jin (10.1016/j.inffus.2024.102466_bib0045) 2021
Li (10.1016/j.inffus.2024.102466_bib0075) 2021
Ahmed (10.1016/j.inffus.2024.102466_bib0019) 2023; 56
Keller (10.1016/j.inffus.2024.102466_bib0032) 2017; 4
Lu (10.1016/j.inffus.2024.102466_bib0046) 2020
Bloch (10.1016/j.inffus.2024.102466_bib0031) 2002
Jiang (10.1016/j.inffus.2024.102466_bib0073) 2022
Wang (10.1016/j.inffus.2024.102466_bib0068) 2023
Petropoulos (10.1016/j.inffus.2024.102466_bib0018) 2022; 38
Xie (10.1016/j.inffus.2024.102466_bib0064) 2020; 8
Thornton (10.1016/j.inffus.2024.102466_bib0067) 2022; 10
Zhang (10.1016/j.inffus.2024.102466_bib0028) 2023
Zhang (10.1016/j.inffus.2024.102466_bib0043) 2023; 37
Zhou (10.1016/j.inffus.2024.102466_bib0013) 2022
References_xml – volume: 37
  start-page: 1909
  year: 2023
  end-page: 1935
  ident: bib0043
  article-title: Incorporating multimodal context information into traffic speed forecasting through graph deep learning
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 72
  start-page: 19
  year: 2017
  end-page: 33
  ident: bib0003
  article-title: The role of the transport system in stimulating economic and social development
  publication-title: Zesz. Nauk. Uniw. Gdańskiego. Ekon. Transp. i Logistyka.
– reference: W. Jiang, J. Luo, Graph neural network for traffic forecasting: a survey, 207 (2021), 117921,
– volume: 56
  start-page: 13521
  year: 2023
  end-page: 13617
  ident: bib0019
  article-title: Deep learning modelling techniques: current progress, applications, advantages, and challenges
  publication-title: Artif. Intell. Rev.
– volume: 9
  year: 2022
  ident: bib0054
  article-title: A deep learning framework about traffic flow forecasting for urban traffic emission monitoring system
  publication-title: Front. Public Heal.
– start-page: 2020
  year: 2020
  ident: bib0007
  article-title: Automated real-time intelligent traffic control system for smart cities using wireless sensor networks
  publication-title: Wirel. Commun. Mob. Comput.
– volume: 14
  start-page: 1
  year: 2023
  end-page: 14
  ident: bib0010
  article-title: Universal learning approach of an intelligent algorithm for non-GNSS assisted beamsteering in V2I systems
  publication-title: Information
– start-page: 2020
  year: 2020
  ident: bib0052
  article-title: A novel traffic flow forecasting method based on RNN-GCN and BRB
  publication-title: J. Adv. Transp.
– volume: 2020
  year: 2020
  ident: bib0004
  article-title: Short-term traffic forecasting using high-resolution traffic data
  publication-title: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems ITSC
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 18
  ident: bib0027
  article-title: Survey of graph neural networks and applications
  publication-title: Wirel. Commun. Mob. Comput
– reference: Deep Graph Structure Learning for Robust Representations: A Survey, (n.d.).
– start-page: 377
  year: 2017
  end-page: 386
  ident: bib0023
  article-title: Learning community embedding with community detection and node embedding on graphs
  publication-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management
– volume: 593
  year: 2022
  ident: bib0009
  article-title: Traffic speed forecasting for urban roads: a deep ensemble neural network model
  publication-title: Phys. A Stat. Mech. Its Appl.
– start-page: 10367
  year: 2020
  end-page: 10374
  ident: bib0077
  article-title: Transfer learning with graph neural networks for short-term highway traffic forecasting
  publication-title: Proceedings - International Conference on Pattern Recognition
– start-page: 5668
  year: 2019
  end-page: 5675
  ident: bib0014
  article-title: Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction
  publication-title: 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
– reference: J. Chenz, L. Liuz, H. Wu, J. Zhen, G. Li, L. Lin, Physical-virtual collaboration graph network for station-level metro ridership prediction, ArXiv. (2020).
– volume: 623
  start-page: 1
  year: 2023
  end-page: 14
  ident: bib0074
  article-title: STGC-GNNs: a GNN-based traffic prediction framework with a spatial–temporal Granger causality graph
  publication-title: Phys. A Stat. Mech. Appl.
– volume: 55
  start-page: 1
  year: 2022
  end-page: 37
  ident: bib0080
  article-title: Graph neural networks in recommender systems: a survey
  publication-title: ACM Comput. Surv.
– start-page: 2020
  year: 2023
  end-page: 2022
  ident: bib0028
  article-title: Deep learning models for price forecasting of financial time series: a review of recent advancements
  publication-title: WIREs Data Min. Knowl. Discov.
– volume: 23
  start-page: 1456
  year: 2022
  end-page: 1466
  ident: bib0035
  article-title: A multi-stream feature fusion approach for traffic prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 22
  year: 2022
  ident: bib0013
  article-title: FASTNN: a deep learning approach for traffic flow prediction considering spatiotemporal features
  publication-title: Sensors
– volume: 643
  year: 2023
  ident: bib0058
  article-title: Traffic demand prediction based on spatial-temporal guided multi graph sandwich-transformer
  publication-title: Inf. Sci. (Ny)
– volume: 26
  start-page: 695
  year: 2022
  end-page: 707
  ident: bib0065
  article-title: Spatial–temporal attention fusion for traffic speed prediction
  publication-title: Soft Comput.
– start-page: 461
  year: 2021
  ident: bib0047
  article-title: Multiple dynamic graph based traffic speed prediction method
  publication-title: Neurocomputing
– volume: 64
  start-page: 1672
  year: 2021
  end-page: 1679
  ident: bib0012
  article-title: Adaptive IoT empowered smart road traffic congestion control system using supervised machine learning algorithm
  publication-title: Comput. J.
– volume: 594
  year: 2022
  ident: bib0057
  article-title: A dynamical spatial-temporal graph neural network for traffic demand prediction
  publication-title: Inf. Sci. (Ny)
– volume: 38
  start-page: 705
  year: 2022
  end-page: 871
  ident: bib0018
  article-title: Forecasting: theory and practice
  publication-title: Int. J. Forecast.
– reference: W. Zhang, R. Xiao, J. Deng, Research of traffic flow forecasting based on the information fusion of BP network sequence, in: 2015: pp. 548–558,
– volume: 78
  start-page: 102
  year: 2022
  end-page: 137
  ident: bib0033
  article-title: On the use of information fusion techniques to improve information quality: taxonomy, opportunities and challenges
  publication-title: Inf. Fusion.
– volume: 605
  year: 2022
  ident: bib0008
  article-title: Dynamic traffic prediction for urban road network with the interpretable model
  publication-title: Phys. A Stat. Mech. Its Appl.
– year: 2021
  ident: bib0048
  article-title: An effective joint prediction model for travel demands and traffic flows
  publication-title: Proceedings - International Conference on Data Engineering
– volume: 81
  start-page: 171
  year: 2022
  end-page: 186
  ident: bib0036
  article-title: Information fusion for edge intelligence: a survey
  publication-title: Inf. Fusion
– volume: 9
  start-page: 94
  year: 2018
  end-page: 105
  ident: bib0006
  article-title: Intelligent transportation system (ITS) for smart-cities using Mamdani fuzzy inference system
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– reference: X. Chen, J. Wang, K. Xie, Trafficstream: a streaming traffic flow forecasting framework based on graph neural networks and continual learning, (2021).
– volume: 63
  start-page: 256
  year: 2020
  end-page: 272
  ident: bib0034
  article-title: Machine learning information fusion in Earth observation: a comprehensive review of methods, applications and data sources
  publication-title: Inf. Fusion.
– start-page: 22
  year: 1988
  ident: bib0061
  article-title: Combined trip generation, trip distribution, modal split, and trip assignment model
  publication-title: Transp. Sci.
– volume: 8
  start-page: 76632
  year: 2020
  end-page: 76641
  ident: bib0066
  article-title: Spatiotemporal data fusion in graph convolutional networks for traffic prediction
  publication-title: IEEE Access
– year: 2023
  ident: bib0053
  article-title: Short-term passenger flow prediction using a bus network graph convolutional long short-term memory neural network model
  publication-title: Transp. Res. Rec.
– volume: 15
  year: 2023
  ident: bib0020
  article-title: A graph neural network (GNN)-based approach for real-time estimation of traffic speed in sustainable smart cities
  publication-title: Sustainability
– volume: 25
  start-page: 609
  year: 2022
  end-page: 629
  ident: bib0021
  publication-title: Powerful graph of graphs neural network for structured entity analysis, World Wide Web
– reference: A. Steinberg, C. Bowman, Revisions to the JDL data fusion model, 2008, 45–67,
– year: 2022
  ident: bib0056
  article-title: Uncertainty quantification of sparse travel demand prediction with spatial-temporal graph neural networks
  publication-title: Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 22
  year: 2021
  ident: bib0059
  article-title: A traffic demand analysis method for urban air mobility
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 267
  year: 2002
  end-page: 293
  ident: bib0031
  article-title: Fusion of information under imprecision and uncertainty, numerical methods, and image information fusion
  publication-title: Multisensor Fusion
– volume: 52
  start-page: 2763
  year: 2022
  end-page: 2774
  ident: bib0025
  article-title: Spatial-temporal graph neural network for traffic forecasting: an overview and open research issues
  publication-title: Appl. Intell.
– start-page: 2022
  year: 2022
  ident: bib0073
  article-title: Bi-GRCN: a spatio-temporal traffic flow prediction model based on graph neural network
  publication-title: J. Adv. Transp.
– start-page: 12
  year: 1978
  ident: bib0062
  article-title: A combined trip distribution modal split and trip assignment model
  publication-title: Transp. Res.
– start-page: 13
  year: 2007
  ident: bib0024
  article-title: An introduction to recursive neural networks and kernel methods for cheminformatics
  publication-title: Curr. Pharm. Des.
– year: 2021
  ident: bib0045
  article-title: HetGAT: a heterogeneous graph attention network for freeway traffic speed prediction
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 10
  start-page: 82384
  year: 2022
  end-page: 82395
  ident: bib0044
  article-title: Short-term traffic speed forecasting using a deep learning method based on multitemporal traffic flow volume
  publication-title: IEEE Access
– start-page: 33
  year: 2021
  ident: bib0060
  article-title: Dual attentive graph neural network for metro passenger flow prediction
  publication-title: Neural Comput. Appl.
– volume: 23
  start-page: 9102
  year: 2022
  end-page: 9114
  ident: bib0072
  article-title: A Hierarchical framework for interactive behaviour prediction of heterogeneous traffic participants based on graph neural network
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: J. Rico, J. Barateiro, A. Oliveira, Graph neural networks for traffic forecasting, (2021).
– reference: B.S. Neyigapula, Graph neural networks for traffic prediction and smart city applications graph neural networks for traffic prediction and smart city applications, (2023) 1–29.
– volume: 247
  year: 2022
  ident: bib0022
  article-title: Genetic-GNN: evolutionary architecture search for graph neural networks
  publication-title: Knowl.-Based Syst.
– volume: 23
  start-page: 8936
  year: 2023
  ident: bib0029
  article-title: Graph neural networks for Parkinson's disease monitoring and alerting
  publication-title: Sensors
– reference: X. Zhang, C. Huang, Y. Xu, L. Xia, P. Dai, L. Bo, J. Zhang, Y. Zheng, Traffic flow forecasting with spatial-temporal graph diffusion network. (2021).
– volume: 12
  year: 2023
  ident: bib0005
  article-title: Graph neural network for traffic forecasting: the research progress
  publication-title: ISPRS Int. J. Geo-Inf.
– year: 2023
  ident: bib0068
  article-title: A Multi-graph Fusion Based Spatiotemporal Dynamic Learning Framework
– start-page: 2020
  year: 2020
  ident: bib0063
  article-title: Short-term passenger flow forecast of rail transit station based on MIC feature selection and ST-LightGBM considering transfer passenger flow
  publication-title: Sci. Program.
– start-page: 405
  year: 2023
  end-page: 418
  ident: bib0079
  article-title: PiPAD: pipelined and parallel dynamic GNN training on GPUs
  publication-title: Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming
– start-page: 195
  year: 2020
  end-page: 202
  ident: bib0041
  article-title: A comparison of deep learning methods for urban traffic forecasting using floating car data
  publication-title: Transp. Res. Procedia
– start-page: 14
  year: 2023
  ident: bib0078
  article-title: Graph neural networks and open-government data to forecast traffic flow
  publication-title: Information
– volume: 8
  start-page: 185136
  year: 2020
  end-page: 185145
  ident: bib0016
  article-title: Dynamic spatio-temporal graph-based CNNs for traffic flow prediction
  publication-title: IEEE Access
– year: 2020
  ident: bib0049
  article-title: Traffic flow prediction via spatial temporal graph neural network
  publication-title: The Web Conference 2020: Proceedings of the World Wide Web Conference WWW 2020
– volume: 127
  year: 2020
  ident: bib0037
  article-title: Information fusion of emerging non-destructive analytical techniques for food quality authentication: a survey
  publication-title: TrAC Trends Anal. Chem.
– start-page: 2283
  year: 2018
  end-page: 2289
  ident: bib0039
  article-title: Anomaly-aware traffic prediction based on automated conditional information fusion
  publication-title: 2018 21st International Conference on Information Fusion, IEEE
– reference: .
– volume: 4
  start-page: 85
  year: 2017
  end-page: 108
  ident: bib0032
  article-title: The evolution of data quality: understanding the transdisciplinary origins of data quality concepts and approaches
  publication-title: Annu. Rev. Stat. Its Appl.
– start-page: 133
  year: 2021
  end-page: 136
  ident: bib0075
  article-title: DetectorNet: transformer-enhanced spatial temporal graph neural network for traffic prediction
  publication-title: GIS Proc. ACM Int. Symp. Adv. Geogr. Inf. Syst.
– start-page: 1
  year: 2022
  end-page: 12
  ident: bib0069
  article-title: A graph and attentive multi-path convolutional network for traffic prediction
  publication-title: IEEE Trans. Knowl. Data Eng. XX
– volume: 10
  year: 2023
  ident: bib0017
  article-title: Artificial intelligence-based traffic flow prediction: a comprehensive review
  publication-title: J. Electr. Syst. Inf. Technol.
– volume: 10
  start-page: 131841
  year: 2022
  end-page: 131854
  ident: bib0067
  article-title: Multi-source feature fusion for object detection association in connected vehicle environments
  publication-title: IEEE Access
– start-page: 1
  year: 2023
  end-page: 14
  ident: bib0070
  article-title: MTP-GO: graph-based probabilistic multi-agent trajectory prediction with neural ODEs
  publication-title: IEEE Trans. Intell. Veh.
– start-page: 400
  year: 2020
  ident: bib0046
  article-title: LSTM variants meet graph neural networks for road speed prediction
  publication-title: Neurocomputing
– reference: M. Owais, Toward mobility as a service in large cities, Moussa, S. Ghada . (2022).
– year: 2020
  ident: bib0015
  article-title: Traffic Prediction Using Multifaceted Techniques: A Survey
– volume: 8
  start-page: 63349
  year: 2020
  end-page: 63358
  ident: bib0064
  article-title: Sequential graph neural network for urban road traffic speed prediction
  publication-title: IEEE Access
– volume: 9
  start-page: e17887
  year: 2023
  ident: bib0001
  article-title: Changing institutional landscape and transportation development in Dhaka, Bangladesh
  publication-title: Heliyon
– volume: 81
  start-page: 408
  year: 2022
  end-page: 415
  ident: bib0011
  article-title: Time series traffic flow prediction with hyper-parameter optimized ARIMA models for intelligent transportation system
  publication-title: J. Sci. Ind. Res. (India).
– start-page: 2426
  year: 2020
  end-page: 2432
  ident: bib0071
  article-title: Towards modular modeling and analytic for multi-modal transportation networks
  publication-title: Proceedings of 2020 IEEE International Conference on Big Data, Big Data 2020
– ident: 10.1016/j.inffus.2024.102466_bib0040
  doi: 10.70094/VIIT2597
– volume: 25
  start-page: 609
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0021
  publication-title: Powerful graph of graphs neural network for structured entity analysis, World Wide Web
– year: 2020
  ident: 10.1016/j.inffus.2024.102466_bib0015
– volume: 9
  start-page: 94
  year: 2018
  ident: 10.1016/j.inffus.2024.102466_bib0006
  article-title: Intelligent transportation system (ITS) for smart-cities using Mamdani fuzzy inference system
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 55
  start-page: 1
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0080
  article-title: Graph neural networks in recommender systems: a survey
  publication-title: ACM Comput. Surv.
– volume: 81
  start-page: 408
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0011
  article-title: Time series traffic flow prediction with hyper-parameter optimized ARIMA models for intelligent transportation system
  publication-title: J. Sci. Ind. Res. (India).
– start-page: 22
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0013
  article-title: FASTNN: a deep learning approach for traffic flow prediction considering spatiotemporal features
  publication-title: Sensors
– volume: 26
  start-page: 695
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0065
  article-title: Spatial–temporal attention fusion for traffic speed prediction
  publication-title: Soft Comput.
  doi: 10.1007/s00500-021-06521-7
– volume: 12
  year: 2023
  ident: 10.1016/j.inffus.2024.102466_bib0005
  article-title: Graph neural network for traffic forecasting: the research progress
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi12030100
– volume: 14
  start-page: 1
  year: 2023
  ident: 10.1016/j.inffus.2024.102466_bib0010
  article-title: Universal learning approach of an intelligent algorithm for non-GNSS assisted beamsteering in V2I systems
  publication-title: Information
  doi: 10.3390/info14020086
– volume: 8
  start-page: 185136
  year: 2020
  ident: 10.1016/j.inffus.2024.102466_bib0016
  article-title: Dynamic spatio-temporal graph-based CNNs for traffic flow prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3027375
– start-page: 2283
  year: 2018
  ident: 10.1016/j.inffus.2024.102466_bib0039
  article-title: Anomaly-aware traffic prediction based on automated conditional information fusion
– volume: 8
  start-page: 76632
  year: 2020
  ident: 10.1016/j.inffus.2024.102466_bib0066
  article-title: Spatiotemporal data fusion in graph convolutional networks for traffic prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2989443
– volume: 247
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0022
  article-title: Genetic-GNN: evolutionary architecture search for graph neural networks
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108752
– start-page: 22
  year: 2021
  ident: 10.1016/j.inffus.2024.102466_bib0059
  article-title: A traffic demand analysis method for urban air mobility
  publication-title: IEEE Trans. Intell. Transp. Syst.
– ident: 10.1016/j.inffus.2024.102466_bib0076
  doi: 10.22541/au.169216747.76954745/v1
– ident: 10.1016/j.inffus.2024.102466_bib0050
  doi: 10.24963/ijcai.2021/498
– volume: 594
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0057
  article-title: A dynamical spatial-temporal graph neural network for traffic demand prediction
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2022.02.031
– volume: 2022
  start-page: 1
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0027
  article-title: Survey of graph neural networks and applications
  publication-title: Wirel. Commun. Mob. Comput
– ident: 10.1016/j.inffus.2024.102466_bib0026
– start-page: 195
  year: 2020
  ident: 10.1016/j.inffus.2024.102466_bib0041
  article-title: A comparison of deep learning methods for urban traffic forecasting using floating car data
– volume: 2020
  year: 2020
  ident: 10.1016/j.inffus.2024.102466_bib0004
  article-title: Short-term traffic forecasting using high-resolution traffic data
– start-page: 2020
  year: 2020
  ident: 10.1016/j.inffus.2024.102466_bib0063
  article-title: Short-term passenger flow forecast of rail transit station based on MIC feature selection and ST-LightGBM considering transfer passenger flow
  publication-title: Sci. Program.
– start-page: 33
  year: 2021
  ident: 10.1016/j.inffus.2024.102466_bib0060
  article-title: Dual attentive graph neural network for metro passenger flow prediction
  publication-title: Neural Comput. Appl.
– start-page: 22
  year: 1988
  ident: 10.1016/j.inffus.2024.102466_bib0061
  article-title: Combined trip generation, trip distribution, modal split, and trip assignment model
  publication-title: Transp. Sci.
– volume: 64
  start-page: 1672
  year: 2021
  ident: 10.1016/j.inffus.2024.102466_bib0012
  article-title: Adaptive IoT empowered smart road traffic congestion control system using supervised machine learning algorithm
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxz129
– start-page: 267
  year: 2002
  ident: 10.1016/j.inffus.2024.102466_bib0031
  article-title: Fusion of information under imprecision and uncertainty, numerical methods, and image information fusion
– volume: 10
  start-page: 82384
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0044
  article-title: Short-term traffic speed forecasting using a deep learning method based on multitemporal traffic flow volume
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3195353
– volume: 8
  start-page: 63349
  year: 2020
  ident: 10.1016/j.inffus.2024.102466_bib0064
  article-title: Sequential graph neural network for urban road traffic speed prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2915364
– volume: 37
  start-page: 1909
  year: 2023
  ident: 10.1016/j.inffus.2024.102466_bib0043
  article-title: Incorporating multimodal context information into traffic speed forecasting through graph deep learning
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2023.2234959
– start-page: 10367
  year: 2020
  ident: 10.1016/j.inffus.2024.102466_bib0077
  article-title: Transfer learning with graph neural networks for short-term highway traffic forecasting
– volume: 4
  start-page: 85
  year: 2017
  ident: 10.1016/j.inffus.2024.102466_bib0032
  article-title: The evolution of data quality: understanding the transdisciplinary origins of data quality concepts and approaches
  publication-title: Annu. Rev. Stat. Its Appl.
  doi: 10.1146/annurev-statistics-060116-054114
– volume: 56
  start-page: 13521
  year: 2023
  ident: 10.1016/j.inffus.2024.102466_bib0019
  article-title: Deep learning modelling techniques: current progress, applications, advantages, and challenges
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10466-8
– volume: 52
  start-page: 2763
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0025
  article-title: Spatial-temporal graph neural network for traffic forecasting: an overview and open research issues
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02587-w
– start-page: 2020
  year: 2023
  ident: 10.1016/j.inffus.2024.102466_bib0028
  article-title: Deep learning models for price forecasting of financial time series: a review of recent advancements
  publication-title: WIREs Data Min. Knowl. Discov.
– start-page: 12
  year: 1978
  ident: 10.1016/j.inffus.2024.102466_bib0062
  article-title: A combined trip distribution modal split and trip assignment model
  publication-title: Transp. Res.
– start-page: 461
  year: 2021
  ident: 10.1016/j.inffus.2024.102466_bib0047
  article-title: Multiple dynamic graph based traffic speed prediction method
  publication-title: Neurocomputing
– start-page: 1
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0069
  article-title: A graph and attentive multi-path convolutional network for traffic prediction
  publication-title: IEEE Trans. Knowl. Data Eng. XX
– ident: 10.1016/j.inffus.2024.102466_bib0002
– start-page: 5668
  year: 2019
  ident: 10.1016/j.inffus.2024.102466_bib0014
  article-title: Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction
– start-page: 14
  year: 2023
  ident: 10.1016/j.inffus.2024.102466_bib0078
  article-title: Graph neural networks and open-government data to forecast traffic flow
  publication-title: Information
– start-page: 377
  year: 2017
  ident: 10.1016/j.inffus.2024.102466_bib0023
  article-title: Learning community embedding with community detection and node embedding on graphs
– start-page: 2022
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0073
  article-title: Bi-GRCN: a spatio-temporal traffic flow prediction model based on graph neural network
  publication-title: J. Adv. Transp.
– year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0056
  article-title: Uncertainty quantification of sparse travel demand prediction with spatial-temporal graph neural networks
– start-page: 405
  year: 2023
  ident: 10.1016/j.inffus.2024.102466_bib0079
  article-title: PiPAD: pipelined and parallel dynamic GNN training on GPUs
– volume: 23
  start-page: 8936
  year: 2023
  ident: 10.1016/j.inffus.2024.102466_bib0029
  article-title: Graph neural networks for Parkinson's disease monitoring and alerting
  publication-title: Sensors
  doi: 10.3390/s23218936
– year: 2023
  ident: 10.1016/j.inffus.2024.102466_bib0053
  article-title: Short-term passenger flow prediction using a bus network graph convolutional long short-term memory neural network model
  publication-title: Transp. Res. Rec.
  doi: 10.1177/03611981221112673
– volume: 38
  start-page: 705
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0018
  article-title: Forecasting: theory and practice
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2021.11.001
– ident: 10.1016/j.inffus.2024.102466_bib0042
  doi: 10.1016/j.eswa.2022.117921
– volume: 78
  start-page: 102
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0033
  article-title: On the use of information fusion techniques to improve information quality: taxonomy, opportunities and challenges
  publication-title: Inf. Fusion.
  doi: 10.1016/j.inffus.2021.09.017
– volume: 623
  start-page: 1
  year: 2023
  ident: 10.1016/j.inffus.2024.102466_bib0074
  article-title: STGC-GNNs: a GNN-based traffic prediction framework with a spatial–temporal Granger causality graph
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2023.128913
– volume: 605
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0008
  article-title: Dynamic traffic prediction for urban road network with the interpretable model
  publication-title: Phys. A Stat. Mech. Its Appl.
– volume: 23
  start-page: 1456
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0035
  article-title: A multi-stream feature fusion approach for traffic prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3026836
– volume: 9
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0054
  article-title: A deep learning framework about traffic flow forecasting for urban traffic emission monitoring system
  publication-title: Front. Public Heal.
– volume: 72
  start-page: 19
  year: 2017
  ident: 10.1016/j.inffus.2024.102466_bib0003
  article-title: The role of the transport system in stimulating economic and social development
  publication-title: Zesz. Nauk. Uniw. Gdańskiego. Ekon. Transp. i Logistyka.
  doi: 10.5604/01.3001.0010.6873
– ident: 10.1016/j.inffus.2024.102466_bib0038
  doi: 10.1007/978-3-319-23862-3_54
– volume: 23
  start-page: 9102
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0072
  article-title: A Hierarchical framework for interactive behaviour prediction of heterogeneous traffic participants based on graph neural network
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3090851
– start-page: 2020
  year: 2020
  ident: 10.1016/j.inffus.2024.102466_bib0052
  article-title: A novel traffic flow forecasting method based on RNN-GCN and BRB
  publication-title: J. Adv. Transp.
– volume: 10
  start-page: 131841
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0067
  article-title: Multi-source feature fusion for object detection association in connected vehicle environments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3228735
– volume: 15
  year: 2023
  ident: 10.1016/j.inffus.2024.102466_bib0020
  article-title: A graph neural network (GNN)-based approach for real-time estimation of traffic speed in sustainable smart cities
  publication-title: Sustainability
  doi: 10.3390/su151511893
– start-page: 13
  year: 2007
  ident: 10.1016/j.inffus.2024.102466_bib0024
  article-title: An introduction to recursive neural networks and kernel methods for cheminformatics
  publication-title: Curr. Pharm. Des.
– ident: 10.1016/j.inffus.2024.102466_bib0051
  doi: 10.1609/aaai.v35i17.17761
– start-page: 133
  year: 2021
  ident: 10.1016/j.inffus.2024.102466_bib0075
  article-title: DetectorNet: transformer-enhanced spatial temporal graph neural network for traffic prediction
  publication-title: GIS Proc. ACM Int. Symp. Adv. Geogr. Inf. Syst.
– start-page: 400
  year: 2020
  ident: 10.1016/j.inffus.2024.102466_bib0046
  article-title: LSTM variants meet graph neural networks for road speed prediction
  publication-title: Neurocomputing
– volume: 81
  start-page: 171
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0036
  article-title: Information fusion for edge intelligence: a survey
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.11.018
– start-page: 1
  year: 2023
  ident: 10.1016/j.inffus.2024.102466_bib0070
  article-title: MTP-GO: graph-based probabilistic multi-agent trajectory prediction with neural ODEs
  publication-title: IEEE Trans. Intell. Veh.
– year: 2021
  ident: 10.1016/j.inffus.2024.102466_bib0048
  article-title: An effective joint prediction model for travel demands and traffic flows
– volume: 63
  start-page: 256
  year: 2020
  ident: 10.1016/j.inffus.2024.102466_bib0034
  article-title: Machine learning information fusion in Earth observation: a comprehensive review of methods, applications and data sources
  publication-title: Inf. Fusion.
  doi: 10.1016/j.inffus.2020.07.004
– volume: 643
  year: 2023
  ident: 10.1016/j.inffus.2024.102466_bib0058
  article-title: Traffic demand prediction based on spatial-temporal guided multi graph sandwich-transformer
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2023.119269
– volume: 9
  start-page: e17887
  year: 2023
  ident: 10.1016/j.inffus.2024.102466_bib0001
  article-title: Changing institutional landscape and transportation development in Dhaka, Bangladesh
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e17887
– volume: 127
  year: 2020
  ident: 10.1016/j.inffus.2024.102466_bib0037
  article-title: Information fusion of emerging non-destructive analytical techniques for food quality authentication: a survey
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2020.115901
– volume: 10
  year: 2023
  ident: 10.1016/j.inffus.2024.102466_bib0017
  article-title: Artificial intelligence-based traffic flow prediction: a comprehensive review
  publication-title: J. Electr. Syst. Inf. Technol.
– year: 2023
  ident: 10.1016/j.inffus.2024.102466_bib0068
– start-page: 2020
  year: 2020
  ident: 10.1016/j.inffus.2024.102466_bib0007
  article-title: Automated real-time intelligent traffic control system for smart cities using wireless sensor networks
  publication-title: Wirel. Commun. Mob. Comput.
– year: 2020
  ident: 10.1016/j.inffus.2024.102466_bib0049
  article-title: Traffic flow prediction via spatial temporal graph neural network
– start-page: 2426
  year: 2020
  ident: 10.1016/j.inffus.2024.102466_bib0071
  article-title: Towards modular modeling and analytic for multi-modal transportation networks
– ident: 10.1016/j.inffus.2024.102466_bib0030
  doi: 10.1201/9781420053098.ch3
– year: 2021
  ident: 10.1016/j.inffus.2024.102466_bib0045
  article-title: HetGAT: a heterogeneous graph attention network for freeway traffic speed prediction
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02807-0
– volume: 593
  year: 2022
  ident: 10.1016/j.inffus.2024.102466_bib0009
  article-title: Traffic speed forecasting for urban roads: a deep ensemble neural network model
  publication-title: Phys. A Stat. Mech. Its Appl.
– ident: 10.1016/j.inffus.2024.102466_bib0055
SSID ssj0017031
Score 2.4942036
SecondaryResourceType review_article
Snippet •This study investigates information fusion methods for GNN-based traffic predictions, including their benefits and challenges.•A GNN-based information fusion...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102466
SubjectTerms Deep learning
GNNs
Graph convolution network
Graph neural networks
Spatial–temporal graph
Traffic forecasting
Title Enhancement of traffic forecasting through graph neural network-based information fusion techniques
URI https://dx.doi.org/10.1016/j.inffus.2024.102466
Volume 110
WOSCitedRecordID wos001345212600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017031
  issn: 1566-2535
  databaseCode: AIEXJ
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXvKB2yqVNvEjPq7QVrSCCtEi7S3y-qFttU2rfVHxP_i_zMSON2VRoQcuURQ5Tnbny3g8_vwNIe8ZgzlyyXB9kPGMMZ5nSuUiM-AXJoWwE1s0G4U_yePjcjxWX3q9n-1emPVM1nV5fa2u_qup4RoYG7fO3sHcqVO4AOdgdDiC2eH4T4Yf1VO0ZLvIv5xrVIlAOqEzehHqQsTiPI1adR8lLcFQdSCEZziuoSBT2tbY9ytMqfWT3OuiG9EebjVMGJpehEzqyRRlH7AOyCpQvOPi0cw615THO_nukDk6RIJtGia-aq9DznpyNtX9I13XOnF0DvQPHZLXeh2Z0il5kbNEg0v-Vogs50GxJDnkSHQNLhUiIBYKs2x5-5B4OMcpCvzAfXzA_qb5TXHt3wa9REVsWW7nVeilwl6q0Ms9sptLrsDf7w4PR-OjtDyFov-NEG98-3ZPZkMc3H6bP8c8nTjm9DF5FCcgdBiA84T0XP2UPPyc1HsXz4jpQIheehohRDsQohFCtIEQDRCiNyBEOxCiARl0A6Hn5NvB6PTDxywW48gMxOjLzOQTJpyH8NYa4QdGccWZtF4yLSx33ErOLHzqXuauLBxEllIJW4hCS1_6whUvyE59WbuXhDKY81o-0LgoDN5Ba21LU2qVS8fUwOo9UrR_V2WiUj0WTJlVtxlrj2Tprqug1PKX9rK1RBWjzRBFVgCvW-98dccnvSYPNth_Q3aW85V7S-6b9fJsMX8XsfULcIunMw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+traffic+forecasting+through+graph+neural+network-based+information+fusion+techniques&rft.jtitle=Information+fusion&rft.au=Ahmed%2C+Shams+Forruque&rft.au=Kuldeep%2C+Sweety+Angela&rft.au=Rafa%2C+Sabiha+Jannat&rft.au=Fazal%2C+Javeria&rft.date=2024-10-01&rft.issn=1566-2535&rft.volume=110&rft.spage=102466&rft_id=info:doi/10.1016%2Fj.inffus.2024.102466&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_inffus_2024_102466
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon