Research on the fusion of FY4A satellite data and station observation data for heavy fog recognition

Satellite observation of fog possesses technical advantages of wide coverage and high spatial-temporal resolution. However, the accuracy of satellite-based fog identification is subject to errors induced by factors such as atmospheric and radiation conditions. This study aims to improve the accuracy...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theoretical and applied climatology Ročník 156; číslo 1; s. 59
Hlavní autori: Yao, Zhenhai, Wang, Chuanhui, Jiang, Chun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Vienna Springer Vienna 01.01.2025
Springer Nature B.V
Predmet:
ISSN:0177-798X, 1434-4483
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Satellite observation of fog possesses technical advantages of wide coverage and high spatial-temporal resolution. However, the accuracy of satellite-based fog identification is subject to errors induced by factors such as atmospheric and radiation conditions. This study aims to improve the accuracy of fog identification by integrating ground-based station observations with the Fengyun-4 A (FY-4 A) satellite data. Taking Anhui Province as the study area, we establish a fog identification model using multiple algorithms, namely threshold method (THD), support vector machine (SVM), random forest (RF) and gradient boosting (XGB). In addition, a nearby pixel method is employed to validate identification results, in order to select the optimal algorithm. The results indicate that machine learning algorithms outperform the THD method in fog identification. Among the SVM, RF and XGB algorithms, the RF method exhibits the highest median KSS (0.66) and excellent robustness, and thus it is the optimal algorithm. Case studies demonstrate that the RF-based identification results effectively reflect the spatial distribution of fog regions. Although the differences between the images of identification results before and after correction are not obvious, the identification accuracy is highly susceptible to instability due to factors such as radiation, cloud cover and fog intensity. After correction based on station observations, the model KSS scores are noticeably improved (up to 67.2%) and become more stable. Compared with single-satellite-data-based fog monitoring methods, the integration of the FY-4 A satellite data and station observations offers multi-dimensional observation complementarity and achieves technological advances in the digitization and spatialization of fog observations.
AbstractList Satellite observation of fog possesses technical advantages of wide coverage and high spatial-temporal resolution. However, the accuracy of satellite-based fog identification is subject to errors induced by factors such as atmospheric and radiation conditions. This study aims to improve the accuracy of fog identification by integrating ground-based station observations with the Fengyun-4 A (FY-4 A) satellite data. Taking Anhui Province as the study area, we establish a fog identification model using multiple algorithms, namely threshold method (THD), support vector machine (SVM), random forest (RF) and gradient boosting (XGB). In addition, a nearby pixel method is employed to validate identification results, in order to select the optimal algorithm. The results indicate that machine learning algorithms outperform the THD method in fog identification. Among the SVM, RF and XGB algorithms, the RF method exhibits the highest median KSS (0.66) and excellent robustness, and thus it is the optimal algorithm. Case studies demonstrate that the RF-based identification results effectively reflect the spatial distribution of fog regions. Although the differences between the images of identification results before and after correction are not obvious, the identification accuracy is highly susceptible to instability due to factors such as radiation, cloud cover and fog intensity. After correction based on station observations, the model KSS scores are noticeably improved (up to 67.2%) and become more stable. Compared with single-satellite-data-based fog monitoring methods, the integration of the FY-4 A satellite data and station observations offers multi-dimensional observation complementarity and achieves technological advances in the digitization and spatialization of fog observations.
Satellite observation of fog possesses technical advantages of wide coverage and high spatial-temporal resolution. However, the accuracy of satellite-based fog identification is subject to errors induced by factors such as atmospheric and radiation conditions. This study aims to improve the accuracy of fog identification by integrating ground-based station observations with the Fengyun-4 A (FY-4 A) satellite data. Taking Anhui Province as the study area, we establish a fog identification model using multiple algorithms, namely threshold method (THD), support vector machine (SVM), random forest (RF) and gradient boosting (XGB). In addition, a nearby pixel method is employed to validate identification results, in order to select the optimal algorithm. The results indicate that machine learning algorithms outperform the THD method in fog identification. Among the SVM, RF and XGB algorithms, the RF method exhibits the highest median KSS (0.66) and excellent robustness, and thus it is the optimal algorithm. Case studies demonstrate that the RF-based identification results effectively reflect the spatial distribution of fog regions. Although the differences between the images of identification results before and after correction are not obvious, the identification accuracy is highly susceptible to instability due to factors such as radiation, cloud cover and fog intensity. After correction based on station observations, the model KSS scores are noticeably improved (up to 67.2%) and become more stable. Compared with single-satellite-data-based fog monitoring methods, the integration of the FY-4 A satellite data and station observations offers multi-dimensional observation complementarity and achieves technological advances in the digitization and spatialization of fog observations.
ArticleNumber 59
Author Yao, Zhenhai
Wang, Chuanhui
Jiang, Chun
Author_xml – sequence: 1
  givenname: Zhenhai
  surname: Yao
  fullname: Yao, Zhenhai
  organization: Anhui Public Meteorological Service Center
– sequence: 2
  givenname: Chuanhui
  surname: Wang
  fullname: Wang, Chuanhui
  email: wang_chh@aliyun.com
  organization: Anhui Public Meteorological Service Center
– sequence: 3
  givenname: Chun
  surname: Jiang
  fullname: Jiang, Chun
  organization: Anhui Public Meteorological Service Center
BookMark eNp9kMFLwzAYxYNMcJv-A54CXrxUkzZN2uMYToWBIAp6Cl_TZOvYmpmkg_33Zqsg7LBDkhe-30seb4QGrW01QreUPFBCxKOPG2EJSePKU5Yn_AINKctYwliRDdCQUCESURZfV2jk_YoQknIuhqh-116DU0tsWxyWGpvON1Fag2ffbII9BL1eN0HjGgJgaGvsA4QjUnntdr0-Do11eKlht49qgZ1WdtE2h_E1ujSw9vrm7xyjz9nTx_Qlmb89v04n80RleRqSyjAjqAGoBAgiVGWEYVBzqDhQoLWgIleFqWpVkXiraApKkJoTXTJhSp6N0X3_7tbZn077IDeNVzE_tNp2XmaU5wXPuWARvTtBV7ZzbUwXKVYWhJY5jVTaU8pZ7502cuuaDbi9pEQeipd98TIWL4_Fy0OK4sSkmr6y4KBZn7dmvdXHf9qFdv-pzrh-AZpjmr4
CitedBy_id crossref_primary_10_12677_ag_2025_158108
Cites_doi 10.1016/j.eswa.2023.121758
10.1016/j.neucom.2023.126435
10.3390/rs10040628
10.1016/j.atmosres.2022.106239
10.1016/j.rse.2022.113128
10.1016/j.ecohyd.2023.04.003
10.1175/WAF1011.1
10.1016/j.renene.2018.05.069
10.1016/j.atmosres.2022.106157
10.1016/S0169-8095(02)00075-3
10.1016/j.jhydrol.2020.125451
10.1016/j.atmosenv.2014.03.050
10.1016/j.cageo.2019.04.003
10.1175/1520-0493(1978)106<1633:TROIMI>2.0.CO;2
10.5194/egusphere-egu2020-22319
10.1175/1520-0434(1995)010<0606:AITDAA>2.0.CO;2
10.1016/j.compeleceng.2022.108374
10.1016/j.procs.2017.08.304
10.3390/rs13051042
10.1016/j.ecoinf.2021.101385
10.1016/j.atmosres.2011.02.012
10.1016/j.jisa.2021.102866
10.1016/j.rse.2018.04.019
10.1016/j.atmosres.2023.106792
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jan 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jan 2025
DBID AAYXX
CITATION
7QH
7TG
7TN
7UA
C1K
F1W
H96
KL.
L.G
7S9
L.6
DOI 10.1007/s00704-024-05245-6
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1434-4483
EndPage 59
ExternalDocumentID 10_1007_s00704_024_05245_6
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Supported by the Independent Innovation Research Project of Anhui Public Meteorological Service Center (GFCX202303)
GroupedDBID -Y2
-~X
.86
.VR
06D
0R~
0VY
123
199
1N0
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACUHS
ACZOJ
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBD
EBLON
EBS
EDH
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IEP
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
L6V
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
PCBAR
PF0
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
XXG
Y6R
YLTOR
Z45
Z8Z
ZMTXR
ZY4
~02
~8M
~EX
AAYXX
AFFHD
BANNL
CITATION
7QH
7TG
7TN
7UA
C1K
F1W
H96
KL.
L.G
7S9
L.6
ID FETCH-LOGICAL-c352t-bf4f71faab7a707cbf7f4ad6ab6a1a1d7175c8fbdcb01d7b12ac70d60e947f963
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001385223300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0177-798X
IngestDate Fri Nov 14 18:43:24 EST 2025
Wed Nov 05 04:07:40 EST 2025
Tue Nov 18 21:56:25 EST 2025
Sat Nov 29 05:35:29 EST 2025
Mon Jul 21 06:06:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fog recognition
FY4A
Optimal algorithm
Station-observation-based correction
Anhui province
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-bf4f71faab7a707cbf7f4ad6ab6a1a1d7175c8fbdcb01d7b12ac70d60e947f963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3149801951
PQPubID 48318
PageCount 1
ParticipantIDs proquest_miscellaneous_3165865674
proquest_journals_3149801951
crossref_primary_10_1007_s00704_024_05245_6
crossref_citationtrail_10_1007_s00704_024_05245_6
springer_journals_10_1007_s00704_024_05245_6
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Theoretical and applied climatology
PublicationTitleAbbrev Theor Appl Climatol
PublicationYear 2025
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References 5245_CR27
5245_CR26
5245_CR29
JR Eyre (5245_CR11) 1984; 113
5245_CR25
5245_CR24
I Gultepe (5245_CR19) 2007; 22
J-M Yoo (5245_CR20) 2018; 211
S Egli (5245_CR28) 2018; 10
Y Kim (5245_CR9) 2023; 290
JJ Gurka (5245_CR10) 1978; 106
M Li Yi (5245_CR18) 2023; 294
J Bendix (5245_CR13) 2002; 64
G Diofantos (5245_CR23) 2010; 35
5245_CR16
5245_CR8
S Meisam Amani (5245_CR17) 2020; 238
5245_CR14
P Atefeh Dezhban (5245_CR4) 2023; 23
GP Ellrod (5245_CR12) 1995; 10
YAB Wanxiang (5245_CR30) 2018; 128
JH Yang (5245_CR22) 2021; 13
5245_CR1
5245_CR2
5245_CR3
5245_CR5
5245_CR6
5245_CR7
Jan Cermak (5245_CR15) 2012; 116
S Johannes Drönner (5245_CR21) 2019; 128
References_xml – ident: 5245_CR25
– ident: 5245_CR1
  doi: 10.1016/j.eswa.2023.121758
– ident: 5245_CR3
  doi: 10.1016/j.neucom.2023.126435
– volume: 10
  start-page: 628
  issue: 4
  year: 2018
  ident: 5245_CR28
  publication-title: Remote Sens
  doi: 10.3390/rs10040628
– ident: 5245_CR27
  doi: 10.1016/j.atmosres.2022.106239
– ident: 5245_CR8
  doi: 10.1016/j.rse.2022.113128
– volume: 113
  start-page: 266
  year: 1984
  ident: 5245_CR11
  publication-title: Meteorol Magazine
– volume: 294
  start-page: 766
  issue: 3
  year: 2023
  ident: 5245_CR18
  publication-title: Remote Sens Environ
– volume: 238
  start-page: 428
  issue: 5
  year: 2020
  ident: 5245_CR17
  publication-title: Atmos Res
– volume: 23
  start-page: 457
  issue: 3
  year: 2023
  ident: 5245_CR4
  publication-title: Ecohydrol Hydrobiol
  doi: 10.1016/j.ecohyd.2023.04.003
– volume: 22
  start-page: 444
  issue: 3
  year: 2007
  ident: 5245_CR19
  publication-title: Weather Forecast
  doi: 10.1175/WAF1011.1
– volume: 128
  start-page: 155
  year: 2018
  ident: 5245_CR30
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2018.05.069
– ident: 5245_CR24
  doi: 10.1016/j.atmosres.2022.106157
– ident: 5245_CR26
– volume: 64
  start-page: 3
  issue: 1–4
  year: 2002
  ident: 5245_CR13
  publication-title: Atmos Res
  doi: 10.1016/S0169-8095(02)00075-3
– ident: 5245_CR6
  doi: 10.1016/j.jhydrol.2020.125451
– ident: 5245_CR16
  doi: 10.1016/j.atmosenv.2014.03.050
– volume: 128
  start-page: 51
  year: 2019
  ident: 5245_CR21
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2019.04.003
– volume: 106
  start-page: 1633
  issue: 11
  year: 1978
  ident: 5245_CR10
  publication-title: Mon Weather Rev
  doi: 10.1175/1520-0493(1978)106<1633:TROIMI>2.0.CO;2
– ident: 5245_CR29
  doi: 10.5194/egusphere-egu2020-22319
– volume: 10
  start-page: 606
  issue: 3
  year: 1995
  ident: 5245_CR12
  publication-title: Weather Forecast
  doi: 10.1175/1520-0434(1995)010<0606:AITDAA>2.0.CO;2
– ident: 5245_CR14
  doi: 10.1016/j.compeleceng.2022.108374
– ident: 5245_CR5
  doi: 10.1016/j.procs.2017.08.304
– volume: 13
  start-page: 1
  issue: 5
  year: 2021
  ident: 5245_CR22
  publication-title: Remote Sens
  doi: 10.3390/rs13051042
– ident: 5245_CR7
  doi: 10.1016/j.ecoinf.2021.101385
– volume: 116
  start-page: 15
  year: 2012
  ident: 5245_CR15
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2011.02.012
– volume: 35
  start-page: 121
  issue: 1–2
  year: 2010
  ident: 5245_CR23
  publication-title: Parts A/B/C
– ident: 5245_CR2
  doi: 10.1016/j.jisa.2021.102866
– volume: 211
  start-page: 292
  year: 2018
  ident: 5245_CR20
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2018.04.019
– volume: 290
  start-page: 1633
  year: 2023
  ident: 5245_CR9
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2023.106792
SSID ssj0002667
Score 2.4142437
Snippet Satellite observation of fog possesses technical advantages of wide coverage and high spatial-temporal resolution. However, the accuracy of satellite-based fog...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 59
SubjectTerms Accuracy
Algorithms
Aquatic Pollution
Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
China
Climatology
Cloud cover
Complementarity
Earth and Environmental Science
Earth Sciences
Fog
Identification
Machine learning
Monitoring methods
Multidimensional methods
Radiation
Radiation-cloud interactions
remote sensing
Satellite data
Satellite observation
Satellites
Spatial distribution
Support vector machines
Temporal resolution
Waste Water Technology
Water Management
Water Pollution Control
Title Research on the fusion of FY4A satellite data and station observation data for heavy fog recognition
URI https://link.springer.com/article/10.1007/s00704-024-05245-6
https://www.proquest.com/docview/3149801951
https://www.proquest.com/docview/3165865674
Volume 156
WOSCitedRecordID wos001385223300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1434-4483
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002667
  issn: 0177-798X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB9Ozwdfzm-sX0QQXzTQdtMmfVyWW3xQOc4P1qeSj0YEaY_truB_7yT9EMUT9K0haVpmMplfZjIzAEdSqJBzo6nSg5gyxBw0k5GkQqMwZVlSJMZn1z_nl5diMsn-tEFhdXfbvXNJ-p26D3ZzmWkYRZ1CwyRmCU0X4CeqO-EKNvy9uu33X1Q5TZA055RnYtKGynw8x1t19Iox37lFvbYZr3zvP1fhV4suybBZDmvwoyjXIbhAYFxNvf2cHJPR4wOiVN_aANPdvCNVSRALEjt35jNSWTK-Y0NSS5-xc1YQd5WUyNKQunHek0r1Bt2mE-Evwa396Rmf7kl_M6kqN-Fm_Pt6dEbbwgtUIx6bUWWZ5ZGVUnHJQ66V5ZZJk0qVIh8jg0fARAurjFYhtlQUS81Dk4ZFxrhFkd6CxbIqi20g1jJjEy5jjTgCWSMQEmiX93CQmEiEgwCijv65brOSu-IYj3mfT9nTM0d65p6eeRrASf_OvyYnx6ej9zq25q181vkAD4bCxUpGARz23ShZzl0iy6KauzGIzhDuchbAacfq1yn-_8Wdrw3fheXYFRX2dp09WJxN58U-LOmn2UM9PfBr-wXKVPNE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-2trC9bF23Um_ppkLZyyrwh2zZjyE0dCwNpU1L9mT0YZVCsUecBPbf7yR_hI610L1ZSJbNnU73030J4Fik0udcKypVFFKGmINmIhA0VShMWRYXsXbV9Sd8Ok3n8-yiTQqru2j3ziXpduo-2c1WpmEUdQr145DFNHkJ2ww1lq2Yf3l10--_qHKaJGnOKc_SeZsq8-85HqqjDcb8yy3qtM347f_95y68adElGTbL4R28KMo98M4RGFcLZz8nX8no_g5Rqmu9B91F3pGqJIgFiVlZ8xmpDBn_ZENSC1exc1kQG0pKRKlJ3TjvSSV7g27TifCX4Na-_o1Pt6SPTKrKD3A9Pp2Nzmh78QJViMeWVBpmeGCEkFxwnytpuGFCJ0ImyMdA4xEwVqmRWkkfWzIIheK-TvwiY9ygSO_DVlmVxQEQY5g2MRehQhyBrEkREihb9zCKdZD6kQdBR_9ctVXJ7eUY93lfT9nRM0d65o6eeeLBt_6dX01NjidHDzq25q181nmEB8PU5koGHhz13ShZ1l0iyqJa2TGIzhDucubBScfqzRSPf_Hj84Z_gVdns_NJPvk-_fEJXof2gmFn4xnA1nKxKg5hR62Xd_Xis1vnfwA5AfYo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_6McZetnZbmbesVWH0ZROxHdmyH0PX0NI0BLqO7MnowxqBYJfECey_30n-yDa2QembhWTZ6HS6n3R3PwF8EIn0OdeKSjUIKUPMQVMRCJooVKY0jfJIO3b9MZ9Mktksnf6Sxe-i3VuXZJ3TYFmaiqp_r02_S3yzLDWMon2hfhSyiMa7sM9sIL3dr99-7dZiND91wjTnlKfJrEmb-Xsfv5umLd78w0XqLM_oxeP_-QCeN6iTDOtpcgg7efESvBsEzOXSnauTM3K-mCN6daVXoNuIPFIWBDEiMWt7rEZKQ0bf2JCshGPyrHJiQ0yJKDRZ1U59UsruoLeuRFhMcMnf_MCn76SLWCqL13A3uvhyfkmbCxmoQpxWUWmY4YERQnLBfa6k4YYJHQsZo3wDjVvDSCVGaiV9LMkgFIr7OvbzlHGDqn4Ee0VZ5G-AGMO0ibgIFeILFFOCUEFZPsRBpIPEH3gQtLLIVMNWbi_NWGQdz7IbzwzHM3PjmcUefOzeua-5Ov7buteKOGv0dpUNcMOY2BzKwIPTrho1zrpRRJGXa9sGURvCYM48-NSKfdvFv7_49mHNT-Dp9PMoG19Nrt_Bs9DeO-yOfnqwVy3X-Xt4ojbVfLU8dlP-J_Fl_ww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+fusion+of+FY4A+satellite+data+and+station+observation+data+for+heavy+fog+recognition&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Yao%2C+Zhenhai&rft.au=Wang%2C+Chuanhui&rft.au=Jiang%2C+Chun&rft.date=2025-01-01&rft.issn=0177-798X&rft.volume=156&rft.issue=1+p.59-59&rft.spage=59&rft.epage=59&rft_id=info:doi/10.1007%2Fs00704-024-05245-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon