Research on the fusion of FY4A satellite data and station observation data for heavy fog recognition
Satellite observation of fog possesses technical advantages of wide coverage and high spatial-temporal resolution. However, the accuracy of satellite-based fog identification is subject to errors induced by factors such as atmospheric and radiation conditions. This study aims to improve the accuracy...
Uložené v:
| Vydané v: | Theoretical and applied climatology Ročník 156; číslo 1; s. 59 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Vienna
Springer Vienna
01.01.2025
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0177-798X, 1434-4483 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Satellite observation of fog possesses technical advantages of wide coverage and high spatial-temporal resolution. However, the accuracy of satellite-based fog identification is subject to errors induced by factors such as atmospheric and radiation conditions. This study aims to improve the accuracy of fog identification by integrating ground-based station observations with the Fengyun-4 A (FY-4 A) satellite data. Taking Anhui Province as the study area, we establish a fog identification model using multiple algorithms, namely threshold method (THD), support vector machine (SVM), random forest (RF) and gradient boosting (XGB). In addition, a nearby pixel method is employed to validate identification results, in order to select the optimal algorithm. The results indicate that machine learning algorithms outperform the THD method in fog identification. Among the SVM, RF and XGB algorithms, the RF method exhibits the highest median KSS (0.66) and excellent robustness, and thus it is the optimal algorithm. Case studies demonstrate that the RF-based identification results effectively reflect the spatial distribution of fog regions. Although the differences between the images of identification results before and after correction are not obvious, the identification accuracy is highly susceptible to instability due to factors such as radiation, cloud cover and fog intensity. After correction based on station observations, the model KSS scores are noticeably improved (up to 67.2%) and become more stable. Compared with single-satellite-data-based fog monitoring methods, the integration of the FY-4 A satellite data and station observations offers multi-dimensional observation complementarity and achieves technological advances in the digitization and spatialization of fog observations. |
|---|---|
| AbstractList | Satellite observation of fog possesses technical advantages of wide coverage and high spatial-temporal resolution. However, the accuracy of satellite-based fog identification is subject to errors induced by factors such as atmospheric and radiation conditions. This study aims to improve the accuracy of fog identification by integrating ground-based station observations with the Fengyun-4 A (FY-4 A) satellite data. Taking Anhui Province as the study area, we establish a fog identification model using multiple algorithms, namely threshold method (THD), support vector machine (SVM), random forest (RF) and gradient boosting (XGB). In addition, a nearby pixel method is employed to validate identification results, in order to select the optimal algorithm. The results indicate that machine learning algorithms outperform the THD method in fog identification. Among the SVM, RF and XGB algorithms, the RF method exhibits the highest median KSS (0.66) and excellent robustness, and thus it is the optimal algorithm. Case studies demonstrate that the RF-based identification results effectively reflect the spatial distribution of fog regions. Although the differences between the images of identification results before and after correction are not obvious, the identification accuracy is highly susceptible to instability due to factors such as radiation, cloud cover and fog intensity. After correction based on station observations, the model KSS scores are noticeably improved (up to 67.2%) and become more stable. Compared with single-satellite-data-based fog monitoring methods, the integration of the FY-4 A satellite data and station observations offers multi-dimensional observation complementarity and achieves technological advances in the digitization and spatialization of fog observations. Satellite observation of fog possesses technical advantages of wide coverage and high spatial-temporal resolution. However, the accuracy of satellite-based fog identification is subject to errors induced by factors such as atmospheric and radiation conditions. This study aims to improve the accuracy of fog identification by integrating ground-based station observations with the Fengyun-4 A (FY-4 A) satellite data. Taking Anhui Province as the study area, we establish a fog identification model using multiple algorithms, namely threshold method (THD), support vector machine (SVM), random forest (RF) and gradient boosting (XGB). In addition, a nearby pixel method is employed to validate identification results, in order to select the optimal algorithm. The results indicate that machine learning algorithms outperform the THD method in fog identification. Among the SVM, RF and XGB algorithms, the RF method exhibits the highest median KSS (0.66) and excellent robustness, and thus it is the optimal algorithm. Case studies demonstrate that the RF-based identification results effectively reflect the spatial distribution of fog regions. Although the differences between the images of identification results before and after correction are not obvious, the identification accuracy is highly susceptible to instability due to factors such as radiation, cloud cover and fog intensity. After correction based on station observations, the model KSS scores are noticeably improved (up to 67.2%) and become more stable. Compared with single-satellite-data-based fog monitoring methods, the integration of the FY-4 A satellite data and station observations offers multi-dimensional observation complementarity and achieves technological advances in the digitization and spatialization of fog observations. |
| ArticleNumber | 59 |
| Author | Yao, Zhenhai Wang, Chuanhui Jiang, Chun |
| Author_xml | – sequence: 1 givenname: Zhenhai surname: Yao fullname: Yao, Zhenhai organization: Anhui Public Meteorological Service Center – sequence: 2 givenname: Chuanhui surname: Wang fullname: Wang, Chuanhui email: wang_chh@aliyun.com organization: Anhui Public Meteorological Service Center – sequence: 3 givenname: Chun surname: Jiang fullname: Jiang, Chun organization: Anhui Public Meteorological Service Center |
| BookMark | eNp9kMFLwzAYxYNMcJv-A54CXrxUkzZN2uMYToWBIAp6Cl_TZOvYmpmkg_33Zqsg7LBDkhe-30seb4QGrW01QreUPFBCxKOPG2EJSePKU5Yn_AINKctYwliRDdCQUCESURZfV2jk_YoQknIuhqh-116DU0tsWxyWGpvON1Fag2ffbII9BL1eN0HjGgJgaGvsA4QjUnntdr0-Do11eKlht49qgZ1WdtE2h_E1ujSw9vrm7xyjz9nTx_Qlmb89v04n80RleRqSyjAjqAGoBAgiVGWEYVBzqDhQoLWgIleFqWpVkXiraApKkJoTXTJhSp6N0X3_7tbZn077IDeNVzE_tNp2XmaU5wXPuWARvTtBV7ZzbUwXKVYWhJY5jVTaU8pZ7502cuuaDbi9pEQeipd98TIWL4_Fy0OK4sSkmr6y4KBZn7dmvdXHf9qFdv-pzrh-AZpjmr4 |
| CitedBy_id | crossref_primary_10_12677_ag_2025_158108 |
| Cites_doi | 10.1016/j.eswa.2023.121758 10.1016/j.neucom.2023.126435 10.3390/rs10040628 10.1016/j.atmosres.2022.106239 10.1016/j.rse.2022.113128 10.1016/j.ecohyd.2023.04.003 10.1175/WAF1011.1 10.1016/j.renene.2018.05.069 10.1016/j.atmosres.2022.106157 10.1016/S0169-8095(02)00075-3 10.1016/j.jhydrol.2020.125451 10.1016/j.atmosenv.2014.03.050 10.1016/j.cageo.2019.04.003 10.1175/1520-0493(1978)106<1633:TROIMI>2.0.CO;2 10.5194/egusphere-egu2020-22319 10.1175/1520-0434(1995)010<0606:AITDAA>2.0.CO;2 10.1016/j.compeleceng.2022.108374 10.1016/j.procs.2017.08.304 10.3390/rs13051042 10.1016/j.ecoinf.2021.101385 10.1016/j.atmosres.2011.02.012 10.1016/j.jisa.2021.102866 10.1016/j.rse.2018.04.019 10.1016/j.atmosres.2023.106792 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jan 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jan 2025 |
| DBID | AAYXX CITATION 7QH 7TG 7TN 7UA C1K F1W H96 KL. L.G 7S9 L.6 |
| DOI | 10.1007/s00704-024-05245-6 |
| DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1434-4483 |
| EndPage | 59 |
| ExternalDocumentID | 10_1007_s00704_024_05245_6 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: Supported by the Independent Innovation Research Project of Anhui Public Meteorological Service Center (GFCX202303) |
| GroupedDBID | -Y2 -~X .86 .VR 06D 0R~ 0VY 123 199 1N0 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACUHS ACZOJ ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBS EDH EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IEP IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L6V LAS LK5 LLZTM M2P M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 PCBAR PF0 PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 XXG Y6R YLTOR Z45 Z8Z ZMTXR ZY4 ~02 ~8M ~EX AAYXX AFFHD BANNL CITATION 7QH 7TG 7TN 7UA C1K F1W H96 KL. L.G 7S9 L.6 |
| ID | FETCH-LOGICAL-c352t-bf4f71faab7a707cbf7f4ad6ab6a1a1d7175c8fbdcb01d7b12ac70d60e947f963 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001385223300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0177-798X |
| IngestDate | Fri Nov 14 18:43:24 EST 2025 Wed Nov 05 04:07:40 EST 2025 Tue Nov 18 21:56:25 EST 2025 Sat Nov 29 05:35:29 EST 2025 Mon Jul 21 06:06:37 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Fog recognition FY4A Optimal algorithm Station-observation-based correction Anhui province |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-bf4f71faab7a707cbf7f4ad6ab6a1a1d7175c8fbdcb01d7b12ac70d60e947f963 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 3149801951 |
| PQPubID | 48318 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_3165865674 proquest_journals_3149801951 crossref_primary_10_1007_s00704_024_05245_6 crossref_citationtrail_10_1007_s00704_024_05245_6 springer_journals_10_1007_s00704_024_05245_6 |
| PublicationCentury | 2000 |
| PublicationDate | 20250100 2025-01-00 20250101 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Theoretical and applied climatology |
| PublicationTitleAbbrev | Theor Appl Climatol |
| PublicationYear | 2025 |
| Publisher | Springer Vienna Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
| References | 5245_CR27 5245_CR26 5245_CR29 JR Eyre (5245_CR11) 1984; 113 5245_CR25 5245_CR24 I Gultepe (5245_CR19) 2007; 22 J-M Yoo (5245_CR20) 2018; 211 S Egli (5245_CR28) 2018; 10 Y Kim (5245_CR9) 2023; 290 JJ Gurka (5245_CR10) 1978; 106 M Li Yi (5245_CR18) 2023; 294 J Bendix (5245_CR13) 2002; 64 G Diofantos (5245_CR23) 2010; 35 5245_CR16 5245_CR8 S Meisam Amani (5245_CR17) 2020; 238 5245_CR14 P Atefeh Dezhban (5245_CR4) 2023; 23 GP Ellrod (5245_CR12) 1995; 10 YAB Wanxiang (5245_CR30) 2018; 128 JH Yang (5245_CR22) 2021; 13 5245_CR1 5245_CR2 5245_CR3 5245_CR5 5245_CR6 5245_CR7 Jan Cermak (5245_CR15) 2012; 116 S Johannes Drönner (5245_CR21) 2019; 128 |
| References_xml | – ident: 5245_CR25 – ident: 5245_CR1 doi: 10.1016/j.eswa.2023.121758 – ident: 5245_CR3 doi: 10.1016/j.neucom.2023.126435 – volume: 10 start-page: 628 issue: 4 year: 2018 ident: 5245_CR28 publication-title: Remote Sens doi: 10.3390/rs10040628 – ident: 5245_CR27 doi: 10.1016/j.atmosres.2022.106239 – ident: 5245_CR8 doi: 10.1016/j.rse.2022.113128 – volume: 113 start-page: 266 year: 1984 ident: 5245_CR11 publication-title: Meteorol Magazine – volume: 294 start-page: 766 issue: 3 year: 2023 ident: 5245_CR18 publication-title: Remote Sens Environ – volume: 238 start-page: 428 issue: 5 year: 2020 ident: 5245_CR17 publication-title: Atmos Res – volume: 23 start-page: 457 issue: 3 year: 2023 ident: 5245_CR4 publication-title: Ecohydrol Hydrobiol doi: 10.1016/j.ecohyd.2023.04.003 – volume: 22 start-page: 444 issue: 3 year: 2007 ident: 5245_CR19 publication-title: Weather Forecast doi: 10.1175/WAF1011.1 – volume: 128 start-page: 155 year: 2018 ident: 5245_CR30 publication-title: Renewable Energy doi: 10.1016/j.renene.2018.05.069 – ident: 5245_CR24 doi: 10.1016/j.atmosres.2022.106157 – ident: 5245_CR26 – volume: 64 start-page: 3 issue: 1–4 year: 2002 ident: 5245_CR13 publication-title: Atmos Res doi: 10.1016/S0169-8095(02)00075-3 – ident: 5245_CR6 doi: 10.1016/j.jhydrol.2020.125451 – ident: 5245_CR16 doi: 10.1016/j.atmosenv.2014.03.050 – volume: 128 start-page: 51 year: 2019 ident: 5245_CR21 publication-title: Comput Geosci doi: 10.1016/j.cageo.2019.04.003 – volume: 106 start-page: 1633 issue: 11 year: 1978 ident: 5245_CR10 publication-title: Mon Weather Rev doi: 10.1175/1520-0493(1978)106<1633:TROIMI>2.0.CO;2 – ident: 5245_CR29 doi: 10.5194/egusphere-egu2020-22319 – volume: 10 start-page: 606 issue: 3 year: 1995 ident: 5245_CR12 publication-title: Weather Forecast doi: 10.1175/1520-0434(1995)010<0606:AITDAA>2.0.CO;2 – ident: 5245_CR14 doi: 10.1016/j.compeleceng.2022.108374 – ident: 5245_CR5 doi: 10.1016/j.procs.2017.08.304 – volume: 13 start-page: 1 issue: 5 year: 2021 ident: 5245_CR22 publication-title: Remote Sens doi: 10.3390/rs13051042 – ident: 5245_CR7 doi: 10.1016/j.ecoinf.2021.101385 – volume: 116 start-page: 15 year: 2012 ident: 5245_CR15 publication-title: Atmos Res doi: 10.1016/j.atmosres.2011.02.012 – volume: 35 start-page: 121 issue: 1–2 year: 2010 ident: 5245_CR23 publication-title: Parts A/B/C – ident: 5245_CR2 doi: 10.1016/j.jisa.2021.102866 – volume: 211 start-page: 292 year: 2018 ident: 5245_CR20 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2018.04.019 – volume: 290 start-page: 1633 year: 2023 ident: 5245_CR9 publication-title: Atmos Res doi: 10.1016/j.atmosres.2023.106792 |
| SSID | ssj0002667 |
| Score | 2.4142437 |
| Snippet | Satellite observation of fog possesses technical advantages of wide coverage and high spatial-temporal resolution. However, the accuracy of satellite-based fog... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 59 |
| SubjectTerms | Accuracy Algorithms Aquatic Pollution Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences China Climatology Cloud cover Complementarity Earth and Environmental Science Earth Sciences Fog Identification Machine learning Monitoring methods Multidimensional methods Radiation Radiation-cloud interactions remote sensing Satellite data Satellite observation Satellites Spatial distribution Support vector machines Temporal resolution Waste Water Technology Water Management Water Pollution Control |
| Title | Research on the fusion of FY4A satellite data and station observation data for heavy fog recognition |
| URI | https://link.springer.com/article/10.1007/s00704-024-05245-6 https://www.proquest.com/docview/3149801951 https://www.proquest.com/docview/3165865674 |
| Volume | 156 |
| WOSCitedRecordID | wos001385223300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1434-4483 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002667 issn: 0177-798X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEB9Ozwdfzm-sX0QQXzTQdtMmfVyWW3xQOc4P1qeSj0YEaY_truB_7yT9EMUT9K0haVpmMplfZjIzAEdSqJBzo6nSg5gyxBw0k5GkQqMwZVlSJMZn1z_nl5diMsn-tEFhdXfbvXNJ-p26D3ZzmWkYRZ1CwyRmCU0X4CeqO-EKNvy9uu33X1Q5TZA055RnYtKGynw8x1t19Iox37lFvbYZr3zvP1fhV4suybBZDmvwoyjXIbhAYFxNvf2cHJPR4wOiVN_aANPdvCNVSRALEjt35jNSWTK-Y0NSS5-xc1YQd5WUyNKQunHek0r1Bt2mE-Evwa396Rmf7kl_M6kqN-Fm_Pt6dEbbwgtUIx6bUWWZ5ZGVUnHJQ66V5ZZJk0qVIh8jg0fARAurjFYhtlQUS81Dk4ZFxrhFkd6CxbIqi20g1jJjEy5jjTgCWSMQEmiX93CQmEiEgwCijv65brOSu-IYj3mfT9nTM0d65p6eeRrASf_OvyYnx6ej9zq25q181vkAD4bCxUpGARz23ShZzl0iy6KauzGIzhDuchbAacfq1yn-_8Wdrw3fheXYFRX2dp09WJxN58U-LOmn2UM9PfBr-wXKVPNE |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-2trC9bF23Um_ppkLZyyrwh2zZjyE0dCwNpU1L9mT0YZVCsUecBPbf7yR_hI610L1ZSJbNnU73030J4Fik0udcKypVFFKGmINmIhA0VShMWRYXsXbV9Sd8Ok3n8-yiTQqru2j3ziXpduo-2c1WpmEUdQr145DFNHkJ2ww1lq2Yf3l10--_qHKaJGnOKc_SeZsq8-85HqqjDcb8yy3qtM347f_95y68adElGTbL4R28KMo98M4RGFcLZz8nX8no_g5Rqmu9B91F3pGqJIgFiVlZ8xmpDBn_ZENSC1exc1kQG0pKRKlJ3TjvSSV7g27TifCX4Na-_o1Pt6SPTKrKD3A9Pp2Nzmh78QJViMeWVBpmeGCEkFxwnytpuGFCJ0ImyMdA4xEwVqmRWkkfWzIIheK-TvwiY9ygSO_DVlmVxQEQY5g2MRehQhyBrEkREihb9zCKdZD6kQdBR_9ctVXJ7eUY93lfT9nRM0d65o6eeeLBt_6dX01NjidHDzq25q181nmEB8PU5koGHhz13ShZ1l0iyqJa2TGIzhDucubBScfqzRSPf_Hj84Z_gVdns_NJPvk-_fEJXof2gmFn4xnA1nKxKg5hR62Xd_Xis1vnfwA5AfYo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_6McZetnZbmbesVWH0ZROxHdmyH0PX0NI0BLqO7MnowxqBYJfECey_30n-yDa2QembhWTZ6HS6n3R3PwF8EIn0OdeKSjUIKUPMQVMRCJooVKY0jfJIO3b9MZ9Mktksnf6Sxe-i3VuXZJ3TYFmaiqp_r02_S3yzLDWMon2hfhSyiMa7sM9sIL3dr99-7dZiND91wjTnlKfJrEmb-Xsfv5umLd78w0XqLM_oxeP_-QCeN6iTDOtpcgg7efESvBsEzOXSnauTM3K-mCN6daVXoNuIPFIWBDEiMWt7rEZKQ0bf2JCshGPyrHJiQ0yJKDRZ1U59UsruoLeuRFhMcMnf_MCn76SLWCqL13A3uvhyfkmbCxmoQpxWUWmY4YERQnLBfa6k4YYJHQsZo3wDjVvDSCVGaiV9LMkgFIr7OvbzlHGDqn4Ee0VZ5G-AGMO0ibgIFeILFFOCUEFZPsRBpIPEH3gQtLLIVMNWbi_NWGQdz7IbzwzHM3PjmcUefOzeua-5Ov7buteKOGv0dpUNcMOY2BzKwIPTrho1zrpRRJGXa9sGURvCYM48-NSKfdvFv7_49mHNT-Dp9PMoG19Nrt_Bs9DeO-yOfnqwVy3X-Xt4ojbVfLU8dlP-J_Fl_ww |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+the+fusion+of+FY4A+satellite+data+and+station+observation+data+for+heavy+fog+recognition&rft.jtitle=Theoretical+and+applied+climatology&rft.au=Yao%2C+Zhenhai&rft.au=Wang%2C+Chuanhui&rft.au=Jiang%2C+Chun&rft.date=2025-01-01&rft.issn=0177-798X&rft.volume=156&rft.issue=1+p.59-59&rft.spage=59&rft.epage=59&rft_id=info:doi/10.1007%2Fs00704-024-05245-6&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0177-798X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0177-798X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0177-798X&client=summon |