Understanding adversarial attacks on deep learning based medical image analysis systems

•Medical image DNNs are easier to be attacked than natural non-medical image DNNs.•Complex biological textures of medical images may lead to more vulnerable regions.•State-of-the-art deep networks can be overparameterized for medical imaging tasks.•Medical image adversarial attacks can also be easil...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pattern recognition Ročník 110; s. 107332
Hlavní autori: Ma, Xingjun, Niu, Yuhao, Gu, Lin, Wang, Yisen, Zhao, Yitian, Bailey, James, Lu, Feng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.02.2021
Predmet:
ISSN:0031-3203, 1873-5142
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Medical image DNNs are easier to be attacked than natural non-medical image DNNs.•Complex biological textures of medical images may lead to more vulnerable regions.•State-of-the-art deep networks can be overparameterized for medical imaging tasks.•Medical image adversarial attacks can also be easily detected.•High detectability may be caused by perturbations outside the pathological regions. Deep neural networks (DNNs) have become popular for medical image analysis tasks like cancer diagnosis and lesion detection. However, a recent study demonstrates that medical deep learning systems can be compromised by carefully-engineered adversarial examples/attacks with small imperceptible perturbations. This raises safety concerns about the deployment of these systems in clinical settings. In this paper, we provide a deeper understanding of adversarial examples in the context of medical images. We find that medical DNN models can be more vulnerable to adversarial attacks compared to models for natural images, according to two different viewpoints. Surprisingly, we also find that medical adversarial attacks can be easily detected, i.e., simple detectors can achieve over 98% detection AUC against state-of-the-art attacks, due to fundamental feature differences compared to normal examples. We believe these findings may be a useful basis to approach the design of more explainable and secure medical deep learning systems.
AbstractList •Medical image DNNs are easier to be attacked than natural non-medical image DNNs.•Complex biological textures of medical images may lead to more vulnerable regions.•State-of-the-art deep networks can be overparameterized for medical imaging tasks.•Medical image adversarial attacks can also be easily detected.•High detectability may be caused by perturbations outside the pathological regions. Deep neural networks (DNNs) have become popular for medical image analysis tasks like cancer diagnosis and lesion detection. However, a recent study demonstrates that medical deep learning systems can be compromised by carefully-engineered adversarial examples/attacks with small imperceptible perturbations. This raises safety concerns about the deployment of these systems in clinical settings. In this paper, we provide a deeper understanding of adversarial examples in the context of medical images. We find that medical DNN models can be more vulnerable to adversarial attacks compared to models for natural images, according to two different viewpoints. Surprisingly, we also find that medical adversarial attacks can be easily detected, i.e., simple detectors can achieve over 98% detection AUC against state-of-the-art attacks, due to fundamental feature differences compared to normal examples. We believe these findings may be a useful basis to approach the design of more explainable and secure medical deep learning systems.
ArticleNumber 107332
Author Gu, Lin
Bailey, James
Ma, Xingjun
Wang, Yisen
Zhao, Yitian
Niu, Yuhao
Lu, Feng
Author_xml – sequence: 1
  givenname: Xingjun
  orcidid: 0000-0003-2099-4973
  surname: Ma
  fullname: Ma, Xingjun
  email: xingjun.ma@unimelb.edu.au
  organization: School of Computing and Information Systems, The University of Melbourne, Parkville, VIC 3010, Australia
– sequence: 2
  givenname: Yuhao
  orcidid: 0000-0003-0423-0682
  surname: Niu
  fullname: Niu, Yuhao
  email: niuyuhao@buaa.edu.cn
  organization: State Key Laboratory of VR Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Lin
  surname: Gu
  fullname: Gu, Lin
  email: ling@nii.ac.jp
  organization: National Institute of Informatics, Tokyo 101-8430, Japan
– sequence: 4
  givenname: Yisen
  surname: Wang
  fullname: Wang, Yisen
  email: eewangyisen@gmail.com
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Yitian
  orcidid: 0000-0003-4357-4592
  surname: Zhao
  fullname: Zhao, Yitian
  email: yitian.zhao@nimte.ac.cn
  organization: Cixi Instuitue of Biomedical Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, China
– sequence: 6
  givenname: James
  surname: Bailey
  fullname: Bailey, James
  email: baileyj@unimelb.edu.au
  organization: School of Computing and Information Systems, The University of Melbourne, Parkville, VIC 3010, Australia
– sequence: 7
  givenname: Feng
  orcidid: 0000-0001-9064-7964
  surname: Lu
  fullname: Lu, Feng
  email: lufeng@buaa.edu.cn
  organization: State Key Laboratory of VR Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, China
BookMark eNqFkM1qwzAQhEVJoUnaN-hBL-BU0tpx3EOhhP5BoJeGHsVaWgeljhwkEcjb18Y99dCelt2dGZhvxia-88TYrRQLKeTybr84YjLdbqGEGk4lgLpgU7kqIStkriZsKgTIDJSAKzaLcS-ELPvHlH1uvaUQE3rr_I6jPfUbBoctx5TQfEXeeW6JjrwlDH4Q1RjJ8gNZZ3qZO-COOHpsz9FFHs8x0SFes8sG20g3P3POts9PH-vXbPP-8rZ-3GQGCpWyugSzApArrEgWhKIxkEMlyqVQCEi2BpRWNiJXdVNXta0NNFjlZK2wy7yBObsfc03oYgzUaOMSJtf5FNC1Wgo9INJ7PSLSAyI9IurN-S_zMfR1wvk_28Noo77YyVHQ0TjypgcSyCRtO_d3wDc-t4b6
CitedBy_id crossref_primary_10_1126_scirobotics_adt0187
crossref_primary_10_1016_j_neunet_2025_107341
crossref_primary_10_3348_jksr_2022_0156
crossref_primary_10_1007_s10489_023_05037_x
crossref_primary_10_1016_j_cogsys_2023_101188
crossref_primary_10_1038_s42256_020_0186_1
crossref_primary_10_1016_j_neucom_2024_127726
crossref_primary_10_1109_MCE_2024_3443543
crossref_primary_10_1016_j_ejrad_2023_110786
crossref_primary_10_1016_j_heliyon_2022_e11209
crossref_primary_10_1016_j_irbm_2022_100748
crossref_primary_10_1016_j_cpet_2021_06_006
crossref_primary_10_1109_ACCESS_2025_3570898
crossref_primary_10_1016_j_imavis_2024_105272
crossref_primary_10_3390_diagnostics13142345
crossref_primary_10_1007_s43681_023_00368_4
crossref_primary_10_1109_ACCESS_2022_3216291
crossref_primary_10_3390_s22186905
crossref_primary_10_1109_JBHI_2021_3139541
crossref_primary_10_1155_2021_5363750
crossref_primary_10_3390_jimaging8060155
crossref_primary_10_1007_s11517_024_03226_5
crossref_primary_10_1038_s41467_021_27577_x
crossref_primary_10_1088_1361_6560_ad3cb3
crossref_primary_10_1016_j_media_2021_102141
crossref_primary_10_1186_s12911_022_01891_w
crossref_primary_10_1016_j_future_2022_03_008
crossref_primary_10_1111_risa_14666
crossref_primary_10_1016_j_patcog_2024_110632
crossref_primary_10_3390_jcm12093266
crossref_primary_10_1371_journal_pone_0307363
crossref_primary_10_3389_fnins_2023_1273931
crossref_primary_10_32604_cmes_2023_044169
crossref_primary_10_1145_3544014
crossref_primary_10_1007_s00500_021_06148_8
crossref_primary_10_3390_diagnostics15020230
crossref_primary_10_4274_balkanmedj_galenos_2022_2022_11_51
crossref_primary_10_1016_j_eswa_2025_128815
crossref_primary_10_1002_rob_22586
crossref_primary_10_1016_j_eswa_2025_126632
crossref_primary_10_1038_s41598_025_00890_x
crossref_primary_10_3390_jimaging10080176
crossref_primary_10_1145_3711713
crossref_primary_10_3390_jimaging8020038
crossref_primary_10_1007_s00259_020_04879_8
crossref_primary_10_3390_electronics12051092
crossref_primary_10_1016_j_media_2024_103157
crossref_primary_10_1038_s41598_025_02294_3
crossref_primary_10_1016_j_compbiomed_2024_108585
crossref_primary_10_1109_ACCESS_2020_3042839
crossref_primary_10_1109_ACCESS_2021_3110473
crossref_primary_10_3390_bioengineering10121383
crossref_primary_10_1016_j_smhl_2024_100500
crossref_primary_10_1016_j_ejrad_2023_111156
crossref_primary_10_17816_socm619132
crossref_primary_10_1002_mp_15936
crossref_primary_10_1016_j_compbiomed_2024_107938
crossref_primary_10_1145_3594869
crossref_primary_10_1088_1361_6560_ad9e69
crossref_primary_10_1109_TFUZZ_2024_3473768
crossref_primary_10_1109_ACCESS_2024_3364818
crossref_primary_10_1016_j_matpr_2021_06_233
crossref_primary_10_32604_cmc_2022_030432
crossref_primary_10_1109_TMI_2022_3156268
crossref_primary_10_1016_j_patcog_2025_111652
crossref_primary_10_4103_ATMR_ATMR_55_25
crossref_primary_10_1109_TCYB_2022_3209175
crossref_primary_10_1002_wsbm_1548
crossref_primary_10_1016_j_patcog_2022_108824
crossref_primary_10_1007_s10489_021_03145_0
crossref_primary_10_1109_TEVC_2022_3151373
crossref_primary_10_1109_ACCESS_2020_3034766
crossref_primary_10_1038_s41467_022_33266_0
crossref_primary_10_3389_fdata_2023_1120989
crossref_primary_10_1016_j_inffus_2024_102716
crossref_primary_10_1109_TIP_2022_3211736
crossref_primary_10_1097_ICU_0000000000000846
crossref_primary_10_1007_s11063_025_11756_8
crossref_primary_10_1136_jme_2024_109905
crossref_primary_10_1145_3702638
crossref_primary_10_3390_bioengineering12090914
crossref_primary_10_3390_healthcare13080892
crossref_primary_10_1016_j_jobe_2021_102690
crossref_primary_10_1109_JBHI_2021_3110593
crossref_primary_10_1109_TIT_2023_3303221
crossref_primary_10_1016_j_jisa_2023_103621
crossref_primary_10_1109_JBHI_2021_3139575
crossref_primary_10_3390_cancers15041013
crossref_primary_10_1016_j_patcog_2022_108831
crossref_primary_10_1007_s11390_024_3515_8
crossref_primary_10_3390_s21062140
crossref_primary_10_1016_j_patcog_2024_110394
crossref_primary_10_1016_j_ins_2024_120705
crossref_primary_10_1016_j_heliyon_2024_e35683
crossref_primary_10_1016_j_media_2023_102802
crossref_primary_10_1007_s11517_022_02535_x
crossref_primary_10_1007_s11517_025_03331_z
crossref_primary_10_1109_ACCESS_2023_3250661
crossref_primary_10_1007_s00521_024_10516_4
crossref_primary_10_1016_j_adhoc_2025_103935
crossref_primary_10_1016_j_comcom_2025_108113
crossref_primary_10_1007_s12083_024_01751_6
crossref_primary_10_1016_j_imavis_2024_105405
crossref_primary_10_1016_j_compbiomed_2023_107310
crossref_primary_10_1007_s41870_023_01538_7
crossref_primary_10_58496_ADSA_2024_011
crossref_primary_10_1016_j_media_2025_103494
crossref_primary_10_3390_biomedicines10102545
crossref_primary_10_1109_ACCESS_2024_3396566
crossref_primary_10_1007_s11063_025_11730_4
crossref_primary_10_1177_03611981241302335
crossref_primary_10_1007_s10140_024_02306_1
crossref_primary_10_1145_3706061
crossref_primary_10_1016_j_compeleceng_2022_107691
crossref_primary_10_2196_24012
crossref_primary_10_1007_s11042_023_15575_8
crossref_primary_10_1007_s13042_025_02702_0
crossref_primary_10_7717_peerj_cs_2882
crossref_primary_10_1109_TAI_2024_3394798
crossref_primary_10_1007_s00530_023_01193_9
crossref_primary_10_1016_j_chb_2024_108222
crossref_primary_10_3390_rs16142570
crossref_primary_10_1111_exsy_12737
crossref_primary_10_3389_fmed_2025_1606238
crossref_primary_10_3390_s21155236
crossref_primary_10_1007_s10278_023_00916_8
crossref_primary_10_1016_j_patcog_2022_109037
crossref_primary_10_1088_1402_4896_ad3698
crossref_primary_10_1016_j_bspc_2024_106069
crossref_primary_10_1109_TII_2024_3423457
crossref_primary_10_1145_3593042
crossref_primary_10_1002_mp_15208
crossref_primary_10_1007_s00521_023_08737_0
crossref_primary_10_1016_j_imavis_2025_105601
crossref_primary_10_1117_1_JEI_31_6_063046
crossref_primary_10_1145_3627817
crossref_primary_10_1007_s10994_023_06314_z
crossref_primary_10_1007_s11517_024_03098_9
crossref_primary_10_1016_j_patcog_2025_111401
crossref_primary_10_1016_j_artmed_2024_103024
crossref_primary_10_1051_epjconf_202430217005
crossref_primary_10_1016_j_eswa_2025_127319
crossref_primary_10_3390_cancers15174228
crossref_primary_10_1016_j_compbiomed_2024_108847
crossref_primary_10_1007_s11517_024_03026_x
crossref_primary_10_1007_s11042_023_14702_9
crossref_primary_10_1108_IJWIS_04_2022_0080
crossref_primary_10_1016_j_neucom_2025_129577
crossref_primary_10_1186_s42400_024_00330_9
crossref_primary_10_1038_s41598_025_14408_y
crossref_primary_10_3390_cancers15051548
crossref_primary_10_1109_ACCESS_2023_3266586
crossref_primary_10_32604_cmc_2023_034435
crossref_primary_10_1016_j_patcog_2021_108102
crossref_primary_10_1007_s40747_025_02038_w
crossref_primary_10_1016_j_engappai_2024_108436
crossref_primary_10_1038_s41598_025_03546_y
crossref_primary_10_1007_s13042_025_02568_2
crossref_primary_10_1016_j_patcog_2025_111638
crossref_primary_10_1016_j_apenergy_2024_122872
crossref_primary_10_3390_app13148295
crossref_primary_10_1145_3604937
crossref_primary_10_1109_TASLP_2023_3304476
crossref_primary_10_1166_jmihi_2021_3850
crossref_primary_10_1016_j_jisa_2025_104172
crossref_primary_10_3390_app15147856
crossref_primary_10_3103_S0146411622080211
crossref_primary_10_1007_s13534_024_00399_8
crossref_primary_10_1002_ett_4884
crossref_primary_10_1109_ACCESS_2021_3115764
crossref_primary_10_1016_j_artmed_2024_102830
crossref_primary_10_1002_widm_1567
crossref_primary_10_1016_j_rineng_2025_104327
crossref_primary_10_1109_TMI_2023_3335098
crossref_primary_10_1016_j_rxeng_2023_11_011
crossref_primary_10_3389_fmed_2025_1580583
crossref_primary_10_1016_j_compbiomed_2023_107248
crossref_primary_10_1007_s11227_022_04502_7
crossref_primary_10_1109_TIFS_2024_3352837
crossref_primary_10_1049_cit2_12155
crossref_primary_10_1186_s13635_024_00158_3
crossref_primary_10_1109_ACCESS_2023_3305368
crossref_primary_10_1016_j_neuroimage_2023_120289
crossref_primary_10_1007_s12530_024_09598_1
crossref_primary_10_1016_j_amjmed_2021_11_010
crossref_primary_10_1007_s43995_024_00060_6
crossref_primary_10_1145_3607190
crossref_primary_10_1259_bjr_20210527
crossref_primary_10_1016_j_eswa_2022_118698
crossref_primary_10_1016_j_patcog_2021_108249
crossref_primary_10_1016_j_compbiomed_2022_106422
crossref_primary_10_1007_s11227_022_04611_3
crossref_primary_10_1016_j_neucom_2024_128111
crossref_primary_10_1109_JIOT_2020_3013710
crossref_primary_10_1016_j_compbiomed_2023_107251
crossref_primary_10_1016_j_neucom_2025_129660
crossref_primary_10_1016_j_bspc_2025_108333
crossref_primary_10_1109_JIOT_2024_3514194
crossref_primary_10_1109_JAS_2023_123123
crossref_primary_10_3390_diagnostics12112708
crossref_primary_10_4018_IJSWIS_360651
crossref_primary_10_1109_ACCESS_2023_3299862
crossref_primary_10_1016_j_ejmp_2022_06_003
crossref_primary_10_1007_s13198_024_02482_w
crossref_primary_10_1109_TIM_2024_3440388
crossref_primary_10_1016_j_iot_2024_101206
crossref_primary_10_1016_j_patcog_2024_110564
crossref_primary_10_1007_s11263_024_02233_1
crossref_primary_10_1089_ten_teb_2024_0216
crossref_primary_10_1016_j_cobme_2024_100561
crossref_primary_10_1007_s10462_023_10415_5
crossref_primary_10_1109_JBHI_2023_3348130
crossref_primary_10_1016_j_compbiomed_2023_106626
crossref_primary_10_1016_j_neunet_2024_107019
crossref_primary_10_1007_s00521_023_08921_2
crossref_primary_10_3390_math11204272
crossref_primary_10_1007_s11548_021_02505_y
crossref_primary_10_3390_electronics10172132
crossref_primary_10_1038_s41598_025_97675_z
crossref_primary_10_1016_j_diii_2025_05_006
crossref_primary_10_1016_j_eswa_2022_116815
crossref_primary_10_3390_app14030989
crossref_primary_10_1016_j_artmed_2022_102332
crossref_primary_10_1038_s41523_023_00577_4
crossref_primary_10_3390_computers13080203
Cites_doi 10.1038/nature21056
10.1016/j.patcog.2019.107040
10.1109/TMI.2014.2377694
10.1109/LGRS.2018.2872355
10.1109/TPAMI.2017.2655525
10.1016/S1359-6446(04)03334-3
10.1016/j.media.2019.04.005
10.1001/jama.2016.17216
10.1126/science.aaw4399
10.1016/j.patcog.2017.03.020
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2020.107332
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2020_107332
S0031320320301357
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c352t-b73c83318a9e15ea0fc343907602a3aedb3a1d1f042bfb9bdbc3fa94edd0d64f3
ISICitedReferencesCount 329
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000585304300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 07:26:19 EST 2025
Tue Nov 18 22:19:41 EST 2025
Fri Feb 23 02:46:15 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Adversarial attack
Adversarial example detection
Medical image analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-b73c83318a9e15ea0fc343907602a3aedb3a1d1f042bfb9bdbc3fa94edd0d64f3
ORCID 0000-0003-4357-4592
0000-0001-9064-7964
0000-0003-2099-4973
0000-0003-0423-0682
OpenAccessLink https://doi.org/10.1016/j.patcog.2020.107332
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2020_107332
crossref_primary_10_1016_j_patcog_2020_107332
elsevier_sciencedirect_doi_10_1016_j_patcog_2020_107332
PublicationCentury 2000
PublicationDate February 2021
2021-02-00
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: February 2021
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Goodfellow, Shlens, Szegedy (bib0009) 2015
Lu, Chen, Sato, Sato (bib0004) 2018; 40
He, Zhang, Ren, Sun (bib0001) 2016
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (bib0005) 2017; 542
Gu, Cheng (bib0019) 2015
Metzen, Genewein, Fischer, Bischoff (bib0036) 2017
Cheng, Zhang, Zhang (bib0022) 2015
Wu, Wang, Xia, Bailey, Ma (bib0029) 2020
Niu, Gu, Lu, Lv, Wang, Sato, Zhang, Xiao, Dai, Cheng (bib0017) 2019; vol. 33
Wang, Zhou, Shen, Park, Fishman, Yuille (bib0021) 2019
Ciresan, Giusti, Gambardella, Schmidhuber (bib0026) 2013; vol. 8150
Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, et al. (bib0025) 2016
Liu, Liu, Fan, Ma, Zhang, Xie, Tao (bib0046) 2019; vol. 33
Menze, Jakab, Bauer, et al. (bib0024) 2015; 34
Zhou, Bai, Liu, Zhou, Hancock (bib0035) 2020; 98
.
Jiang, Ma, Chen, Bailey, Jiang (bib0028) 2019
(2019).
C. Zhang, A. Liu, X. Liu, Y. Xu, H. Yu, Y. Ma, T. Li, Interpreting and improving adversarial robustness with neuron sensitivity, arXiv
Wang, Bai, Wang, Zhou, Ren (bib0002) 2019; 16
(2017).
Cheng, Lu, Zhang (bib0011) 2018
Eykholt, Evtimov, Fernandes, Li, Rahmati, Xiao, Prakash, Kohno, Song (bib0010) 2018
Kurakin, Goodfellow, Bengio (bib0030) 2017
Roth, Lu, Farag, Shin, Liu, Turkbey, Summers (bib0007) 2015
Finlayson, Bowers, Ito, Zittrain, Beam, Kohane (bib0012) 2019; 363
Feinman, Curtin, Shintre, Gardner (bib0037) 2017
Kaggle, Kaggle diabetic retinopathy detection challenge, 2015
Bai, Yan, Yang, Bai, Zhou, Hancock (bib0003) 2018; 75
Paschali, Conjeti, Navarro, Navab (bib0016) 2018
F. Tramèr, N. Papernot, I. Goodfellow, D. Boneh, P. McDaniel, The space of transferable adversarial examples, arXiv
Liu, Liu, Cai, Pujol, Kikinis, Feng (bib0023) 2014
Li, Zhu, Zhou, Xia, Shen, Fishman, Yuille (bib0015) 2019
Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus (bib0008) 2014
Simonyan, Vedaldi, Zisserman (bib0041) 2014
Wang, Zou, Yi, Bailey, Ma, Gu (bib0048) 2020
Pien, Fischman, Thrall, Sorensen (bib0018) 2005; 10
ISIC, The international skin imaging collaboration, 2019
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib0045) 2017
Wang, Peng, Lu, Lu, Bagheri, Summers (bib0013) 2017
H. Yu, A. Liu, X. Liu, J. Yang, C. Zhang, Towards noise-robust neural networks via progressive adversarial training, arXiv
Carlini, Wagner (bib0031) 2017
Ross, Doshi-Velez (bib0033) 2018
Lu, Issaranon, Forsyth (bib0043) 2017
Athalye, Carlini, Wagner (bib0034) 2018
Ma, Li, Wang, Erfani, Wijewickrema, Schoenebeck, Houle, Song, Bailey (bib0038) 2018
Bai, Feng, Wang, Dai, Xia, Jiang (bib0032) 2019
Liu, Gu, Lu (bib0020) 2019
Madry, Makelov, Schmidt, Tsipras, Vladu (bib0027) 2018
Shafahi, Najibi, Ghiasi, Xu, Dickerson, Studer, Davis, Taylor, Goldstein (bib0040) 2019
Wang, Ma, Bailey, Yi, Zhou, Gu (bib0047) 2019
Maaten, Hinton (bib0044) 2008; 9
Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros (bib0039) 2016; 316
Szegedy (10.1016/j.patcog.2020.107332_bib0008) 2014
Pien (10.1016/j.patcog.2020.107332_bib0018) 2005; 10
Esteva (10.1016/j.patcog.2020.107332_bib0005) 2017; 542
Wang (10.1016/j.patcog.2020.107332_bib0048) 2020
Madry (10.1016/j.patcog.2020.107332_bib0027) 2018
Maaten (10.1016/j.patcog.2020.107332_bib0044) 2008; 9
Wang (10.1016/j.patcog.2020.107332_bib0047) 2019
Menze (10.1016/j.patcog.2020.107332_bib0024) 2015; 34
Metzen (10.1016/j.patcog.2020.107332_bib0036) 2017
Selvaraju (10.1016/j.patcog.2020.107332_bib0045) 2017
10.1016/j.patcog.2020.107332_bib0014
Gulshan (10.1016/j.patcog.2020.107332_bib0025) 2016
He (10.1016/j.patcog.2020.107332_bib0001) 2016
Niu (10.1016/j.patcog.2020.107332_bib0017) 2019; vol. 33
10.1016/j.patcog.2020.107332_bib0050
Li (10.1016/j.patcog.2020.107332_bib0015) 2019
Cheng (10.1016/j.patcog.2020.107332_bib0022) 2015
Ross (10.1016/j.patcog.2020.107332_bib0033) 2018
Wang (10.1016/j.patcog.2020.107332_bib0013) 2017
Ciresan (10.1016/j.patcog.2020.107332_bib0026) 2013; vol. 8150
Jiang (10.1016/j.patcog.2020.107332_bib0028) 2019
Roth (10.1016/j.patcog.2020.107332_bib0007) 2015
Wang (10.1016/j.patcog.2020.107332_bib0021) 2019
Goodfellow (10.1016/j.patcog.2020.107332_bib0009) 2015
Gu (10.1016/j.patcog.2020.107332_bib0019) 2015
Carlini (10.1016/j.patcog.2020.107332_bib0031) 2017
Ma (10.1016/j.patcog.2020.107332_bib0038) 2018
Wang (10.1016/j.patcog.2020.107332_bib0002) 2019; 16
Zhou (10.1016/j.patcog.2020.107332_bib0035) 2020; 98
Eykholt (10.1016/j.patcog.2020.107332_bib0010) 2018
Paschali (10.1016/j.patcog.2020.107332_bib0016) 2018
Wu (10.1016/j.patcog.2020.107332_bib0029) 2020
Lu (10.1016/j.patcog.2020.107332_bib0004) 2018; 40
Gulshan (10.1016/j.patcog.2020.107332_bib0039) 2016; 316
Lu (10.1016/j.patcog.2020.107332_bib0043) 2017
Cheng (10.1016/j.patcog.2020.107332_bib0011) 2018
10.1016/j.patcog.2020.107332_bib0006
Bai (10.1016/j.patcog.2020.107332_bib0003) 2018; 75
Athalye (10.1016/j.patcog.2020.107332_bib0034) 2018
Simonyan (10.1016/j.patcog.2020.107332_bib0041) 2014
Liu (10.1016/j.patcog.2020.107332_bib0023) 2014
10.1016/j.patcog.2020.107332_bib0042
10.1016/j.patcog.2020.107332_bib0049
Finlayson (10.1016/j.patcog.2020.107332_bib0012) 2019; 363
Kurakin (10.1016/j.patcog.2020.107332_bib0030) 2017
Feinman (10.1016/j.patcog.2020.107332_bib0037) 2017
Liu (10.1016/j.patcog.2020.107332_bib0046) 2019; vol. 33
Liu (10.1016/j.patcog.2020.107332_bib0020) 2019
Shafahi (10.1016/j.patcog.2020.107332_bib0040) 2019
Bai (10.1016/j.patcog.2020.107332_bib0032) 2019
References_xml – volume: 16
  start-page: 310
  year: 2019
  end-page: 314
  ident: bib0002
  article-title: Multiscale visual attention networks for object detection in VHR remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0001
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 274
  year: 2018
  end-page: 283
  ident: bib0034
  article-title: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples
  publication-title: International Conference on Machine Learning
– year: 2020
  ident: bib0029
  article-title: Skip connections matter: On the transferability of adversarial examples generated with resnets
  publication-title: International Conference on Learning Representations
– volume: vol. 8150
  start-page: 411
  year: 2013
  end-page: 418
  ident: bib0026
  article-title: Mitosis detection in breast cancer histology images with deep neural networks.
  publication-title: International Conference on Medical Image Computing and Computer Assisted Intervention
– reference: ISIC, The international skin imaging collaboration, 2019, (
– reference: ).
– volume: 10
  start-page: 259
  year: 2005
  end-page: 266
  ident: bib0018
  article-title: Using imaging biomarkers to accelerate drug development and clinical trials
  publication-title: Drug Discov. Today
– year: 2018
  ident: bib0033
  article-title: Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients
  publication-title: Thirty-Second AAAI Conference on Artificial Intelligence
– year: 2020
  ident: bib0048
  article-title: Improving adversarial robustness requires revisiting misclassified examples
  publication-title: International Conference on Learning Representations
– start-page: 111
  year: 2019
  end-page: 119
  ident: bib0020
  article-title: Unsupervised ensemble strategy for retinal vessel segmentation
  publication-title: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019
– volume: vol. 33
  start-page: 1028
  year: 2019
  end-page: 1035
  ident: bib0046
  article-title: Perceptual-sensitive GAN for generating adversarial patches
  publication-title: AAAI Conference on Artificial Intelligence
– start-page: 69
  year: 2019
  end-page: 91
  ident: bib0015
  article-title: Volumetric medical image segmentation: a 3d deep coarse-to-fine framework and its adversarial examples
  publication-title: Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics
– year: 2018
  ident: bib0038
  article-title: Characterizing adversarial subspaces using local intrinsic dimensionality
  publication-title: International Conference on Learning Representations
– start-page: 4784
  year: 2019
  end-page: 4793
  ident: bib0032
  article-title: Hilbert-based generative defense for adversarial examples
  publication-title: IEEE International Conference on Computer Vision
– start-page: 6586
  year: 2019
  end-page: 6595
  ident: bib0047
  article-title: On the convergence and robustness of adversarial training
  publication-title: International Conference on Machine Learning
– year: 2017
  ident: bib0037
  article-title: Detecting adversarial samples from artifacts
  publication-title: International Conference on Learning Representations
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: bib0044
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– start-page: 1625
  year: 2018
  end-page: 1634
  ident: bib0010
  article-title: Robust physical-world attacks on deep learning visual classification
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– reference: H. Yu, A. Liu, X. Liu, J. Yang, C. Zhang, Towards noise-robust neural networks via progressive adversarial training, arXiv:
– start-page: 39
  year: 2017
  end-page: 57
  ident: bib0031
  article-title: Towards evaluating the robustness of neural networks
  publication-title: 2017 IEEE Symposium on Security and Privacy
– year: 2017
  ident: bib0036
  article-title: On detecting adversarial perturbations
  publication-title: International Conference on Learning Representations
– start-page: 864
  year: 2019
  end-page: 872
  ident: bib0028
  article-title: Black-box adversarial attacks on video recognition models
  publication-title: ACM International Conference on Multimedia
– start-page: 3353
  year: 2019
  end-page: 3364
  ident: bib0040
  article-title: Adversarial training for free!
  publication-title: Advances in Neural Information Processing Systems
– start-page: 556
  year: 2015
  end-page: 564
  ident: bib0007
  article-title: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation
  publication-title: International Conference on Medical Image Computing and Computer Assisted Intervention
– year: 2015
  ident: bib0022
  article-title: Deep similarity learning for multimodal medical images
  publication-title: Comput. Methods Biomech. Biomed.Eng.
– year: 2018
  ident: bib0027
  article-title: Towards deep learning models resistant to adversarial attacks
  publication-title: International Conference on Learning Representations
– start-page: 1015
  year: 2014
  end-page: 1018
  ident: bib0023
  article-title: Early/diagnosis of Alzheimer’s disease with deep learning
  publication-title: IEEE International Symposium on Biomedical Imaging (ISBI)
– volume: 98
  start-page: 107040
  year: 2020
  ident: bib0035
  article-title: Learning binary code for fast nearest subspace search
  publication-title: Pattern Recognit.
– start-page: 618
  year: 2017
  end-page: 626
  ident: bib0045
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization
  publication-title: International Conference on Computer Vision
– year: 2017
  ident: bib0030
  article-title: Adversarial examples in the physical world
  publication-title: International Conference on Learning Representations
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: bib0039
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: Jama
– reference: C. Zhang, A. Liu, X. Liu, Y. Xu, H. Yu, Y. Ma, T. Li, Interpreting and improving adversarial robustness with neuron sensitivity, arXiv:
– reference: (2017).
– year: 2015
  ident: bib0019
  article-title: Learning to boost filamentary structure segmentation
  publication-title: International Conference on Computer Vision
– year: 2015
  ident: bib0009
  article-title: Explaining and harnessing adversarial examples
  publication-title: International Conference on Learning Representations
– reference: F. Tramèr, N. Papernot, I. Goodfellow, D. Boneh, P. McDaniel, The space of transferable adversarial examples, arXiv:
– start-page: 446
  year: 2017
  end-page: 454
  ident: bib0043
  article-title: SafetyNet: detecting and rejecting adversarial examples robustly
  publication-title: International Conference on Computer Vision
– volume: 40
  start-page: 221
  year: 2018
  end-page: 234
  ident: bib0004
  article-title: SymPS: BRDF symmetry guided photometric stereo for shape and light source estimation
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (TPAMI)
– reference: (2019).
– year: 2019
  ident: bib0021
  article-title: Abdominal multi-organ segmentation with organ-attention networks and statistical fusion
  publication-title: Med. Image Anal.
– year: 2016
  ident: bib0025
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: J. Am. Med. Assoc.
– start-page: 105
  year: 2018
  end-page: 121
  ident: bib0011
  article-title: Appearance-based gaze estimation via evaluation-guided asymmetric regression
  publication-title: European Conference on Computer Vision (ECCV)
– volume: 75
  start-page: 136
  year: 2018
  end-page: 148
  ident: bib0003
  article-title: Adaptive hash retrieval with kernel based similarity
  publication-title: Pattern Recognit.
– volume: 34
  start-page: 1993
  year: 2015
  end-page: 2024
  ident: bib0024
  article-title: The multimodal brain tumor image segmentation benchmark (brats)
  publication-title: IEEE Trans. Med. Imaging
– volume: 363
  start-page: 1287
  year: 2019
  end-page: 1289
  ident: bib0012
  article-title: Adversarial attacks on medical machine learning
  publication-title: Science
– start-page: 493
  year: 2018
  end-page: 501
  ident: bib0016
  article-title: Generalizability vs. Robustness: investigating medical imaging networks using adversarial examples
  publication-title: Medical Image Computing and Computer Assisted Intervention
– start-page: 3462
  year: 2017
  end-page: 3471
  ident: bib0013
  article-title: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– volume: 542
  start-page: 115
  year: 2017
  ident: bib0005
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: vol. 33
  start-page: 1093
  year: 2019
  end-page: 1101
  ident: bib0017
  article-title: Pathological evidence exploration in deep retinal image diagnosis
  publication-title: AAAI Conference on Artificial Intelligence
– year: 2014
  ident: bib0008
  article-title: Intriguing properties of neural networks
  publication-title: International Conference on Learning Representations
– reference: Kaggle, Kaggle diabetic retinopathy detection challenge, 2015, (
– year: 2014
  ident: bib0041
  article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps
  publication-title: International Conference on Learning Representations, Workshop Track Proceedings
– start-page: 69
  year: 2019
  ident: 10.1016/j.patcog.2020.107332_bib0015
  article-title: Volumetric medical image segmentation: a 3d deep coarse-to-fine framework and its adversarial examples
– start-page: 39
  year: 2017
  ident: 10.1016/j.patcog.2020.107332_bib0031
  article-title: Towards evaluating the robustness of neural networks
– year: 2018
  ident: 10.1016/j.patcog.2020.107332_bib0033
  article-title: Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients
– ident: 10.1016/j.patcog.2020.107332_bib0049
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 10.1016/j.patcog.2020.107332_bib0005
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 98
  start-page: 107040
  year: 2020
  ident: 10.1016/j.patcog.2020.107332_bib0035
  article-title: Learning binary code for fast nearest subspace search
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107040
– start-page: 105
  year: 2018
  ident: 10.1016/j.patcog.2020.107332_bib0011
  article-title: Appearance-based gaze estimation via evaluation-guided asymmetric regression
– year: 2014
  ident: 10.1016/j.patcog.2020.107332_bib0008
  article-title: Intriguing properties of neural networks
– volume: 34
  start-page: 1993
  issue: 10
  year: 2015
  ident: 10.1016/j.patcog.2020.107332_bib0024
  article-title: The multimodal brain tumor image segmentation benchmark (brats)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– year: 2017
  ident: 10.1016/j.patcog.2020.107332_bib0030
  article-title: Adversarial examples in the physical world
– volume: 16
  start-page: 310
  issue: 2
  year: 2019
  ident: 10.1016/j.patcog.2020.107332_bib0002
  article-title: Multiscale visual attention networks for object detection in VHR remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2872355
– start-page: 618
  year: 2017
  ident: 10.1016/j.patcog.2020.107332_bib0045
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization
– volume: vol. 8150
  start-page: 411
  year: 2013
  ident: 10.1016/j.patcog.2020.107332_bib0026
  article-title: Mitosis detection in breast cancer histology images with deep neural networks.
– year: 2017
  ident: 10.1016/j.patcog.2020.107332_bib0036
  article-title: On detecting adversarial perturbations
– start-page: 3353
  year: 2019
  ident: 10.1016/j.patcog.2020.107332_bib0040
  article-title: Adversarial training for free!
– start-page: 3462
  year: 2017
  ident: 10.1016/j.patcog.2020.107332_bib0013
  article-title: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases
– volume: vol. 33
  start-page: 1093
  year: 2019
  ident: 10.1016/j.patcog.2020.107332_bib0017
  article-title: Pathological evidence exploration in deep retinal image diagnosis
– start-page: 556
  year: 2015
  ident: 10.1016/j.patcog.2020.107332_bib0007
  article-title: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation
– ident: 10.1016/j.patcog.2020.107332_bib0006
– volume: 9
  start-page: 2579
  issue: Nov
  year: 2008
  ident: 10.1016/j.patcog.2020.107332_bib0044
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 40
  start-page: 221
  issue: 1
  year: 2018
  ident: 10.1016/j.patcog.2020.107332_bib0004
  article-title: SymPS: BRDF symmetry guided photometric stereo for shape and light source estimation
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell. (TPAMI)
  doi: 10.1109/TPAMI.2017.2655525
– year: 2018
  ident: 10.1016/j.patcog.2020.107332_bib0038
  article-title: Characterizing adversarial subspaces using local intrinsic dimensionality
– start-page: 6586
  year: 2019
  ident: 10.1016/j.patcog.2020.107332_bib0047
  article-title: On the convergence and robustness of adversarial training
– volume: 10
  start-page: 259
  issue: 4
  year: 2005
  ident: 10.1016/j.patcog.2020.107332_bib0018
  article-title: Using imaging biomarkers to accelerate drug development and clinical trials
  publication-title: Drug Discov. Today
  doi: 10.1016/S1359-6446(04)03334-3
– year: 2019
  ident: 10.1016/j.patcog.2020.107332_bib0021
  article-title: Abdominal multi-organ segmentation with organ-attention networks and statistical fusion
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.04.005
– year: 2015
  ident: 10.1016/j.patcog.2020.107332_bib0009
  article-title: Explaining and harnessing adversarial examples
– year: 2020
  ident: 10.1016/j.patcog.2020.107332_bib0029
  article-title: Skip connections matter: On the transferability of adversarial examples generated with resnets
– start-page: 864
  year: 2019
  ident: 10.1016/j.patcog.2020.107332_bib0028
  article-title: Black-box adversarial attacks on video recognition models
– start-page: 4784
  year: 2019
  ident: 10.1016/j.patcog.2020.107332_bib0032
  article-title: Hilbert-based generative defense for adversarial examples
– start-page: 446
  year: 2017
  ident: 10.1016/j.patcog.2020.107332_bib0043
  article-title: SafetyNet: detecting and rejecting adversarial examples robustly
– year: 2016
  ident: 10.1016/j.patcog.2020.107332_bib0025
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: J. Am. Med. Assoc.
  doi: 10.1001/jama.2016.17216
– ident: 10.1016/j.patcog.2020.107332_bib0014
– start-page: 493
  year: 2018
  ident: 10.1016/j.patcog.2020.107332_bib0016
  article-title: Generalizability vs. Robustness: investigating medical imaging networks using adversarial examples
– year: 2014
  ident: 10.1016/j.patcog.2020.107332_bib0041
  article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps
  publication-title: International Conference on Learning Representations, Workshop Track Proceedings
– start-page: 770
  year: 2016
  ident: 10.1016/j.patcog.2020.107332_bib0001
  article-title: Deep residual learning for image recognition
– start-page: 274
  year: 2018
  ident: 10.1016/j.patcog.2020.107332_bib0034
  article-title: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples
– year: 2017
  ident: 10.1016/j.patcog.2020.107332_bib0037
  article-title: Detecting adversarial samples from artifacts
– year: 2015
  ident: 10.1016/j.patcog.2020.107332_bib0019
  article-title: Learning to boost filamentary structure segmentation
– year: 2020
  ident: 10.1016/j.patcog.2020.107332_bib0048
  article-title: Improving adversarial robustness requires revisiting misclassified examples
– volume: vol. 33
  start-page: 1028
  year: 2019
  ident: 10.1016/j.patcog.2020.107332_bib0046
  article-title: Perceptual-sensitive GAN for generating adversarial patches
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  ident: 10.1016/j.patcog.2020.107332_bib0039
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: Jama
  doi: 10.1001/jama.2016.17216
– ident: 10.1016/j.patcog.2020.107332_bib0050
– start-page: 1625
  year: 2018
  ident: 10.1016/j.patcog.2020.107332_bib0010
  article-title: Robust physical-world attacks on deep learning visual classification
– volume: 363
  start-page: 1287
  issue: 6433
  year: 2019
  ident: 10.1016/j.patcog.2020.107332_bib0012
  article-title: Adversarial attacks on medical machine learning
  publication-title: Science
  doi: 10.1126/science.aaw4399
– ident: 10.1016/j.patcog.2020.107332_bib0042
– year: 2015
  ident: 10.1016/j.patcog.2020.107332_bib0022
  article-title: Deep similarity learning for multimodal medical images
  publication-title: Comput. Methods Biomech. Biomed.Eng.
– year: 2018
  ident: 10.1016/j.patcog.2020.107332_bib0027
  article-title: Towards deep learning models resistant to adversarial attacks
– start-page: 111
  year: 2019
  ident: 10.1016/j.patcog.2020.107332_bib0020
  article-title: Unsupervised ensemble strategy for retinal vessel segmentation
– volume: 75
  start-page: 136
  year: 2018
  ident: 10.1016/j.patcog.2020.107332_bib0003
  article-title: Adaptive hash retrieval with kernel based similarity
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.03.020
– start-page: 1015
  year: 2014
  ident: 10.1016/j.patcog.2020.107332_bib0023
  article-title: Early/diagnosis of Alzheimer’s disease with deep learning
SSID ssj0017142
Score 2.723356
Snippet •Medical image DNNs are easier to be attacked than natural non-medical image DNNs.•Complex biological textures of medical images may lead to more vulnerable...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107332
SubjectTerms Adversarial attack
Adversarial example detection
Deep learning
Medical image analysis
Title Understanding adversarial attacks on deep learning based medical image analysis systems
URI https://dx.doi.org/10.1016/j.patcog.2020.107332
Volume 110
WOSCitedRecordID wos000585304300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYocOillAKCPpAPvVWpNnYSJ0dUgdoKVkjlsT1FTuzQXZXsiiQVP79je5zdFYgWJC7RyoqTlefL55nxPAj5yAoVJzIrA5ZoAQYK8KCMWBmoIkxhP1YDbaPdL47FcJiORtkpxs83tp2AqOv09jabPauoYQyEbVJnHyHu_qEwAL9B6HAFscP1vwR_vpSuIk3D5Uba3hyybU1GvTkfUFrPfMeIq09mK1PumN3U4Lg2cTzSVytpFmqaoxZ7aotymkQYjD6an-WfWGV0BE-ddP3gcNxZqu9-yWkf8NOhS2Du0ne083PcYHoaOiNY6OOXvYfMZ8nMQ5Is6_Iw4GzgiEw7ok0FD0BZW2ZiF-F6h9Wdg2HyeQa70_QKjHpmBgVHz-hyvewfrhylaQwP5MVj8YKsMRFnQHlrB98OR9_7QyYRRq6YPP49n1lpw__uvut-zWVBGzl7TV6hGUEPnPg3yYqu35AN36KDImNvkcslNNAFNFBEA53W1KCBejRQiwaKaKAWDdSjgSIatsn50eHZl68B9tIISlCx26AQvEw5ELjMdBhrOahKDrqoOZdlkkutCi5DFVbA4UVVZIUqSl7JLNJKDVQSVXyHrNbTWu8SmuoqEjJJ4DawB4SZZz5sMNNiwUKu9gj365SXWGje9Dv5nfuIwknuVjc3q5u71d0jQT9r5gqt_ON-4UWQo7LolMAcUPPgzLdPnvmOvJyD_j1ZbW86_YGsl3_acXOzj_D6CwU3kdk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+adversarial+attacks+on+deep+learning+based+medical+image+analysis+systems&rft.jtitle=Pattern+recognition&rft.au=Ma%2C+Xingjun&rft.au=Niu%2C+Yuhao&rft.au=Gu%2C+Lin&rft.au=Wang%2C+Yisen&rft.date=2021-02-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=110&rft_id=info:doi/10.1016%2Fj.patcog.2020.107332&rft.externalDocID=S0031320320301357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon