Neuro-Fuzzy Logic for Automatic Animation Scene Generation in Movie Arts in Digital Media Technology

Animation scene generation (ASG) is the best digital media tool for lifelike scenes, particularly for movies. Traditional animation methods are laborious, computationally intensive, and scalable. Thus, this work addresses animation production issues using NFL-ASG. Combining fuzzy logic with a convol...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of computational intelligence systems Ročník 17; číslo 1; s. 1 - 15
Hlavní autor: Peng, Liu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 09.12.2024
Springer
Témata:
ISSN:1875-6883, 1875-6883
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Animation scene generation (ASG) is the best digital media tool for lifelike scenes, particularly for movies. Traditional animation methods are laborious, computationally intensive, and scalable. Thus, this work addresses animation production issues using NFL-ASG. Combining fuzzy logic with a convolution neural network may create more realistic animated situations with less human interaction and better learning. Convolutional model training uses animation scenarios’ complicated motion patterns, character interactions, and ambient factors. Deep learning and fuzzy logic might change animation by boosting production techniques and releasing digital media technological creativity. After testing the system on the Moana Island scene dataset, it achieved a perception analysis success rate of 0.981% and a minimal processing complexity of ( n log n ).
ISSN:1875-6883
1875-6883
DOI:10.1007/s44196-024-00709-z