Neuro-Fuzzy Logic for Automatic Animation Scene Generation in Movie Arts in Digital Media Technology
Animation scene generation (ASG) is the best digital media tool for lifelike scenes, particularly for movies. Traditional animation methods are laborious, computationally intensive, and scalable. Thus, this work addresses animation production issues using NFL-ASG. Combining fuzzy logic with a convol...
Uloženo v:
| Vydáno v: | International journal of computational intelligence systems Ročník 17; číslo 1; s. 1 - 15 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
09.12.2024
Springer |
| Témata: | |
| ISSN: | 1875-6883, 1875-6883 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Animation scene generation (ASG) is the best digital media tool for lifelike scenes, particularly for movies. Traditional animation methods are laborious, computationally intensive, and scalable. Thus, this work addresses animation production issues using NFL-ASG. Combining fuzzy logic with a convolution neural network may create more realistic animated situations with less human interaction and better learning. Convolutional model training uses animation scenarios’ complicated motion patterns, character interactions, and ambient factors. Deep learning and fuzzy logic might change animation by boosting production techniques and releasing digital media technological creativity. After testing the system on the Moana Island scene dataset, it achieved a perception analysis success rate of 0.981% and a minimal processing complexity of (
n
log
n
). |
|---|---|
| ISSN: | 1875-6883 1875-6883 |
| DOI: | 10.1007/s44196-024-00709-z |