A complete characterization of disjunctive conic cuts for mixed integer second order cone optimization

We study the convex hull of the intersection of a disjunctive set defined by parallel hyperplanes and the feasible set of a mixed integer second order cone optimization (MISOCO) problem. We extend our prior work on disjunctive conic cuts (DCCs), which has thus far been restricted to the case in whic...

Full description

Saved in:
Bibliographic Details
Published in:Discrete optimization Vol. 24; pp. 3 - 31
Main Authors: Belotti, Pietro, Góez, Julio C., Pólik, Imre, Ralphs, Ted K., Terlaky, Tamás
Format: Journal Article
Language:English
Published: Elsevier B.V 01.05.2017
Subjects:
ISSN:1572-5286, 1873-636X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We study the convex hull of the intersection of a disjunctive set defined by parallel hyperplanes and the feasible set of a mixed integer second order cone optimization (MISOCO) problem. We extend our prior work on disjunctive conic cuts (DCCs), which has thus far been restricted to the case in which the intersection of the hyperplanes and the feasible set is bounded. Using a similar technique, we show that one can extend our previous results to the case in which that intersection is unbounded. We provide a complete characterization in closed form of the conic inequalities required to describe the convex hull when the hyperplanes defining the disjunction are parallel.
AbstractList We study the convex hull of the intersection of a disjunctive set defined by parallel hyperplanes and the feasible set of a mixed integer second order cone optimization (MISOCO) problem. We extend our prior work on disjunctive conic cuts (DCCs), which has thus far been restricted to the case in which the intersection of the hyperplanes and the feasible set is bounded. Using a similar technique, we show that one can extend our previous results to the case in which that intersection is unbounded. We provide a complete characterization in closed form of the conic inequalities required to describe the convex hull when the hyperplanes defining the disjunction are parallel.
Author Pólik, Imre
Góez, Julio C.
Ralphs, Ted K.
Belotti, Pietro
Terlaky, Tamás
Author_xml – sequence: 1
  givenname: Pietro
  surname: Belotti
  fullname: Belotti, Pietro
  email: pietrobelotti@fico.com
  organization: Xpress Optimizer Team, FICO, Birmingham, UK
– sequence: 2
  givenname: Julio C.
  orcidid: 0000-0001-6953-579X
  surname: Góez
  fullname: Góez, Julio C.
  email: julio.goez@nhh.no
  organization: Department of Business and Management Science, NHH Norwegian School of Economics, 5045 Bergen, Norway
– sequence: 3
  givenname: Imre
  orcidid: 0000-0001-5426-5619
  surname: Pólik
  fullname: Pólik, Imre
  email: imre@polik.net
  organization: SAS Institute, Cary, NC 27513-2414, USA
– sequence: 4
  givenname: Ted K.
  orcidid: 0000-0002-4306-9089
  surname: Ralphs
  fullname: Ralphs, Ted K.
  email: ted@lehigh.edu
  organization: Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, 18015, USA
– sequence: 5
  givenname: Tamás
  surname: Terlaky
  fullname: Terlaky, Tamás
  email: terlaky@lehigh.edu
  organization: Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, 18015, USA
BookMark eNqFUMtOwzAQtFCRaAt_wME_kOBHHg4HpKriJVXiAhI3y3HW4KiJK9utgK_HpT1xgNPuzGpGszNDk9GNgNAlJTkltLrq884Gt4k5SyhROSH0BE2pqHlW8ep1kvayZlnJRHWGZiH0hPCi4eUUmQXWbtisIQLW78orHcHbLxWtG7EzOBn321FHu0t3N1qN9TYGbJzHg_2ADtsxwht4HCCdO-x8l0BaAadAdjhanaNTo9YBLo5zjl7ubp-XD9nq6f5xuVhlmpcsZi1TpeCGtBWltWpMIWrR6q4gNXSGtaBb4Aq0EW1JoOFacCaKuikqVZWsFYbPUXHw1d6F4MHIjbeD8p-SErnvSvby0JXcd7VnU1dJdv1Lpm38CR69suv_xDcHMaTHdha8DNrCqKGzHnSUnbN_G3wDDZCNYQ
CitedBy_id crossref_primary_10_1007_s10288_020_00459_6
crossref_primary_10_1007_s11081_020_09573_0
crossref_primary_10_1007_s10107_025_02212_5
crossref_primary_10_1016_j_compchemeng_2021_107347
crossref_primary_10_1007_s10107_024_02069_0
crossref_primary_10_1016_j_orl_2018_07_004
crossref_primary_10_1109_TVT_2020_2965641
Cites_doi 10.1090/S0002-9904-1958-10224-4
10.1007/s10107-006-0086-0
10.1016/S0167-5060(08)70342-X
10.1007/s101070050103
10.1137/1015032
10.1007/s10107-005-0578-3
10.1016/j.orl.2011.02.002
10.1007/s10107-015-0866-5
10.1016/j.dam.2013.05.017
10.1016/j.orl.2014.10.006
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.disopt.2016.10.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-636X
EndPage 31
ExternalDocumentID 10_1016_j_disopt_2016_10_001
S1572528616300901
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
J9A
KOM
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c352t-b2a583f0b6117a9f4878bcd407edf2becbe3aecf8b50e93c832847946a652b8f3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403127800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1572-5286
IngestDate Sat Nov 29 07:02:39 EST 2025
Tue Nov 18 21:52:00 EST 2025
Fri Feb 23 02:29:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Second order cone optimization
Mixed integer optimization
Disjunctive programming
Disjunctive conic cuts
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-b2a583f0b6117a9f4878bcd407edf2becbe3aecf8b50e93c832847946a652b8f3
ORCID 0000-0001-6953-579X
0000-0002-4306-9089
0000-0001-5426-5619
OpenAccessLink http://hdl.handle.net/11311/1163777
PageCount 29
ParticipantIDs crossref_primary_10_1016_j_disopt_2016_10_001
crossref_citationtrail_10_1016_j_disopt_2016_10_001
elsevier_sciencedirect_doi_10_1016_j_disopt_2016_10_001
PublicationCentury 2000
PublicationDate May 2017
2017-05-00
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May 2017
PublicationDecade 2010
PublicationTitle Discrete optimization
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Çezik, Iyengar (br000030) 2005; 104
Góez (br000070) 2013
Dadush, Dey, Vielma (br000050) 2011; 39
Kılınç-Karzan, Yıldız (br000055) 2014; vol. 8494
Andersen, Jensen (br000045) 2013; vol. 7801
Cornuéjols (br000005) 2008; 112
Stubbs, Mehrotra (br000025) 1999; 86
Balas (br000010) 1979
Searle (br000075) 1982
Modaresi, Kılınç, Vielma (br000065) 2015; 43
Belotti, Góez, Pólik, Ralphs, Terlaky (br000020) 2015
Golub (br000080) 1973; 15
Gomory (br000035) 1958; 64
Belotti, Góez, Pólik, Ralphs, Terlaky (br000015) 2013; 161
Drewes (br000040) 2009
Modaresi, Kılınç, Vielma (br000060) 2016; 155
Kılınç-Karzan (10.1016/j.disopt.2016.10.001_br000055) 2014; vol. 8494
Gomory (10.1016/j.disopt.2016.10.001_br000035) 1958; 64
Modaresi (10.1016/j.disopt.2016.10.001_br000060) 2016; 155
Belotti (10.1016/j.disopt.2016.10.001_br000020) 2015
Searle (10.1016/j.disopt.2016.10.001_br000075) 1982
Modaresi (10.1016/j.disopt.2016.10.001_br000065) 2015; 43
Balas (10.1016/j.disopt.2016.10.001_br000010) 1979
Andersen (10.1016/j.disopt.2016.10.001_br000045) 2013; vol. 7801
Cornuéjols (10.1016/j.disopt.2016.10.001_br000005) 2008; 112
Góez (10.1016/j.disopt.2016.10.001_br000070) 2013
Golub (10.1016/j.disopt.2016.10.001_br000080) 1973; 15
Belotti (10.1016/j.disopt.2016.10.001_br000015) 2013; 161
Çezik (10.1016/j.disopt.2016.10.001_br000030) 2005; 104
Stubbs (10.1016/j.disopt.2016.10.001_br000025) 1999; 86
Drewes (10.1016/j.disopt.2016.10.001_br000040) 2009
Dadush (10.1016/j.disopt.2016.10.001_br000050) 2011; 39
References_xml – start-page: 1
  year: 2015
  end-page: 35
  ident: br000020
  article-title: A conic representation of the convex hull of disjunctive sets and conic cuts for integer second order cone optimization
  publication-title: Numerical Analysis and Optimization: NAO-III, Muscat, Oman, January 2014
– year: 2009
  ident: br000040
  article-title: Mixed integer second order cone programming
– volume: 86
  start-page: 515
  year: 1999
  end-page: 532
  ident: br000025
  article-title: A branch-and-cut method for 0-1 mixed convex programming
  publication-title: Math. Program.
– year: 2013
  ident: br000070
  article-title: Mixed integer second order cone optimization, disjunctive conic cuts: theory and experiments
– volume: 39
  start-page: 121
  year: 2011
  end-page: 126
  ident: br000050
  article-title: The split closure of a strictly convex body
  publication-title: Oper. Res. Lett.
– year: 1982
  ident: br000075
  publication-title: Matrix Algebra Useful for Statistics
– start-page: 3
  year: 1979
  end-page: 51
  ident: br000010
  article-title: Disjunctive programming
  publication-title: Annals of Discrete Mathematics 5: Discrete Optimization
– volume: 155
  start-page: 575
  year: 2016
  end-page: 611
  ident: br000060
  article-title: Intersection cuts for nonlinear integer programming: convexification techniques for structured sets
  publication-title: Math. Program.
– volume: 104
  start-page: 179
  year: 2005
  end-page: 202
  ident: br000030
  article-title: Cuts for mixed 0-1 conic programming
  publication-title: Math. Program.
– volume: 43
  start-page: 10
  year: 2015
  end-page: 15
  ident: br000065
  article-title: Split cuts and extended formulations for mixed integer conic quadratic programming
  publication-title: Oper. Res. Lett.
– volume: 161
  start-page: 2778
  year: 2013
  end-page: 2793
  ident: br000015
  article-title: On families of quadratic surfaces having fixed intersections with two hyperplanes
  publication-title: Discrete Appl. Math.
– volume: 64
  start-page: 275
  year: 1958
  end-page: 278
  ident: br000035
  article-title: Outline of an algorithm for integer solutions to linear programs
  publication-title: Bull. Amer. Math. Soc.
– volume: vol. 7801
  start-page: 37
  year: 2013
  end-page: 48
  ident: br000045
  article-title: Intersection cuts for mixed integer conic quadratic sets
  publication-title: Integer Programming and Combinatorial Optimization
– volume: 112
  start-page: 3
  year: 2008
  end-page: 44
  ident: br000005
  article-title: Valid inequalities for mixed integer linear programs
  publication-title: Math. Program.
– volume: vol. 8494
  start-page: 345
  year: 2014
  end-page: 356
  ident: br000055
  article-title: Two-term disjunctions on the second-order cone
  publication-title: Integer Programming and Combinatorial Optimization
– volume: 15
  start-page: 318
  year: 1973
  end-page: 334
  ident: br000080
  article-title: Some modified matrix eigenvalues problems
  publication-title: SIAM Rev.
– volume: 64
  start-page: 275
  year: 1958
  ident: 10.1016/j.disopt.2016.10.001_br000035
  article-title: Outline of an algorithm for integer solutions to linear programs
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0002-9904-1958-10224-4
– volume: 112
  start-page: 3
  issue: 1
  year: 2008
  ident: 10.1016/j.disopt.2016.10.001_br000005
  article-title: Valid inequalities for mixed integer linear programs
  publication-title: Math. Program.
  doi: 10.1007/s10107-006-0086-0
– start-page: 3
  year: 1979
  ident: 10.1016/j.disopt.2016.10.001_br000010
  article-title: Disjunctive programming
  doi: 10.1016/S0167-5060(08)70342-X
– year: 2009
  ident: 10.1016/j.disopt.2016.10.001_br000040
– start-page: 1
  year: 2015
  ident: 10.1016/j.disopt.2016.10.001_br000020
  article-title: A conic representation of the convex hull of disjunctive sets and conic cuts for integer second order cone optimization
– volume: 86
  start-page: 515
  issue: 3
  year: 1999
  ident: 10.1016/j.disopt.2016.10.001_br000025
  article-title: A branch-and-cut method for 0-1 mixed convex programming
  publication-title: Math. Program.
  doi: 10.1007/s101070050103
– year: 2013
  ident: 10.1016/j.disopt.2016.10.001_br000070
– year: 1982
  ident: 10.1016/j.disopt.2016.10.001_br000075
– volume: 15
  start-page: 318
  issue: 2
  year: 1973
  ident: 10.1016/j.disopt.2016.10.001_br000080
  article-title: Some modified matrix eigenvalues problems
  publication-title: SIAM Rev.
  doi: 10.1137/1015032
– volume: vol. 8494
  start-page: 345
  year: 2014
  ident: 10.1016/j.disopt.2016.10.001_br000055
  article-title: Two-term disjunctions on the second-order cone
– volume: 104
  start-page: 179
  issue: 1
  year: 2005
  ident: 10.1016/j.disopt.2016.10.001_br000030
  article-title: Cuts for mixed 0-1 conic programming
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0578-3
– volume: 39
  start-page: 121
  issue: 2
  year: 2011
  ident: 10.1016/j.disopt.2016.10.001_br000050
  article-title: The split closure of a strictly convex body
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2011.02.002
– volume: 155
  start-page: 575
  issue: 1
  year: 2016
  ident: 10.1016/j.disopt.2016.10.001_br000060
  article-title: Intersection cuts for nonlinear integer programming: convexification techniques for structured sets
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0866-5
– volume: vol. 7801
  start-page: 37
  year: 2013
  ident: 10.1016/j.disopt.2016.10.001_br000045
  article-title: Intersection cuts for mixed integer conic quadratic sets
– volume: 161
  start-page: 2778
  issue: 16–17
  year: 2013
  ident: 10.1016/j.disopt.2016.10.001_br000015
  article-title: On families of quadratic surfaces having fixed intersections with two hyperplanes
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2013.05.017
– volume: 43
  start-page: 10
  issue: 1
  year: 2015
  ident: 10.1016/j.disopt.2016.10.001_br000065
  article-title: Split cuts and extended formulations for mixed integer conic quadratic programming
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2014.10.006
SSID ssj0034935
Score 2.1314375
Snippet We study the convex hull of the intersection of a disjunctive set defined by parallel hyperplanes and the feasible set of a mixed integer second order cone...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 3
SubjectTerms Disjunctive conic cuts
Disjunctive programming
Mixed integer optimization
Second order cone optimization
Title A complete characterization of disjunctive conic cuts for mixed integer second order cone optimization
URI https://dx.doi.org/10.1016/j.disopt.2016.10.001
Volume 24
WOSCitedRecordID wos000403127800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-636X
  dateEnd: 20171130
  omitProxy: false
  ssIdentifier: ssj0034935
  issn: 1572-5286
  databaseCode: AIEXJ
  dateStart: 20040615
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE_t8pIP3KpUTWzHybEsi1hAqxVaUG-R7dhSqraputlVxQ_h9zJ-JI22aGEPXKLIcey082Vm7Hwzg9A7RlUapxMRlYLKiBqmIwmGLdJGcKLAqAtXDujHV352ls1m-flg8KuNhble8NUq227z9X8VNbSBsG3o7B3E3Q0KDXAOQocjiB2O_yT4qaeJgzNso3pDNuafnWdYVpdzsGWOMaRc-Rt11bikDKNltdWlTyBhczzbpXI5crk5bU89qkG9LMNQfaf2QwW6x86318EHANWN5wycV7rZ1B3jx36jf0_8DrYN065Hx-NOU_uLi8op69PljqL7zUYHe24TPOyXcX_bAkxhRxJsNS23q-CQBzuo4oT2dCnpGWVvKfbUvd95mI8t82ptmbFxOnZcvXhn3tpP-jesXsdFbGlu88KPUthRoMmy_e6hg4SzPBuig-npyexza-MJzV3p1u5HtEGZjjm4_zR_dnp6jszFY_QorEDw1CPnCRro1VP0sJeX8hkyU9xiCN_EEK4N7mEIOwxhiyEMGMIOQzhgCHsMYYch21PjPkSeo-8fTy6OP0WhIEekwE9vIpkIlhEzkWkcc5EbWOxmUpV0wnVpEtAGUhOhlckkm-icKLAWmatgIFKWyMyQF2i4grkOEZYyF6xMYsNKSjWTOSOCgytpqKScmfQIkfYfK1TIVm-LpiyK2-R1hKLurrXP1vKX_rwVRhE8Tu9JFoCwW-98eceZXqEHu7fgNRo2myv9Bt1X1011uXkb4PUbe-moQg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+complete+characterization+of+disjunctive+conic+cuts+for+mixed+integer+second+order+cone+optimization&rft.jtitle=Discrete+optimization&rft.au=Belotti%2C+Pietro&rft.au=G%C3%B3ez%2C+Julio+C.&rft.au=P%C3%B3lik%2C+Imre&rft.au=Ralphs%2C+Ted+K.&rft.date=2017-05-01&rft.issn=1572-5286&rft.volume=24&rft.spage=3&rft.epage=31&rft_id=info:doi/10.1016%2Fj.disopt.2016.10.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_disopt_2016_10_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-5286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-5286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-5286&client=summon