Multiobjective feature selection for microarray data via distributed parallel algorithms

Many real-world problems are large in scale and hence difficult to address. Due to the large number of features in microarray datasets, feature selection and classification are even more challenging for such datasets. Not all of these numerous features contribute to the classification task, and some...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Future generation computer systems Ročník 100; s. 952 - 981
Hlavní autori: Cao, Bin, Zhao, Jianwei, Yang, Po, Yang, Peng, Liu, Xin, Qi, Jun, Simpson, Andrew, Elhoseny, Mohamed, Mehmood, Irfan, Muhammad, Khan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.11.2019
Predmet:
ISSN:0167-739X, 1872-7115
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Many real-world problems are large in scale and hence difficult to address. Due to the large number of features in microarray datasets, feature selection and classification are even more challenging for such datasets. Not all of these numerous features contribute to the classification task, and some even impede performance. Through feature selection, a feature subset that contains only a small quantity of essential features can be generated to increase the classification accuracy and significantly reduce the time consumption. In this paper, we construct a multiobjective feature selection model that simultaneously considers the classification error, the feature number and the feature redundancy. For this model, we propose several distributed parallel algorithms based on different encodings and an adaptive strategy. Additionally, to reduce the time consumption, various tactics are employed, including a feature number constraint, distributed parallelism and sample-wise parallelism. For a batch of microarray datasets, the proposed algorithms are superior to several state-of-the-art multiobjective evolutionary algorithms in terms of both effectiveness and efficiency. •A multi-objective feature selection model is presented and tackled.•Algorithms with two encoding methodologies are proposed.•Adaptive technique is explored.•Explicit feature number threshold and distributed parallelism are employed for efficiency.
AbstractList Many real-world problems are large in scale and hence difficult to address. Due to the large number of features in microarray datasets, feature selection and classification are even more challenging for such datasets. Not all of these numerous features contribute to the classification task, and some even impede performance. Through feature selection, a feature subset that contains only a small quantity of essential features can be generated to increase the classification accuracy and significantly reduce the time consumption. In this paper, we construct a multiobjective feature selection model that simultaneously considers the classification error, the feature number and the feature redundancy. For this model, we propose several distributed parallel algorithms based on different encodings and an adaptive strategy. Additionally, to reduce the time consumption, various tactics are employed, including a feature number constraint, distributed parallelism and sample-wise parallelism. For a batch of microarray datasets, the proposed algorithms are superior to several state-of-the-art multiobjective evolutionary algorithms in terms of both effectiveness and efficiency. •A multi-objective feature selection model is presented and tackled.•Algorithms with two encoding methodologies are proposed.•Adaptive technique is explored.•Explicit feature number threshold and distributed parallelism are employed for efficiency.
Author Cao, Bin
Yang, Peng
Elhoseny, Mohamed
Qi, Jun
Simpson, Andrew
Zhao, Jianwei
Liu, Xin
Mehmood, Irfan
Muhammad, Khan
Yang, Po
Author_xml – sequence: 1
  givenname: Bin
  surname: Cao
  fullname: Cao, Bin
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, China
– sequence: 2
  givenname: Jianwei
  surname: Zhao
  fullname: Zhao, Jianwei
  email: 201422102003@stu.hebut.edu.cn
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, China
– sequence: 3
  givenname: Po
  surname: Yang
  fullname: Yang, Po
  email: poyangcn@gmail.com
  organization: Department of Computer Science, Liverpool John Moores University, UK
– sequence: 4
  givenname: Peng
  surname: Yang
  fullname: Yang, Peng
  organization: School of Artificial Intelligence, Hebei University of Technology, China
– sequence: 5
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
  organization: State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, China
– sequence: 6
  givenname: Jun
  surname: Qi
  fullname: Qi, Jun
  organization: Department of Computer Science, Liverpool John Moores University, UK
– sequence: 7
  givenname: Andrew
  surname: Simpson
  fullname: Simpson, Andrew
  organization: Department of Computer Science, Liverpool John Moores University, UK
– sequence: 8
  givenname: Mohamed
  surname: Elhoseny
  fullname: Elhoseny, Mohamed
  organization: Faculty of Computers and Information, Mansoura University, Egypt
– sequence: 9
  givenname: Irfan
  surname: Mehmood
  fullname: Mehmood, Irfan
  organization: Department of Media Design and Technology, Faculty of Engineering and Informatics, University of Bradford, Bradford BD7 1DP, United Kingdom
– sequence: 10
  givenname: Khan
  surname: Muhammad
  fullname: Muhammad, Khan
  organization: Department of Software, Sejong University, Seoul 143-747, Republic of Korea
BookMark eNqFkE1LxDAQhoOs4O7qP_CQP9CatOmm9SDI4heseFHYW5gmE03ptkuSLuy_t2U9edDTwDDPy7zPgsy6vkNCrjlLOeOrmya1Qxw8phnjVcqylOXsjMx5KbNEcl7MyHw8k4nMq-0FWYTQMMa4zPmcbF-HNrq-blBHd0BqEaYkGrCdNn1Hbe_pzmnfg_dwpAYi0IMDalyI3tVDREP34KFtsaXQfvbexa9duCTnFtqAVz9zST4eH97Xz8nm7ellfb9JdF5kMYFqBUIzK0XFrcgyYwsrVzUXQvCyNJZxJsuqRA1FjaIuBBcGseJg6joXzORLIk6544cheLRq790O_FFxpiY7qlEnO2qyo1imRjsjdvsL0y7CVDh6cO1_8N0JxrHYwaFXQTvsNBrnR2vK9O7vgG-SzYhJ
CitedBy_id crossref_primary_10_32604_cmc_2023_031519
crossref_primary_10_1016_j_apor_2021_102837
crossref_primary_10_1155_2021_6715564
crossref_primary_10_1016_j_jpdc_2019_12_015
crossref_primary_10_1155_2021_6672072
crossref_primary_10_1145_3389250
crossref_primary_10_3389_fdata_2025_1624507
crossref_primary_10_1016_j_knosys_2022_110122
crossref_primary_10_1007_s00366_021_01455_y
crossref_primary_10_1016_j_asoc_2021_107394
crossref_primary_10_3233_JIFS_189841
crossref_primary_10_1109_ACCESS_2020_3020879
crossref_primary_10_3233_JIFS_189835
crossref_primary_10_3233_JIFS_189838
crossref_primary_10_1080_17455030_2021_1998729
crossref_primary_10_1109_ACCESS_2020_3014692
crossref_primary_10_1155_2021_6668516
crossref_primary_10_1007_s00500_022_07551_5
crossref_primary_10_1007_s00366_021_01450_3
crossref_primary_10_1007_s11277_021_09410_2
crossref_primary_10_1109_ACCESS_2020_3021248
crossref_primary_10_3390_app10196904
crossref_primary_10_1109_ACCESS_2021_3107901
crossref_primary_10_1002_cnm_3372
crossref_primary_10_1088_1742_6596_1744_4_042118
crossref_primary_10_1016_j_swevo_2024_101661
crossref_primary_10_3233_JIFS_189436
Cites_doi 10.1142/S0218213013500243
10.1109/TSMCB.2012.2227469
10.1109/TPAMI.2004.105
10.1016/j.enconman.2017.04.007
10.1016/j.neucom.2015.06.083
10.1109/TCYB.2016.2605044
10.1109/TEVC.2009.2014613
10.1109/TEVC.2015.2504420
10.1016/j.asoc.2015.04.061
10.1080/15481603.2017.1408892
10.1109/TII.2016.2617464
10.1016/j.eswa.2009.10.027
10.1007/s00521-013-1368-0
10.1109/TII.2018.2803758
10.1109/TCBB.2012.33
10.1177/0165551515613226
10.1109/4235.996017
10.1016/j.ins.2014.05.042
10.1007/s13042-015-0347-4
10.1007/s00500-016-2385-6
10.1109/TEVC.2007.892759
10.1109/TEVC.2006.872133
10.1007/s13042-015-0359-0
10.1109/TCYB.2015.2490669
10.1023/A:1008202821328
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
DOI 10.1016/j.future.2019.02.030
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 981
ExternalDocumentID 10_1016_j_future_2019_02_030
S0167739X18318995
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c352t-a96a4c0f7491f422df5f76b1444188df0107898eca5be4b5414dee91adbb340d3
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000503827500069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 07:26:08 EST 2025
Tue Nov 18 21:19:00 EST 2025
Fri Feb 23 02:30:15 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Microarray dataset
High dimension
Multiobjective feature selection
Distributed parallelism
Feature redundancy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-a96a4c0f7491f422df5f76b1444188df0107898eca5be4b5414dee91adbb340d3
OpenAccessLink https://researchonline.ljmu.ac.uk/id/eprint/10219/1/FGCS_FS_MicArr%20%281%29.pdf
PageCount 30
ParticipantIDs crossref_primary_10_1016_j_future_2019_02_030
crossref_citationtrail_10_1016_j_future_2019_02_030
elsevier_sciencedirect_doi_10_1016_j_future_2019_02_030
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationTitle Future generation computer systems
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Zhang, Du, Huang, Tang, Tao (b4) 2018; 48
Onan, Korukoğlu (b13) 2017; 43
Shi, Li, Hwang, Pan, Xu (b2) 2018; 14
Lazar, Taminau, Meganck, Steenhoff, Coletta, Molter, de Schaetzen, Duque, Bersini, Nowe (b6) 2012; 9
Lin, Chen, Zhan, Chen, Coello, Yin, Lin, Zhang (b26) 2016; 20
Zheng, Wang, Gao (b3) 2018; 9
Brest, Greiner, Boskovic, Mernik, Zumer (b31) 2006; 10
Antonio, Coello (b27) 2013
Vergara, Estévez (b19) 2014; 24
Oh, Lee, Moon (b8) 2004; 26
Emary, Zawbaa, Hassanien (b14) 2016; 172
Holland (b9) 1992
Xue, Cervante, Shang, Browne, Zhang (b18) 2013; 22
Xue, Zhang, Browne (b17) 2013; 43
Kennedy, Eberhart (b11) 1995; 4
Storn, Price (b24) 1997; 11
Price, Storn, Lampinen (b23) 2005
Zhang, Zhou, Li, Fu, Peng (b5) 2017; 143
Deb, Pratap, Agarwal, Meyarivan (b30) 2002; 6
Wang, Zhang, Zhang (b28) 2016; 46
Das, Padhy (b12) 2018; 9
Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos, Benítez, Herrera (b7) 2014; 282
Xue, Zhang, Browne, Yao (b15) 2016; 20
Potter, Jong (b21) 1994
Zhang, Sanderson (b25) 2009; 13
Cao, Zhao, Yang, Lv, Liu, Min (b22) 2018; 14
Georganos, Grippa, Vanhuysse, Lennert, Shimoni, Kalogirou, Wolff (b1) 2018; 55
Gong, Chen, Zhan, Zhang, Li, Zhang, Li (b20) 2015; 34
Zhang, Li (b29) 2007; 11
Gu, Cheng, Jin (b10) 2018; 22
Huang, Buckley, Kechadi (b16) 2010; 37
Lazar (10.1016/j.future.2019.02.030_b6) 2012; 9
Zhang (10.1016/j.future.2019.02.030_b29) 2007; 11
Gu (10.1016/j.future.2019.02.030_b10) 2018; 22
Bolón-Canedo (10.1016/j.future.2019.02.030_b7) 2014; 282
Holland (10.1016/j.future.2019.02.030_b9) 1992
Shi (10.1016/j.future.2019.02.030_b2) 2018; 14
Cao (10.1016/j.future.2019.02.030_b22) 2018; 14
Xue (10.1016/j.future.2019.02.030_b15) 2016; 20
Lin (10.1016/j.future.2019.02.030_b26) 2016; 20
Zhang (10.1016/j.future.2019.02.030_b5) 2017; 143
Kennedy (10.1016/j.future.2019.02.030_b11) 1995; 4
Das (10.1016/j.future.2019.02.030_b12) 2018; 9
Georganos (10.1016/j.future.2019.02.030_b1) 2018; 55
Emary (10.1016/j.future.2019.02.030_b14) 2016; 172
Xue (10.1016/j.future.2019.02.030_b18) 2013; 22
Zheng (10.1016/j.future.2019.02.030_b3) 2018; 9
Deb (10.1016/j.future.2019.02.030_b30) 2002; 6
Antonio (10.1016/j.future.2019.02.030_b27) 2013
Vergara (10.1016/j.future.2019.02.030_b19) 2014; 24
Price (10.1016/j.future.2019.02.030_b23) 2005
Storn (10.1016/j.future.2019.02.030_b24) 1997; 11
Zhang (10.1016/j.future.2019.02.030_b4) 2018; 48
Onan (10.1016/j.future.2019.02.030_b13) 2017; 43
Xue (10.1016/j.future.2019.02.030_b17) 2013; 43
Brest (10.1016/j.future.2019.02.030_b31) 2006; 10
Huang (10.1016/j.future.2019.02.030_b16) 2010; 37
Potter (10.1016/j.future.2019.02.030_b21) 1994
Wang (10.1016/j.future.2019.02.030_b28) 2016; 46
Oh (10.1016/j.future.2019.02.030_b8) 2004; 26
Zhang (10.1016/j.future.2019.02.030_b25) 2009; 13
Gong (10.1016/j.future.2019.02.030_b20) 2015; 34
References_xml – volume: 20
  start-page: 606
  year: 2016
  end-page: 626
  ident: b15
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Trans. Evol. Comput.
– volume: 14
  year: 2018
  ident: b22
  article-title: 3D multi-objective deployment of an industrial wireless sensor network for maritime applications utilizing a distributed parallel algorithm
  publication-title: IEEE Trans. Ind. Inf.
– volume: 10
  start-page: 646
  year: 2006
  end-page: 657
  ident: b31
  article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 46
  start-page: 2848
  year: 2016
  end-page: 2861
  ident: b28
  article-title: Cooperative differential evolution with multiple populations for multiobjective optimization
  publication-title: IEEE Trans. Cybern.
– volume: 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: b11
  article-title: Particle swarm optimization
  publication-title: IEEE Int. Conf. Neural Netw.
– year: 1992
  ident: b9
  article-title: Adaptation in Natural and Artificial Systems
– volume: 9
  start-page: 97
  year: 2018
  end-page: 111
  ident: b12
  article-title: A novel hybrid model using teaching—learning-based optimization and a support vector machine for commodity futures index forecasting
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b24
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– volume: 26
  start-page: 1424
  year: 2004
  end-page: 1437
  ident: b8
  article-title: Hybrid genetic algorithms for feature selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 43
  start-page: 1656
  year: 2013
  end-page: 1671
  ident: b17
  article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach
  publication-title: IEEE Trans. Cybern.
– start-page: 2758
  year: 2013
  end-page: 2765
  ident: b27
  article-title: Use of cooperative coevolution for solving large scale multiobjective optimization problems
  publication-title: 2013 IEEE Congress on Evolutionary Computation
– volume: 22
  start-page: 811
  year: 2018
  end-page: 822
  ident: b10
  article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer
  publication-title: Soft Comput.
– volume: 22
  start-page: 1350024
  year: 2013
  ident: b18
  article-title: Multi-objective evolutionary algorithms for filter based feature selection in classification
  publication-title: Int. J. Artif. Intell. Tools
– volume: 9
  start-page: 75
  year: 2018
  end-page: 84
  ident: b3
  article-title: Sentimental feature selection for sentiment analysis of Chinese online reviews
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b29
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 37
  start-page: 3638
  year: 2010
  end-page: 3646
  ident: b16
  article-title: Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications
  publication-title: Expert Syst. Appl.
– volume: 20
  start-page: 711
  year: 2016
  end-page: 729
  ident: b26
  article-title: A hybrid evolutionary immune algorithm for multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 55
  start-page: 221
  year: 2018
  end-page: 242
  ident: b1
  article-title: Less is more: optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application
  publication-title: GISci. Remote Sens.
– volume: 14
  start-page: 241
  year: 2018
  end-page: 252
  ident: b2
  article-title: Decoupled visual servoing with Fuzzy Q-learning
  publication-title: IEEE Trans. Ind. Inf.
– volume: 43
  start-page: 25
  year: 2017
  end-page: 38
  ident: b13
  article-title: A feature selection model based on genetic rank aggregation for text sentiment classification
  publication-title: J. Inf. Sci.
– volume: 282
  start-page: 111
  year: 2014
  end-page: 135
  ident: b7
  article-title: A review of microarray datasets and applied feature selection methods
  publication-title: Inform. Sci.
– volume: 9
  start-page: 1106
  year: 2012
  end-page: 1119
  ident: b6
  article-title: A survey on filter techniques for feature selection in gene expression microarray analysis
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 172
  start-page: 371
  year: 2016
  end-page: 381
  ident: b14
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
– start-page: 249
  year: 1994
  end-page: 257
  ident: b21
  article-title: A cooperative coevolutionary approach to function optimization
  publication-title: Proceedings of the International Conference on Evolutionary Computation
– year: 2005
  ident: b23
  article-title: Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series)
– volume: 34
  start-page: 286
  year: 2015
  end-page: 300
  ident: b20
  article-title: Distributed evolutionary algorithms and their models: A survey of the state-of-the-art
  publication-title: Appl. Soft Comput.
– volume: 24
  start-page: 175
  year: 2014
  end-page: 186
  ident: b19
  article-title: A review of feature selection methods based on mutual information
  publication-title: Neural Comput. Appl.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b30
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 143
  start-page: 360
  year: 2017
  end-page: 376
  ident: b5
  article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting
  publication-title: Energy Convers. Manage.
– volume: 48
  start-page: 16
  year: 2018
  end-page: 28
  ident: b4
  article-title: Simultaneous spectral-spatial feature selection and extraction for hyperspectral images
  publication-title: IEEE Trans. Cybern.
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: b25
  article-title: JADE: Adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
– volume: 22
  start-page: 1350024
  issue: 04
  year: 2013
  ident: 10.1016/j.future.2019.02.030_b18
  article-title: Multi-objective evolutionary algorithms for filter based feature selection in classification
  publication-title: Int. J. Artif. Intell. Tools
  doi: 10.1142/S0218213013500243
– year: 2005
  ident: 10.1016/j.future.2019.02.030_b23
– volume: 43
  start-page: 1656
  issue: 6
  year: 2013
  ident: 10.1016/j.future.2019.02.030_b17
  article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2227469
– volume: 26
  start-page: 1424
  issue: 11
  year: 2004
  ident: 10.1016/j.future.2019.02.030_b8
  article-title: Hybrid genetic algorithms for feature selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.105
– start-page: 249
  year: 1994
  ident: 10.1016/j.future.2019.02.030_b21
  article-title: A cooperative coevolutionary approach to function optimization
– year: 1992
  ident: 10.1016/j.future.2019.02.030_b9
– volume: 143
  start-page: 360
  year: 2017
  ident: 10.1016/j.future.2019.02.030_b5
  article-title: A compound structure of ELM based on feature selection and parameter optimization using hybrid backtracking search algorithm for wind speed forecasting
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.04.007
– volume: 172
  start-page: 371
  year: 2016
  ident: 10.1016/j.future.2019.02.030_b14
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– volume: 48
  start-page: 16
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2019.02.030_b4
  article-title: Simultaneous spectral-spatial feature selection and extraction for hyperspectral images
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2605044
– volume: 13
  start-page: 945
  issue: 5
  year: 2009
  ident: 10.1016/j.future.2019.02.030_b25
  article-title: JADE: Adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
– volume: 20
  start-page: 606
  issue: 4
  year: 2016
  ident: 10.1016/j.future.2019.02.030_b15
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2504420
– volume: 34
  start-page: 286
  year: 2015
  ident: 10.1016/j.future.2019.02.030_b20
  article-title: Distributed evolutionary algorithms and their models: A survey of the state-of-the-art
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.04.061
– volume: 55
  start-page: 221
  issue: 2
  year: 2018
  ident: 10.1016/j.future.2019.02.030_b1
  article-title: Less is more: optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application
  publication-title: GISci. Remote Sens.
  doi: 10.1080/15481603.2017.1408892
– volume: 14
  start-page: 241
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2019.02.030_b2
  article-title: Decoupled visual servoing with Fuzzy Q-learning
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2617464
– volume: 37
  start-page: 3638
  issue: 5
  year: 2010
  ident: 10.1016/j.future.2019.02.030_b16
  article-title: Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.10.027
– volume: 24
  start-page: 175
  issue: 1
  year: 2014
  ident: 10.1016/j.future.2019.02.030_b19
  article-title: A review of feature selection methods based on mutual information
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1368-0
– volume: 14
  issue: 12
  year: 2018
  ident: 10.1016/j.future.2019.02.030_b22
  article-title: 3D multi-objective deployment of an industrial wireless sensor network for maritime applications utilizing a distributed parallel algorithm
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2803758
– volume: 9
  start-page: 1106
  issue: 4
  year: 2012
  ident: 10.1016/j.future.2019.02.030_b6
  article-title: A survey on filter techniques for feature selection in gene expression microarray analysis
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2012.33
– volume: 43
  start-page: 25
  issue: 1
  year: 2017
  ident: 10.1016/j.future.2019.02.030_b13
  article-title: A feature selection model based on genetic rank aggregation for text sentiment classification
  publication-title: J. Inf. Sci.
  doi: 10.1177/0165551515613226
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.future.2019.02.030_b30
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 282
  start-page: 111
  year: 2014
  ident: 10.1016/j.future.2019.02.030_b7
  article-title: A review of microarray datasets and applied feature selection methods
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.05.042
– volume: 9
  start-page: 75
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2019.02.030_b3
  article-title: Sentimental feature selection for sentiment analysis of Chinese online reviews
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-015-0347-4
– volume: 22
  start-page: 811
  issue: 3
  year: 2018
  ident: 10.1016/j.future.2019.02.030_b10
  article-title: Feature selection for high-dimensional classification using a competitive swarm optimizer
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2385-6
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.future.2019.02.030_b29
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 10
  start-page: 646
  issue: 6
  year: 2006
  ident: 10.1016/j.future.2019.02.030_b31
  article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.872133
– volume: 9
  start-page: 97
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2019.02.030_b12
  article-title: A novel hybrid model using teaching—learning-based optimization and a support vector machine for commodity futures index forecasting
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-015-0359-0
– volume: 46
  start-page: 2848
  issue: 12
  year: 2016
  ident: 10.1016/j.future.2019.02.030_b28
  article-title: Cooperative differential evolution with multiple populations for multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2490669
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.future.2019.02.030_b24
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 4
  start-page: 1942
  issue: 8
  year: 1995
  ident: 10.1016/j.future.2019.02.030_b11
  article-title: Particle swarm optimization
  publication-title: IEEE Int. Conf. Neural Netw.
– volume: 20
  start-page: 711
  issue: 5
  year: 2016
  ident: 10.1016/j.future.2019.02.030_b26
  article-title: A hybrid evolutionary immune algorithm for multiobjective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 2758
  year: 2013
  ident: 10.1016/j.future.2019.02.030_b27
  article-title: Use of cooperative coevolution for solving large scale multiobjective optimization problems
SSID ssj0001731
Score 2.4164562
Snippet Many real-world problems are large in scale and hence difficult to address. Due to the large number of features in microarray datasets, feature selection and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 952
SubjectTerms Distributed parallelism
Feature redundancy
High dimension
Microarray dataset
Multiobjective feature selection
Title Multiobjective feature selection for microarray data via distributed parallel algorithms
URI https://dx.doi.org/10.1016/j.future.2019.02.030
Volume 100
WOSCitedRecordID wos000503827500069&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKx4HLYPzQxgD5wK0KSho3jo_bNAQTmnYYqOISObHNUnXplJUybvvT92w_px1FYztwiSo3cdu8r8_PL-99HyHvE6UySzsSjSxxK1OVigSEpZHhJuYmj6VyCbdvX_jxcT4ei5Ne7zr0wiymvGnyqytx8V9NDWNgbNs6-wBzd5PCALwGo8MRzA7HexnetdTOyon3ZAOjHXXn4NIJ3oTCwnNbhyfbVv4e2BrRwaKW9lmNl7-CGNQygk-n2pYv_5i19fwMSc2DoKdjIrHyyxoRVKE6BFJDd5H6gXS52P26A-H3Mz90BMD8pevO7WDi-mS2NqJxdcXkRCKwS28lXwl-mKdOLXfpcON4xWUKz2CLq6_wAi5rjt3nGCYfPNOKLckTjmsVH-rc4tH-Y33rqg5DQduk8LMUdpYiHhYwyyOyMeQjkffJxt7nw_FRt5onHDUt8YeE9ktXI7j-bf4e3qyELKfPyCbuNeiex8gW6enmOXkadDwouvUXZHwbMhQhQzvIUIAMXUKGWshQgAxdgQwNkKFLyLwkXz8enh58ilBxI6ogEJ9HUmSSVbHhTCSGDYfKjAzPSth0syTPlYHNO89Fris5KjUrrYS80lokUpVlymKVviL9ZtbobUK5MYkWlbH8iKzMMngfQnWZikwzrni6Q9Jwo4oK6eitKsq0uMtMOyTqrrrwdCz_OJ8HGxQYUvpQsQBg3Xnl6wd-0i55svwDvCH9eftTvyWPq8W8vmzfIapuABBnntY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+feature+selection+for+microarray+data+via+distributed+parallel+algorithms&rft.jtitle=Future+generation+computer+systems&rft.au=Cao%2C+Bin&rft.au=Zhao%2C+Jianwei&rft.au=Yang%2C+Po&rft.au=Yang%2C+Peng&rft.date=2019-11-01&rft.issn=0167-739X&rft.volume=100&rft.spage=952&rft.epage=981&rft_id=info:doi/10.1016%2Fj.future.2019.02.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2019_02_030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon