Performance-Based Generative Design for Parametric Modeling of Engineering Structures Using Deep Conditional Generative Models

Parametric Modeling, Generative Design, and Performance-Based Design have gained increasing attention in the AEC field as a way to create a wide range of design variants while focusing on performance attributes rather than building codes. However, the relationships between design parameters and perf...

Full description

Saved in:
Bibliographic Details
Published in:Automation in construction Vol. 156; p. 105128
Main Authors: Bucher, Martin Juan José, Kraus, Michael Anton, Rust, Romana, Tang, Siyu
Format: Journal Article
Language:English
Published: Elsevier B.V 01.12.2023
Subjects:
ISSN:0926-5805, 1872-7891
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Parametric Modeling, Generative Design, and Performance-Based Design have gained increasing attention in the AEC field as a way to create a wide range of design variants while focusing on performance attributes rather than building codes. However, the relationships between design parameters and performance attributes are often very complex, resulting in a highly iterative and unguided process. In this paper, we argue that a more goal-oriented design process is enabled by an inverse formulation that starts with performance attributes instead of design parameters. A Deep Conditional Generative Design workflow is proposed that takes a set of performance attributes and partially defined design features as input and produces a complete set of design parameters as output. A model architecture based on a Conditional Variational Autoencoder is presented along with different approximate posteriors, and evaluated on four different case studies. Compared to Genetic Algorithms, our method proves superior when utilizing a pre-trained model. •Complex 2D/3D models hinder understanding of relationships in Generative Design.•Deep Conditional Generative Design learns joint distribution for targeted designs.•Inverse formulation enables precise control for Performance-Based Generative Design.•Our Conditional Variational Autoencoder is evaluated against Genetic Algorithms.•Expressive posterior improves performance; partial conditioning shows promise.
AbstractList Parametric Modeling, Generative Design, and Performance-Based Design have gained increasing attention in the AEC field as a way to create a wide range of design variants while focusing on performance attributes rather than building codes. However, the relationships between design parameters and performance attributes are often very complex, resulting in a highly iterative and unguided process. In this paper, we argue that a more goal-oriented design process is enabled by an inverse formulation that starts with performance attributes instead of design parameters. A Deep Conditional Generative Design workflow is proposed that takes a set of performance attributes and partially defined design features as input and produces a complete set of design parameters as output. A model architecture based on a Conditional Variational Autoencoder is presented along with different approximate posteriors, and evaluated on four different case studies. Compared to Genetic Algorithms, our method proves superior when utilizing a pre-trained model. •Complex 2D/3D models hinder understanding of relationships in Generative Design.•Deep Conditional Generative Design learns joint distribution for targeted designs.•Inverse formulation enables precise control for Performance-Based Generative Design.•Our Conditional Variational Autoencoder is evaluated against Genetic Algorithms.•Expressive posterior improves performance; partial conditioning shows promise.
ArticleNumber 105128
Author Rust, Romana
Bucher, Martin Juan José
Tang, Siyu
Kraus, Michael Anton
Author_xml – sequence: 1
  givenname: Martin Juan José
  orcidid: 0000-0002-5254-6131
  surname: Bucher
  fullname: Bucher, Martin Juan José
  email: martin@mnbucher.com
– sequence: 2
  givenname: Michael Anton
  orcidid: 0000-0002-5000-2923
  surname: Kraus
  fullname: Kraus, Michael Anton
  email: kraus@ibk.baug.ethz.ch
– sequence: 3
  givenname: Romana
  orcidid: 0000-0003-3722-8132
  surname: Rust
  fullname: Rust, Romana
  email: rust@arch.ethz.ch
– sequence: 4
  givenname: Siyu
  orcidid: 0000-0002-1015-4770
  surname: Tang
  fullname: Tang, Siyu
  email: siyu.tang@inf.ethz.ch
BookMark eNqFkMFKAzEQhoNUsK2-gYe8wNYku5vd9SBoW6ugWNCeQzY7KSltUpK04MVnd9f1IB70NMww38_MN0ID6ywgdEnJhBLKrzYTeYjK2QkjLG1HOWXlCRrSsmBJUVZ0gIakYjzJS5KfoVEIG0JIQXg1RB9L8Nr5nbQKkjsZoMELsOBlNEfAMwhmbXG7gJfSyx1EbxR-dg1sjV1jp_Hcro0F8F37Gv1BxYOHgFehG8wA9njqbGOicVZuf0Z_hYRzdKrlNsDFdx2j1f38bfqQPL0sHqe3T4lKcxYTWaUKgNeQ65oypiXnPOWZYrQsa00ZyeqCFlQTLjUjdSqpzmrCG9bQjDBdpWN03ecq70LwoIUyUXZXRS_NVlAiOpNiI3qTojMpepMtnP2C997spH__D7vpsfZPOBrwIigDrefGeFBRNM78HfAJtpmUKg
CitedBy_id crossref_primary_10_1016_j_cad_2025_103945
crossref_primary_10_1016_j_jobe_2024_110972
crossref_primary_10_1007_s11831_025_10302_y
crossref_primary_10_3390_buildings14082452
crossref_primary_10_1016_j_autcon_2025_106530
crossref_primary_10_1016_j_autcon_2024_105411
crossref_primary_10_1016_j_sasc_2025_200232
crossref_primary_10_1016_j_foar_2024_07_001
crossref_primary_10_1177_14780771251316125
crossref_primary_10_1016_j_buildenv_2024_112310
crossref_primary_10_1177_09544062251325104
crossref_primary_10_1080_02533839_2025_2509597
crossref_primary_10_1007_s12539_025_00700_y
crossref_primary_10_3390_designs9040079
crossref_primary_10_1007_s10064_025_04365_1
crossref_primary_10_26599_JIC_2025_9180094
Cites_doi 10.1007/978-981-19-1280-1_6
10.1016/j.drudis.2018.01.039
10.1038/nature25978
10.1515/nanoph-2019-0330
10.1016/j.cpc.2009.09.018
10.1016/S0926-5805(98)00086-7
10.1109/ACCESS.2020.2990567
10.1016/j.neunet.2015.09.001
10.1007/978-3-031-13249-0_10
10.1016/j.ijplas.2021.103059
10.1038/nature14539
10.1038/s41578-020-00260-1
10.1021/acscentsci.7b00572
10.1016/j.chemolab.2011.06.003
10.1016/j.autcon.2021.103664
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.autcon.2023.105128
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1872-7891
ExternalDocumentID 10_1016_j_autcon_2023_105128
S0926580523003886
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c352t-a93cee6be5fb122fa666364c2188bf1204b7171f06af20b3a1f4b06d2d1402f93
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001149009700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-5805
IngestDate Sat Nov 29 07:16:04 EST 2025
Tue Nov 18 22:11:03 EST 2025
Fri Feb 23 02:35:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Performance-based design
Variational autoencoder
Deep generative design
Generative design
Deep generative modeling
Artificial intelligence
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-a93cee6be5fb122fa666364c2188bf1204b7171f06af20b3a1f4b06d2d1402f93
ORCID 0000-0002-5254-6131
0000-0003-3722-8132
0000-0002-1015-4770
0000-0002-5000-2923
OpenAccessLink https://dx.doi.org/10.1016/j.autcon.2023.105128
ParticipantIDs crossref_citationtrail_10_1016_j_autcon_2023_105128
crossref_primary_10_1016_j_autcon_2023_105128
elsevier_sciencedirect_doi_10_1016_j_autcon_2023_105128
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Automation in construction
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jiang, Fan (b20) 2020; 9
Ledig, Theis, Huszar, Caballero, Cunningham, Acosta, Aitken, Tejani, Totz, Wang, Shi (b4) 2017
Razavi, van den Oord, Poole, Vinyals (b49) 2019
Segler, Preuss, Waller (b16) 2018; 555
Kingma, Ba (b43) 2015
Danhaive, Mueller (b22) 2021; 127
Huang, Krueger, Lacoste, Courville (b52) 2018
YOUSIF, BOLOJAN (b25) 2022
Arik, Chrzanowski, Coates, Diamos, Gibiansky, Kang, Li, Miller, Ng, Raiman, Sengupta, Shoeybi (b11) 2017
Ota, Oiki, Jha, Mariyama, Nikovski (b32) 2020; vol. 119
Dinh, Krueger, Bengio (b54) 2015
Kingma, Welling (b18) 2014
Kingma, Dhariwal (b55) 2018
Blank, Deb (b42) 2020; 8
Kuhn (b39) 2021
DIN EN 1996-1-1 (b41) 2013
LeCun, Bengio, Hinton (b2) 2015; 521
Rombach, Blattmann, Lorenz, Esser, Ommer (b56) 2022
Burda, Grosse, Salakhutdinov (b50) 2016
Balmer, Kuhn, Bischof, Salamanca, Kaufmann, Perez-Cruz, Kraus (b24) 2022
Razavi, van den Oord, Vinyals (b48) 2019
Regier, Miller, McAuliffe, Adams, Hoffman, Lang, Schlegel, Prabhat (b13) 2015
Nair, Hinton (b27) 2010
Dinh, Sohl-Dickstein, Bengio (b53) 2017
Karras, Aila, Laine, Lehtinen (b8) 2018
Gómez-Bombarelli, Wei, Duvenaud, Hernández-Lobato, Sánchez-Lengeling, Sheberla, Aguilera-Iparraguirre, Hirzel, Adams, Aspuru-Guzik (b15) 2018; 4
Jin, Barzilay, Jaakkola (b17) 2018
Ioffe, Szegedy (b28) 2015
Nogueira (b44) 2014
Karras, Laine, Aila (b9) 2019
van den Oord, Vinyals, Kavukcuoglu (b47) 2017
Rezende, Mohamed, Wierstra (b19) 2014; vol. 32
Kingma, Salimans, Jozefowicz, Chen, Sutskever, Welling (b33) 2016
S.V. Kuhn, R. Bischof, G. Klonaris, W. Kaufmann, M.A. Kraus, ntab0: Design priors for AI-augmented generative design of network tied-arch-bridges, in: Proceedings of 33. Forum Bauinformatik, 2022.
Radford, Metz, Chintala (b7) 2016
Ibragimova, Brahme, Muhammad, Lévesque, Inal (b37) 2021; 144
Salamanca, Apolinarska, Pérez-Cruz, Kohler (b3) 2023
Santiago, Claeys-Bruno, Sergent (b36) 2012; 113
Sønderby, Raiko, Maaløe, Sønderby, Winther (b46) 2016
Ramesh, Dhariwal, Nichol, Chu, Chen (b57) 2022; abs/2204.06125
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b6) 2014
Chen, Engkvist, Wang, Olivecrona, Blaschke (b14) 2018; 23
He, Zhang, Ren, Sun (b31) 2016
van den Oord, Dieleman, Zen, Simonyan, Vinyals, Graves, Kalchbrenner, Senior, Kavukcuoglu (b12) 2016
Kalay (b1) 1999; 8
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b30) 2014; 15
Sohn, Lee, Yan (b26) 2015
Wang, Skerry-Ryan, Stanton, Wu, Weiss, Jaitly, Yang, Xiao, Chen, Bengio, Le, Agiomyrgiannakis, Clark, Saurous (b10) 2017
Saltelli, Annoni, Azzini, Campolongo, Ratto, Tarantola (b38) 2010; 181
Santurkar, Tsipras, Ilyas, Madry (b29) 2018
Papamakarios, Murray, Pavlakou (b51) 2017
Germain, Gregor, Murray, Larochelle (b34) 2015
Loyola R, Pedergnana, Gimeno García (b35) 2016; 78
Wang, Yu, Wu, Gu, Liu, Dong, Qiao, Loy (b5) 2018
Ampanavos, Malkawi (b23) 2022
Jiang, Chen, Fan (b21) 2021; 6
Bucher (b45) 2023
Rezende (10.1016/j.autcon.2023.105128_b19) 2014; vol. 32
Srivastava (10.1016/j.autcon.2023.105128_b30) 2014; 15
He (10.1016/j.autcon.2023.105128_b31) 2016
Saltelli (10.1016/j.autcon.2023.105128_b38) 2010; 181
Goodfellow (10.1016/j.autcon.2023.105128_b6) 2014
Dinh (10.1016/j.autcon.2023.105128_b54) 2015
Ledig (10.1016/j.autcon.2023.105128_b4) 2017
Germain (10.1016/j.autcon.2023.105128_b34) 2015
Santiago (10.1016/j.autcon.2023.105128_b36) 2012; 113
Rombach (10.1016/j.autcon.2023.105128_b56) 2022
Sønderby (10.1016/j.autcon.2023.105128_b46) 2016
van den Oord (10.1016/j.autcon.2023.105128_b47) 2017
Burda (10.1016/j.autcon.2023.105128_b50) 2016
Karras (10.1016/j.autcon.2023.105128_b9) 2019
Arik (10.1016/j.autcon.2023.105128_b11) 2017
Salamanca (10.1016/j.autcon.2023.105128_b3) 2023
Papamakarios (10.1016/j.autcon.2023.105128_b51) 2017
Dinh (10.1016/j.autcon.2023.105128_b53) 2017
Radford (10.1016/j.autcon.2023.105128_b7) 2016
Jin (10.1016/j.autcon.2023.105128_b17) 2018
LeCun (10.1016/j.autcon.2023.105128_b2) 2015; 521
Razavi (10.1016/j.autcon.2023.105128_b48) 2019
Kingma (10.1016/j.autcon.2023.105128_b43) 2015
Danhaive (10.1016/j.autcon.2023.105128_b22) 2021; 127
Kingma (10.1016/j.autcon.2023.105128_b18) 2014
Nogueira (10.1016/j.autcon.2023.105128_b44) 2014
Balmer (10.1016/j.autcon.2023.105128_b24) 2022
Chen (10.1016/j.autcon.2023.105128_b14) 2018; 23
Gómez-Bombarelli (10.1016/j.autcon.2023.105128_b15) 2018; 4
Ibragimova (10.1016/j.autcon.2023.105128_b37) 2021; 144
Santurkar (10.1016/j.autcon.2023.105128_b29) 2018
Blank (10.1016/j.autcon.2023.105128_b42) 2020; 8
Huang (10.1016/j.autcon.2023.105128_b52) 2018
Loyola R (10.1016/j.autcon.2023.105128_b35) 2016; 78
Wang (10.1016/j.autcon.2023.105128_b10) 2017
Razavi (10.1016/j.autcon.2023.105128_b49) 2019
Karras (10.1016/j.autcon.2023.105128_b8) 2018
Bucher (10.1016/j.autcon.2023.105128_b45) 2023
Ota (10.1016/j.autcon.2023.105128_b32) 2020; vol. 119
Regier (10.1016/j.autcon.2023.105128_b13) 2015
Kingma (10.1016/j.autcon.2023.105128_b55) 2018
Jiang (10.1016/j.autcon.2023.105128_b21) 2021; 6
Ioffe (10.1016/j.autcon.2023.105128_b28) 2015
Nair (10.1016/j.autcon.2023.105128_b27) 2010
DIN EN 1996-1-1 (10.1016/j.autcon.2023.105128_b41) 2013
Ramesh (10.1016/j.autcon.2023.105128_b57) 2022; abs/2204.06125
YOUSIF (10.1016/j.autcon.2023.105128_b25) 2022
van den Oord (10.1016/j.autcon.2023.105128_b12) 2016
Kingma (10.1016/j.autcon.2023.105128_b33) 2016
Segler (10.1016/j.autcon.2023.105128_b16) 2018; 555
Jiang (10.1016/j.autcon.2023.105128_b20) 2020; 9
Ampanavos (10.1016/j.autcon.2023.105128_b23) 2022
Wang (10.1016/j.autcon.2023.105128_b5) 2018
Kuhn (10.1016/j.autcon.2023.105128_b39) 2021
Kalay (10.1016/j.autcon.2023.105128_b1) 1999; 8
Sohn (10.1016/j.autcon.2023.105128_b26) 2015
10.1016/j.autcon.2023.105128_b40
References_xml – year: 2021
  ident: b39
  article-title: Parametric modelling and generative design - a multi-step machine learning approach for design and optimization of network tied-arch bridges
– volume: 144
  start-page: 103059
  year: 2021
  ident: b37
  article-title: A new ann based crystal plasticity model for fcc materials and its application to non-monotonic strain paths
  publication-title: International Journal of Plasticity
– year: 2015
  ident: b54
  article-title: NICE: non-linear independent components estimation
  publication-title: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings
– year: 2023
  ident: b45
  article-title: Performance-based generative design for parametric modeling of engineering structures using deep conditional generative models
– start-page: 125
  year: 2016
  ident: b12
  article-title: Wavenet: A generative model for raw audio
  publication-title: The 9th ISCA Speech Synthesis Workshop, Sunnyvale, CA, USA, 13-15 September 2016
– year: 2019
  ident: b49
  article-title: Preventing posterior collapse with delta-vaes
  publication-title: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: b6
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada
– volume: abs/2204.06125
  year: 2022
  ident: b57
  article-title: Hierarchical text-conditional image generation with CLIP latents
  publication-title: CoRR
– start-page: 87
  year: 2022
  end-page: 106
  ident: b23
  article-title: Early-phase performance-driven design using generative models
  publication-title: Computer-Aided Architectural Design. Design Imperatives: The Future is Now
– start-page: 10236
  year: 2018
  end-page: 10245
  ident: b55
  article-title: Glow: generative flow with invertible 1x1 convolutions
  publication-title: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada
– volume: 9
  start-page: 1059
  year: 2020
  end-page: 1069
  ident: b20
  article-title: Simulator-based training of generative neural networks for the inverse design of metasurfaces
  publication-title: Nanophotonics
– start-page: 14837
  year: 2019
  end-page: 14847
  ident: b48
  article-title: Generating diverse high-fidelity images with VQ-VAE-2
  publication-title: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada
– volume: 181
  start-page: 259
  year: 2010
  end-page: 270
  ident: b38
  article-title: Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index
  publication-title: Computer Physics Communications
– start-page: 2328
  year: 2018
  end-page: 2337
  ident: b17
  article-title: Junction tree variational autoencoder for molecular graph generation
  publication-title: Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018
– start-page: 195
  year: 2017
  end-page: 204
  ident: b11
  article-title: Deep voice: real-time neural text-to-speech
  publication-title: Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017
– year: 2017
  ident: b53
  article-title: Density estimation using real NVP
  publication-title: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings
– start-page: 2488
  year: 2018
  end-page: 2498
  ident: b29
  article-title: How does batch normalization help optimization?
  publication-title: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b2
  article-title: Deep learning
  publication-title: Nature
– start-page: 2083
  year: 2018
  end-page: 2092
  ident: b52
  article-title: Neural autoregressive flows
  publication-title: Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018
– start-page: 105
  year: 2017
  end-page: 114
  ident: b4
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017
– volume: vol. 32
  start-page: 1278
  year: 2014
  end-page: 1286
  ident: b19
  article-title: Stochastic backpropagation and approximate inference in deep generative models
  publication-title: Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014
– volume: 8
  start-page: 89497
  year: 2020
  end-page: 89509
  ident: b42
  article-title: Pymoo: multi-objective optimization in python
  publication-title: IEEE Access
– start-page: 3483
  year: 2015
  end-page: 3491
  ident: b26
  article-title: Learning structured output representation using deep conditional generative models
  publication-title: Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada
– start-page: 10674
  year: 2022
  end-page: 10685
  ident: b56
  article-title: High-resolution image synthesis with latent diffusion models
  publication-title: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022
– reference: S.V. Kuhn, R. Bischof, G. Klonaris, W. Kaufmann, M.A. Kraus, ntab0: Design priors for AI-augmented generative design of network tied-arch-bridges, in: Proceedings of 33. Forum Bauinformatik, 2022.
– start-page: 4006
  year: 2017
  end-page: 4010
  ident: b10
  article-title: Tacotron: towards end-to-end speech synthesis
  publication-title: Interspeech 2017, 18th Annual Conference of the International Speech Communication Association, Stockholm, Sweden, August 20-24, 2017
– year: 2016
  ident: b50
  article-title: Importance weighted autoencoders
  publication-title: 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings
– volume: 127
  start-page: 103664
  year: 2021
  ident: b22
  article-title: Design subspace learning: structural design space exploration using performance-conditioned generative modeling
  publication-title: Automation in Construction
– year: 2014
  ident: b18
  article-title: Auto-encoding variational bayes
  publication-title: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings
– start-page: 2338
  year: 2017
  end-page: 2347
  ident: b51
  article-title: Masked autoregressive flow for density estimation
  publication-title: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA
– volume: 78
  start-page: 75
  year: 2016
  end-page: 87
  ident: b35
  article-title: Smart sampling and incremental function learning for very large high dimensional data
  publication-title: Neural Networks
– start-page: 448
  year: 2015
  end-page: 456
  ident: b28
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015
– start-page: 6306
  year: 2017
  end-page: 6315
  ident: b47
  article-title: Neural discrete representation learning
  publication-title: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA
– volume: 23
  start-page: 1241
  year: 2018
  end-page: 1250
  ident: b14
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discovery Today
– start-page: 363
  year: 2022
  end-page: 372
  ident: b25
  article-title: Deep learning-based surrogate modeling for performance-driven generative design systems
  publication-title: Proc of the 27th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA)
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b30
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 2016
  ident: b7
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings
– start-page: 4401
  year: 2019
  end-page: 4410
  ident: b9
  article-title: A style-based generator architecture for generative adversarial networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019
– volume: 555
  start-page: 604
  year: 2018
  end-page: 610
  ident: b16
  article-title: Planning chemical syntheses with deep neural networks and symbolic ai
  publication-title: Nature
– volume: vol. 119
  start-page: 7424
  year: 2020
  end-page: 7433
  ident: b32
  article-title: Can increasing input dimensionality improve deep reinforcement learning?
  publication-title: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event
– year: 2013
  ident: b41
  article-title: Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten - Teil 1-1: Allgemeine Regeln für bewehrtes und unbewehrtes Mauerwerk
– year: 2014
  ident: b44
  article-title: Bayesian Optimization: open source constrained global optimization tool for Python
– start-page: 807
  year: 2010
  end-page: 814
  ident: b27
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel
– volume: 113
  start-page: 26
  year: 2012
  end-page: 31
  ident: b36
  article-title: Construction of space-filling designs using wsp algorithm for high dimensional spaces
  publication-title: Chemometrics and Intelligent Laboratory Systems
– start-page: 63
  year: 2018
  end-page: 79
  ident: b5
  article-title: ESRGAN: enhanced super-resolution generative adversarial networks
  publication-title: Computer Vision - ECCV 2018 Workshops - Munich, Germany, September 8-14, 2018, Proceedings, Part V
– volume: 4
  start-page: 268
  year: 2018
  end-page: 276
  ident: b15
  article-title: Automatic chemical design using a data-driven continuous representation of molecules
  publication-title: ACS Central Science
– start-page: 881
  year: 2015
  end-page: 889
  ident: b34
  article-title: MADE: masked autoencoder for distribution estimation
  publication-title: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015
– year: 2016
  ident: b33
  article-title: Improved variational inference with inverse autoregressive flow
  publication-title: Advances in Neural Information Processing Systems
– start-page: 3738
  year: 2016
  end-page: 3746
  ident: b46
  article-title: Ladder variational autoencoders
  publication-title: Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain
– year: 2015
  ident: b43
  article-title: Adam: A method for stochastic optimization
  publication-title: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
– year: 2018
  ident: b8
  article-title: Progressive growing of gans for improved quality, stability, and variation
  publication-title: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings
– start-page: 770
  year: 2016
  end-page: 778
  ident: b31
  article-title: Deep residual learning for image recognition
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016
– start-page: 108
  year: 2023
  end-page: 121
  ident: b3
  article-title: Augmented intelligence for architectural design with conditional autoencoders: semiramis case study
  publication-title: Towards Radical Regeneration
– start-page: 2095
  year: 2015
  end-page: 2103
  ident: b13
  article-title: Celeste: variational inference for a generative model of astronomical images
  publication-title: Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015
– year: 2022
  ident: b24
  article-title: Design space exploration and explanation via conditional variational autoencoders in meta-model-based conceptual design of pedestrian bridges
– volume: 8
  start-page: 395
  year: 1999
  end-page: 409
  ident: b1
  article-title: Performance-based design
  publication-title: Automation in Construction
– volume: 6
  start-page: 679
  year: 2021
  end-page: 700
  ident: b21
  article-title: Deep neural networks for the evaluation and design of photonic devices
  publication-title: Nature Reviews Materials
– year: 2014
  ident: 10.1016/j.autcon.2023.105128_b18
  article-title: Auto-encoding variational bayes
– year: 2017
  ident: 10.1016/j.autcon.2023.105128_b53
  article-title: Density estimation using real NVP
– start-page: 105
  year: 2017
  ident: 10.1016/j.autcon.2023.105128_b4
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
– start-page: 363
  year: 2022
  ident: 10.1016/j.autcon.2023.105128_b25
  article-title: Deep learning-based surrogate modeling for performance-driven generative design systems
– start-page: 87
  year: 2022
  ident: 10.1016/j.autcon.2023.105128_b23
  article-title: Early-phase performance-driven design using generative models
  doi: 10.1007/978-981-19-1280-1_6
– start-page: 3738
  year: 2016
  ident: 10.1016/j.autcon.2023.105128_b46
  article-title: Ladder variational autoencoders
– start-page: 2328
  year: 2018
  ident: 10.1016/j.autcon.2023.105128_b17
  article-title: Junction tree variational autoencoder for molecular graph generation
– start-page: 2672
  year: 2014
  ident: 10.1016/j.autcon.2023.105128_b6
  article-title: Generative adversarial nets
– start-page: 448
  year: 2015
  ident: 10.1016/j.autcon.2023.105128_b28
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– volume: 23
  start-page: 1241
  issn: 1359-6446
  issue: 6
  year: 2018
  ident: 10.1016/j.autcon.2023.105128_b14
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discovery Today
  doi: 10.1016/j.drudis.2018.01.039
– volume: 555
  start-page: 604
  issn: 0028-0836
  issue: 7698
  year: 2018
  ident: 10.1016/j.autcon.2023.105128_b16
  article-title: Planning chemical syntheses with deep neural networks and symbolic ai
  publication-title: Nature
  doi: 10.1038/nature25978
– start-page: 3483
  year: 2015
  ident: 10.1016/j.autcon.2023.105128_b26
  article-title: Learning structured output representation using deep conditional generative models
– volume: 9
  start-page: 1059
  issue: 5
  year: 2020
  ident: 10.1016/j.autcon.2023.105128_b20
  article-title: Simulator-based training of generative neural networks for the inverse design of metasurfaces
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0330
– year: 2016
  ident: 10.1016/j.autcon.2023.105128_b7
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
– volume: 181
  start-page: 259
  issn: 0010-4655
  issue: 2
  year: 2010
  ident: 10.1016/j.autcon.2023.105128_b38
  article-title: Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index
  publication-title: Computer Physics Communications
  doi: 10.1016/j.cpc.2009.09.018
– volume: vol. 32
  start-page: 1278
  year: 2014
  ident: 10.1016/j.autcon.2023.105128_b19
  article-title: Stochastic backpropagation and approximate inference in deep generative models
– start-page: 6306
  year: 2017
  ident: 10.1016/j.autcon.2023.105128_b47
  article-title: Neural discrete representation learning
– volume: vol. 119
  start-page: 7424
  year: 2020
  ident: 10.1016/j.autcon.2023.105128_b32
  article-title: Can increasing input dimensionality improve deep reinforcement learning?
– volume: 8
  start-page: 395
  issn: 0926-5805
  issue: 4
  year: 1999
  ident: 10.1016/j.autcon.2023.105128_b1
  article-title: Performance-based design
  publication-title: Automation in Construction
  doi: 10.1016/S0926-5805(98)00086-7
– year: 2018
  ident: 10.1016/j.autcon.2023.105128_b8
  article-title: Progressive growing of gans for improved quality, stability, and variation
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.autcon.2023.105128_b30
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 89497
  year: 2020
  ident: 10.1016/j.autcon.2023.105128_b42
  article-title: Pymoo: multi-objective optimization in python
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990567
– volume: 78
  start-page: 75
  issn: 0893-6080
  year: 2016
  ident: 10.1016/j.autcon.2023.105128_b35
  article-title: Smart sampling and incremental function learning for very large high dimensional data
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2015.09.001
– start-page: 4006
  year: 2017
  ident: 10.1016/j.autcon.2023.105128_b10
  article-title: Tacotron: towards end-to-end speech synthesis
– year: 2015
  ident: 10.1016/j.autcon.2023.105128_b43
  article-title: Adam: A method for stochastic optimization
– start-page: 807
  year: 2010
  ident: 10.1016/j.autcon.2023.105128_b27
  article-title: Rectified linear units improve restricted boltzmann machines
– start-page: 2095
  year: 2015
  ident: 10.1016/j.autcon.2023.105128_b13
  article-title: Celeste: variational inference for a generative model of astronomical images
– start-page: 2488
  year: 2018
  ident: 10.1016/j.autcon.2023.105128_b29
  article-title: How does batch normalization help optimization?
– year: 2015
  ident: 10.1016/j.autcon.2023.105128_b54
  article-title: NICE: non-linear independent components estimation
– year: 2023
  ident: 10.1016/j.autcon.2023.105128_b45
– start-page: 2083
  year: 2018
  ident: 10.1016/j.autcon.2023.105128_b52
  article-title: Neural autoregressive flows
– start-page: 2338
  year: 2017
  ident: 10.1016/j.autcon.2023.105128_b51
  article-title: Masked autoregressive flow for density estimation
– start-page: 108
  year: 2023
  ident: 10.1016/j.autcon.2023.105128_b3
  article-title: Augmented intelligence for architectural design with conditional autoencoders: semiramis case study
  doi: 10.1007/978-3-031-13249-0_10
– volume: 144
  start-page: 103059
  issn: 0749-6419
  year: 2021
  ident: 10.1016/j.autcon.2023.105128_b37
  article-title: A new ann based crystal plasticity model for fcc materials and its application to non-monotonic strain paths
  publication-title: International Journal of Plasticity
  doi: 10.1016/j.ijplas.2021.103059
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.autcon.2023.105128_b2
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2014
  ident: 10.1016/j.autcon.2023.105128_b44
– start-page: 10674
  year: 2022
  ident: 10.1016/j.autcon.2023.105128_b56
  article-title: High-resolution image synthesis with latent diffusion models
– volume: 6
  start-page: 679
  issue: 8
  year: 2021
  ident: 10.1016/j.autcon.2023.105128_b21
  article-title: Deep neural networks for the evaluation and design of photonic devices
  publication-title: Nature Reviews Materials
  doi: 10.1038/s41578-020-00260-1
– year: 2019
  ident: 10.1016/j.autcon.2023.105128_b49
  article-title: Preventing posterior collapse with delta-vaes
– volume: 4
  start-page: 268
  issue: 2
  year: 2018
  ident: 10.1016/j.autcon.2023.105128_b15
  article-title: Automatic chemical design using a data-driven continuous representation of molecules
  publication-title: ACS Central Science
  doi: 10.1021/acscentsci.7b00572
– start-page: 14837
  year: 2019
  ident: 10.1016/j.autcon.2023.105128_b48
  article-title: Generating diverse high-fidelity images with VQ-VAE-2
– year: 2013
  ident: 10.1016/j.autcon.2023.105128_b41
– volume: 113
  start-page: 26
  issn: 0169-7439
  year: 2012
  ident: 10.1016/j.autcon.2023.105128_b36
  article-title: Construction of space-filling designs using wsp algorithm for high dimensional spaces
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/j.chemolab.2011.06.003
– year: 2022
  ident: 10.1016/j.autcon.2023.105128_b24
– start-page: 195
  year: 2017
  ident: 10.1016/j.autcon.2023.105128_b11
  article-title: Deep voice: real-time neural text-to-speech
– volume: abs/2204.06125
  year: 2022
  ident: 10.1016/j.autcon.2023.105128_b57
  article-title: Hierarchical text-conditional image generation with CLIP latents
  publication-title: CoRR
– start-page: 125
  year: 2016
  ident: 10.1016/j.autcon.2023.105128_b12
  article-title: Wavenet: A generative model for raw audio
– start-page: 770
  year: 2016
  ident: 10.1016/j.autcon.2023.105128_b31
  article-title: Deep residual learning for image recognition
– start-page: 63
  year: 2018
  ident: 10.1016/j.autcon.2023.105128_b5
  article-title: ESRGAN: enhanced super-resolution generative adversarial networks
– year: 2016
  ident: 10.1016/j.autcon.2023.105128_b50
  article-title: Importance weighted autoencoders
– start-page: 10236
  year: 2018
  ident: 10.1016/j.autcon.2023.105128_b55
  article-title: Glow: generative flow with invertible 1x1 convolutions
– year: 2021
  ident: 10.1016/j.autcon.2023.105128_b39
– ident: 10.1016/j.autcon.2023.105128_b40
– start-page: 881
  year: 2015
  ident: 10.1016/j.autcon.2023.105128_b34
  article-title: MADE: masked autoencoder for distribution estimation
– start-page: 4401
  year: 2019
  ident: 10.1016/j.autcon.2023.105128_b9
  article-title: A style-based generator architecture for generative adversarial networks
– volume: 127
  start-page: 103664
  issn: 0926-5805
  year: 2021
  ident: 10.1016/j.autcon.2023.105128_b22
  article-title: Design subspace learning: structural design space exploration using performance-conditioned generative modeling
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2021.103664
– year: 2016
  ident: 10.1016/j.autcon.2023.105128_b33
  article-title: Improved variational inference with inverse autoregressive flow
SSID ssj0007069
Score 2.501565
SecondaryResourceType review_article
Snippet Parametric Modeling, Generative Design, and Performance-Based Design have gained increasing attention in the AEC field as a way to create a wide range of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105128
SubjectTerms Artificial intelligence
Deep generative design
Deep generative modeling
Generative design
Performance-based design
Variational autoencoder
Title Performance-Based Generative Design for Parametric Modeling of Engineering Structures Using Deep Conditional Generative Models
URI https://dx.doi.org/10.1016/j.autcon.2023.105128
Volume 156
WOSCitedRecordID wos001149009700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7891
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007069
  issn: 0926-5805
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Na9wwEBXbpND2UNq0oekXOvS2uNiSbFnHTZqQhhKWkJa9GdmWYMPiXeJ1SC_9U_mDGVmyrXRL2hx6McbIY7PzrJkdvXlC6JOQpaKMyoDlEQsYkzIQEOUDGmuZJCKishX1-fGNn56ms5mYjkY3XS_M1YJXVXp9LVb_1dVwDZxtWmcf4O7eKFyAc3A6HMHtcPwnx0-HVoBgH2JU6aSlHUfIEDZabuFUGl6WEehvN0RbOPqzJ1BolqybdomhHltqwRelVqZJsJy7EqJnujVS-8nupFkvbWfkuGW7D2K1fRGg6TBj5QzGJ03bTlXb9fs-GlzKpvZI_kbyYDBy1ti-lbOloeIOpQhXCJ__bPzSBqEeTcTVKAE1cRrGd6br2J9wIT2MbHf5RiywZYkLwwQypQXzgM_D8LvS27-FxJ6o2HHgLjJrJTNWMmvlEdomPBYQDbYnXw9nJ30CwMPESjy6t-86Nlta4ebb_Dkj8rKc8xfouft7gicWVi_RSFU76EnXvV7voGcePl6hXxtgwwMisAUbhgF4ABvuwIaXGnvG8AA23IING7BhD2y-aQu21-j70eH5wXHgdvQICkj014EUFJKyJFexziNCzHSQ0IQVkGemuY5IyHIe8UiHidQkzKmMNMvDpCRlxEKiBd1FW9WyUm8QFlpRrghMQKlkUpd5nIgy1gXhiodSyT1Eu181K5zcvdl1ZZHd59M9FPR3razcy1_G885hmUtZbSqaAQrvvfPtA5_0Dj0dPpH3aAt8oj6gx8XVel5ffnQQvAWWqL6a
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance-Based+Generative+Design+for+Parametric+Modeling+of+Engineering+Structures+Using+Deep+Conditional+Generative+Models&rft.jtitle=Automation+in+construction&rft.au=Bucher%2C+Martin+Juan+Jos%C3%A9&rft.au=Kraus%2C+Michael+Anton&rft.au=Rust%2C+Romana&rft.au=Tang%2C+Siyu&rft.date=2023-12-01&rft.issn=0926-5805&rft.volume=156&rft.spage=105128&rft_id=info:doi/10.1016%2Fj.autcon.2023.105128&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_autcon_2023_105128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon