Local Minimax Learning of Functions With Best Finite Sample Estimation Error Bounds: Applications to Ridge and Lasso Regression, Boosting, Tree Learning, Kernel Machines, and Inverse Problems
Optimal local estimation is formulated in the minimax sense for inverse problems and nonlinear regression. This theory provides best mean squared finite sample error bounds for some popular statistical learning algorithms and also for several optimal improvements of other existing learning algorithm...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on information theory Jg. 55; H. 12; S. 5700 - 5727 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.12.2009
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!