Improving Short-term Daily Streamflow Forecasting Using an Autoencoder Based CNN-LSTM Model

Streamflow forecasting is vital for managing water resources, such as flood control, agriculture planning, hydropower generation, environmental management, drought management, and water quality management. Motivated by the success of artificial intelligence models for hydrological applications, this...

Full description

Saved in:
Bibliographic Details
Published in:Water resources management Vol. 38; no. 15; pp. 5973 - 5989
Main Authors: Kumshe, Umar Muhammad Mustapha, Abdulhamid, Zakariya Muhammad, Mala, Baba Ahmad, Muazu, Tasiu, Muhammad, Abdullahi Uwaisu, Sangary, Ousmane, Ba, Abdoul Fatakhou, Tijjani, Sani, Adam, Jibril Muhammad, Ali, Mosaad Ali Hussein, Bello, Aliyu Uthman, Bala, Muhammad Muhammad
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.12.2024
Springer Nature B.V
Subjects:
ISSN:0920-4741, 1573-1650
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first