Improving Short-term Daily Streamflow Forecasting Using an Autoencoder Based CNN-LSTM Model

Streamflow forecasting is vital for managing water resources, such as flood control, agriculture planning, hydropower generation, environmental management, drought management, and water quality management. Motivated by the success of artificial intelligence models for hydrological applications, this...

Full description

Saved in:
Bibliographic Details
Published in:Water resources management Vol. 38; no. 15; pp. 5973 - 5989
Main Authors: Kumshe, Umar Muhammad Mustapha, Abdulhamid, Zakariya Muhammad, Mala, Baba Ahmad, Muazu, Tasiu, Muhammad, Abdullahi Uwaisu, Sangary, Ousmane, Ba, Abdoul Fatakhou, Tijjani, Sani, Adam, Jibril Muhammad, Ali, Mosaad Ali Hussein, Bello, Aliyu Uthman, Bala, Muhammad Muhammad
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.12.2024
Springer Nature B.V
Subjects:
ISSN:0920-4741, 1573-1650
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Streamflow forecasting is vital for managing water resources, such as flood control, agriculture planning, hydropower generation, environmental management, drought management, and water quality management. Motivated by the success of artificial intelligence models for hydrological applications, this study proposes a model that integrates an autoencoder, the Convolutional Neural Networks (CNN), and the Long Short Term Memory (LSTM) networks. Thirty years daily dataset were served to the Autoencoder Convolutional Neural Network Long Short Term Memory (AE-CNN-LSTM) and the baseline models. To evaluate the model's accuracy, 80% of the dataset was used for training and the remaining 20% was used to test the performance of these models. Statistical metrics, for instance, the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE), the Mean Absolute Percentage Error (MAPE), the Nash–Sutcliffe Efficiency (NSE), and the Coefficient of determination (R 2 ) were employed to evaluate the model’s performance. In terms of train RMSE, test RMSE, train MAE, test MAE, train MAPE, test MAPE, train NSE, test NSE, train R 2 , and test R 2 , the proposed model significantly obtained the best results with values of 2.6299, 2.7971, 0.1676, 0.1881, 16.76, 18.81, 0.98, 0.97, 0.98, and 0.96, respectively.
AbstractList Streamflow forecasting is vital for managing water resources, such as flood control, agriculture planning, hydropower generation, environmental management, drought management, and water quality management. Motivated by the success of artificial intelligence models for hydrological applications, this study proposes a model that integrates an autoencoder, the Convolutional Neural Networks (CNN), and the Long Short Term Memory (LSTM) networks. Thirty years daily dataset were served to the Autoencoder Convolutional Neural Network Long Short Term Memory (AE-CNN-LSTM) and the baseline models. To evaluate the model's accuracy, 80% of the dataset was used for training and the remaining 20% was used to test the performance of these models. Statistical metrics, for instance, the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE), the Mean Absolute Percentage Error (MAPE), the Nash–Sutcliffe Efficiency (NSE), and the Coefficient of determination (R²) were employed to evaluate the model’s performance. In terms of train RMSE, test RMSE, train MAE, test MAE, train MAPE, test MAPE, train NSE, test NSE, train R², and test R², the proposed model significantly obtained the best results with values of 2.6299, 2.7971, 0.1676, 0.1881, 16.76, 18.81, 0.98, 0.97, 0.98, and 0.96, respectively.
Streamflow forecasting is vital for managing water resources, such as flood control, agriculture planning, hydropower generation, environmental management, drought management, and water quality management. Motivated by the success of artificial intelligence models for hydrological applications, this study proposes a model that integrates an autoencoder, the Convolutional Neural Networks (CNN), and the Long Short Term Memory (LSTM) networks. Thirty years daily dataset were served to the Autoencoder Convolutional Neural Network Long Short Term Memory (AE-CNN-LSTM) and the baseline models. To evaluate the model's accuracy, 80% of the dataset was used for training and the remaining 20% was used to test the performance of these models. Statistical metrics, for instance, the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE), the Mean Absolute Percentage Error (MAPE), the Nash–Sutcliffe Efficiency (NSE), and the Coefficient of determination (R 2 ) were employed to evaluate the model’s performance. In terms of train RMSE, test RMSE, train MAE, test MAE, train MAPE, test MAPE, train NSE, test NSE, train R 2 , and test R 2 , the proposed model significantly obtained the best results with values of 2.6299, 2.7971, 0.1676, 0.1881, 16.76, 18.81, 0.98, 0.97, 0.98, and 0.96, respectively.
Streamflow forecasting is vital for managing water resources, such as flood control, agriculture planning, hydropower generation, environmental management, drought management, and water quality management. Motivated by the success of artificial intelligence models for hydrological applications, this study proposes a model that integrates an autoencoder, the Convolutional Neural Networks (CNN), and the Long Short Term Memory (LSTM) networks. Thirty years daily dataset were served to the Autoencoder Convolutional Neural Network Long Short Term Memory (AE-CNN-LSTM) and the baseline models. To evaluate the model's accuracy, 80% of the dataset was used for training and the remaining 20% was used to test the performance of these models. Statistical metrics, for instance, the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE), the Mean Absolute Percentage Error (MAPE), the Nash–Sutcliffe Efficiency (NSE), and the Coefficient of determination (R2) were employed to evaluate the model’s performance. In terms of train RMSE, test RMSE, train MAE, test MAE, train MAPE, test MAPE, train NSE, test NSE, train R2, and test R2, the proposed model significantly obtained the best results with values of 2.6299, 2.7971, 0.1676, 0.1881, 16.76, 18.81, 0.98, 0.97, 0.98, and 0.96, respectively.
Author Sangary, Ousmane
Mala, Baba Ahmad
Ali, Mosaad Ali Hussein
Adam, Jibril Muhammad
Muazu, Tasiu
Bala, Muhammad Muhammad
Muhammad, Abdullahi Uwaisu
Tijjani, Sani
Ba, Abdoul Fatakhou
Bello, Aliyu Uthman
Kumshe, Umar Muhammad Mustapha
Abdulhamid, Zakariya Muhammad
Author_xml – sequence: 1
  givenname: Umar Muhammad Mustapha
  surname: Kumshe
  fullname: Kumshe, Umar Muhammad Mustapha
  organization: College of Computer and Information, Hohai University
– sequence: 2
  givenname: Zakariya Muhammad
  surname: Abdulhamid
  fullname: Abdulhamid, Zakariya Muhammad
  organization: Software College, Northeastern University
– sequence: 3
  givenname: Baba Ahmad
  surname: Mala
  fullname: Mala, Baba Ahmad
  organization: School of Information and Communication Engineering, Huazhong University of Science and Technology
– sequence: 4
  givenname: Tasiu
  surname: Muazu
  fullname: Muazu, Tasiu
  organization: College of Computer and Information, Hohai University
– sequence: 5
  givenname: Abdullahi Uwaisu
  surname: Muhammad
  fullname: Muhammad, Abdullahi Uwaisu
  email: ma.uwais@fud.edu.ng
  organization: College of Computer and Information, Hohai University, Department of Computer Science, Federal University Dutse
– sequence: 6
  givenname: Ousmane
  surname: Sangary
  fullname: Sangary, Ousmane
  organization: School of Computer Science, Hubei University of Technology
– sequence: 7
  givenname: Abdoul Fatakhou
  surname: Ba
  fullname: Ba, Abdoul Fatakhou
  organization: College of Computer and Information, Hohai University
– sequence: 8
  givenname: Sani
  surname: Tijjani
  fullname: Tijjani, Sani
  organization: Computer Engineering Department, Kano State Polytechnic
– sequence: 9
  givenname: Jibril Muhammad
  surname: Adam
  fullname: Adam, Jibril Muhammad
  organization: Department of Computer Science, Federal University Dutse
– sequence: 10
  givenname: Mosaad Ali Hussein
  surname: Ali
  fullname: Ali, Mosaad Ali Hussein
  organization: Mining and Metallurgical Engineering Department, Assiut University
– sequence: 11
  givenname: Aliyu Uthman
  surname: Bello
  fullname: Bello, Aliyu Uthman
  organization: Department of Information Technology, Federal University Dutse
– sequence: 12
  givenname: Muhammad Muhammad
  surname: Bala
  fullname: Bala, Muhammad Muhammad
  organization: Department of Computer Science, Kano University of Science and Technology
BookMark eNp9kE1PwyAYgInRxDn9A56aePGC8tXSHnU6NZl6mJ48EEbfapcWFJhm_17qTEx28AIJeR54eQ7QrnUWEDqm5IwSIs8DpayoMGECE15xidkOGtFcckyLnOyiEakYwUIKuo8OQlgSkrSKjNDLXf_u3WdrX7P5m_MRR_B9dqXbbp3NowfdN537yqbOg9EhDtxzGFZts4tVdGCNq8FnlzpAnU0eHvBs_nSf3afD7hDtNboLcPS7j9Hz9Pppcotnjzd3k4sZNjxnEWtBwEgqhKi0EawCUopmYQRnVWlIXtS1LusGdMUa1ix4Tg1v2MIUeQKhKCgfo9PNveknHysIUfVtMNB12oJbBcVpLqhkshzQky106VbepukSxQomJJcsUWxDGe9C8NCod9_22q8VJWrorTa9VeqtfnqrQSq3JNNGHVtno085_1f5Rg3pHfsK_m-qf6xvB-WVmQ
CitedBy_id crossref_primary_10_1007_s12145_025_01911_z
crossref_primary_10_1016_j_ejrh_2024_102141
crossref_primary_10_1016_j_engappai_2025_111434
crossref_primary_10_3390_w17131913
crossref_primary_10_1007_s12145_024_01648_1
crossref_primary_10_1007_s11269_025_04166_x
crossref_primary_10_1007_s11269_025_04128_3
crossref_primary_10_1007_s40808_025_02514_9
crossref_primary_10_1007_s11269_025_04117_6
crossref_primary_10_1061_JCCEE5_CPENG_6757
crossref_primary_10_1007_s12145_025_01742_y
crossref_primary_10_3390_polym17131728
Cites_doi 10.1016/j.compag.2022.107121
10.1007/s12145-023-00952-6
10.1016/j.amc.2024.128727
10.1016/j.jhydrol.2014.01.062
10.1016/j.mlwa.2024.100551
10.1016/j.rineng.2024.101828
10.2166/nh.2024.124
10.1016/j.jhydrol.2021.126371
10.1016/j.patcog.2017.10.013
10.1007/s40996-021-00696-7
10.1007/s00477-024-02710-6
10.1007/s40899-020-00484-7
10.1061/(asce)he.1943-5584.0000690
10.1016/j.watcyc.2024.07.001
10.1016/j.envsoft.2020.104926
10.1016/j.asoc.2022.109739
10.1016/j.jhydrol.2024.130841
10.1007/s12145-023-01096-3
10.1007/s12665-021-09858-2
10.1016/j.ecoinf.2023.102119
10.1007/s11269-019-02399-1
10.1162/neco.1997.9.8.1735
10.1007/s11053-023-10284-3
10.1016/j.jhydrol.2021.127297
10.1016/j.asoc.2021.107083
10.1017/CBO9780511801389
10.1007/s11063-022-10773-1
10.1038/s41598-021-96751-4
10.1007/s11227-022-04827-3
10.5897/JGRP2016.0583
10.1007/s10064-010-0299-6
10.3389/frwa.2020.00028
10.1109/JIOT.2024.3388043
10.3390/w14020187
10.1109/IICSPI.2018.8690387
10.1109/TITS.2024.3380263
10.1109/CVPR.2017.113
10.3115/v1/D14-1179
10.1109/ICMLA.2018.00227
10.1016/j.envres.2024.119478
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-024-03937-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ProQuest Biological Science Collection
ABI/INFORM Global
Science Database
Biological Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 5989
ExternalDocumentID 10_1007_s11269_024_03937_2
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PQGLB
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-a40ec714449ac429e084fbc43298c056dda8dfea92f2fb351c3f2bc65e08e6613
IEDL.DBID M2P
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001290982100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-4741
IngestDate Sun Nov 09 13:01:39 EST 2025
Tue Dec 02 07:42:07 EST 2025
Tue Nov 18 21:45:44 EST 2025
Sat Nov 29 01:46:02 EST 2025
Fri Feb 21 02:36:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Deep learning
Hydrology
LSTM
Ala river
Autoencoder
Streamflow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-a40ec714449ac429e084fbc43298c056dda8dfea92f2fb351c3f2bc65e08e6613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3126247372
PQPubID 54174
PageCount 17
ParticipantIDs proquest_miscellaneous_3154172781
proquest_journals_3126247372
crossref_primary_10_1007_s11269_024_03937_2
crossref_citationtrail_10_1007_s11269_024_03937_2
springer_journals_10_1007_s11269_024_03937_2
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
20241201
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Gauch, Mai, Lin (CR14) 2021; 135
Cho, Kim (CR5) 2022; 605
Meshram, Meshram, Santos, Benzougagh, Khedher (CR29) 2022; 46
Ghimire, Yaseen, Farooque, Deo, Zhang, Tao (CR15) 2021; 11
Khand, Senay (CR24) 2024; 16
Akinwumi, Adewumi, Obiora-Okeke (CR1) 2020; 7
Coelho, Costa, Ferrás (CR6) 2024; 475
Ogunrayi, Akinseye, Goldberg, Bernhofer (CR34) 2016; 9
CR39
CR38
CR37
Dehghani, Moazam, Mortazavizadeh, Ranjbar, Mirzaei, Mortezavi, Ng, Dehghani (CR9) 2023; 75
Doğan, Yalçin, Yenigün, Bilgili (CR11) 2021; 12
CR12
Kim, Kim, Kim (CR26) 2024; 38
Ma, He, Liu, Ji, Li, Jiang (CR28) 2024; 631
Yenigun, Bilgili, Yesilnacar, Yalcin (CR45) 2021; 80
CR30
Muhammad, Musa, Yarima (CR32) 2015; 5
Vapnik (CR40) 2013
Balthazar, Miranda, Cândido, Capriles, Moraes, Ribeiro, Fayer, Goliatt (CR3) 2024
Huang, Chang, Huang, Chen (CR18) 2014; 511
Kao, Liou, Lee, Chang (CR22) 2021; 598
Ponnoprat (CR35) 2021; 102
Devi, Sharma, Sarma, Phukan, Sarma (CR10) 2022; 54
Yao, Wang, Wu, Lu (CR43) 2024; 33
Huang, Yang, Li, Oh, Kang (CR19) 2023; 79
Muhammad, Abba (CR31) 2023; 16
Muhammad, Djigal, Muazu, Adam, Ba, Dabai, Tijjani, Yahaya, Ashiru, Kumshe, Aliyu, Richard (CR33) 2023; 16
Karbasi, Jamei, Ali, Malik, Yaseen (CR23) 2022; 198
CR4
Hochreiter, Schmidhuber (CR17) 1997; 9
Bai, Bezak, Sapač, Klun, Zhang (CR2) 2019; 33
Zakaria, Shabri (CR47) 2012; 6
Ikram, Ewees, Parmar, Yaseen, Shahid, Kisi (CR21) 2022; 131
CR27
Dayal, Bonthu, T, Saripalle, Mohan (CR8) 2024; 21
CR25
CR44
CR20
CR42
CR41
Fang, Yang, Wen, Li, Yu, Zhou (CR13) 2024; 55
Razavi, Coulibaly (CR36) 2013; 18
Cristianini, Shawe-Taylor (CR7) 2000
Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Liu, Wang, Wang, Cai, Chen (CR16) 2018; 77
Yesilnacar, Yenigun (CR46) 2011; 70
J Huang (3937_CR19) 2023; 79
ZA Zakaria (3937_CR47) 2012; 6
K Cho (3937_CR5) 2022; 605
OA Ogunrayi (3937_CR34) 2016; 9
S Hochreiter (3937_CR17) 1997; 9
Z Yao (3937_CR43) 2024; 33
C Coelho (3937_CR6) 2024; 475
S Huang (3937_CR18) 2014; 511
SG Meshram (3937_CR29) 2022; 46
3937_CR25
K Khand (3937_CR24) 2024; 16
MI Yesilnacar (3937_CR46) 2011; 70
M Karbasi (3937_CR23) 2022; 198
3937_CR44
3937_CR20
3937_CR42
3937_CR41
AM Akinwumi (3937_CR1) 2020; 7
A Dayal (3937_CR8) 2024; 21
K Ma (3937_CR28) 2024; 631
M Gauch (3937_CR14) 2021; 135
3937_CR27
Y Bai (3937_CR2) 2019; 33
Z Doğan (3937_CR11) 2021; 12
J Gu (3937_CR16) 2018; 77
RMA Ikram (3937_CR21) 2022; 131
AU Muhammad (3937_CR31) 2023; 16
I Yenigun (3937_CR45) 2021; 80
IF Kao (3937_CR22) 2021; 598
T Razavi (3937_CR36) 2013; 18
N Cristianini (3937_CR7) 2000
D Ponnoprat (3937_CR35) 2021; 102
3937_CR4
V Vapnik (3937_CR40) 2013
AU Muhammad (3937_CR32) 2015; 5
G Devi (3937_CR10) 2022; 54
3937_CR12
LD Balthazar (3937_CR3) 2024
A Dehghani (3937_CR9) 2023; 75
3937_CR30
GJ Kim (3937_CR26) 2024; 38
J Fang (3937_CR13) 2024; 55
AU Muhammad (3937_CR33) 2023; 16
S Ghimire (3937_CR15) 2021; 11
3937_CR39
3937_CR38
3937_CR37
References_xml – volume: 198
  start-page: 107121
  year: 2022
  ident: CR23
  article-title: Forecasting weekly reference evapotranspiration using Auto Encoder Decoder Bidirectional LSTM model hybridized with a Boruta-CatBoost input optimizer
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2022.107121
– volume: 6
  start-page: 3003
  issue: 60
  year: 2012
  end-page: 3014
  ident: CR47
  article-title: Streamflow forecasting at ungaged sites using support vector machines
  publication-title: Appl Math Sci
– volume: 16
  start-page: 1241
  issue: 2
  year: 2023
  end-page: 1264
  ident: CR31
  article-title: Transfer learning for streamflow forecasting using unguaged MOPEX basins data set
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-023-00952-6
– volume: 475
  start-page: 128727
  year: 2024
  ident: CR6
  article-title: Enhancing continuous time series modelling with a latent ODE-LSTM approach
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2024.128727
– volume: 511
  start-page: 764
  year: 2014
  end-page: 775
  ident: CR18
  article-title: Monthly streamflow prediction using modified EMD-based support vector machine
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.01.062
– volume: 16
  start-page: 100551
  year: 2024
  ident: CR24
  article-title: Evaluation of streamflow predictions from LSTM models in water- and energy-limited regions in the United States
  publication-title: Mach Learn Appl
  doi: 10.1016/j.mlwa.2024.100551
– volume: 21
  start-page: 101828
  year: 2024
  ident: CR8
  article-title: Deep learning for multi-horizon water levelForecasting in KRS reservoir, India
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2024.101828
– volume: 55
  start-page: 180
  issue: 2
  year: 2024
  end-page: 204
  ident: CR13
  article-title: A deep learning-based hybrid approach for multi-time-ahead streamflow prediction in an arid region of Northwest China
  publication-title: Hydrol Res
  doi: 10.2166/nh.2024.124
– volume: 598
  start-page: 126371
  year: 2021
  ident: CR22
  article-title: Fusing stacked autoencoder and long short-term memory for regional multistep-ahead flood inundation forecasts
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126371
– ident: CR4
– ident: CR39
– ident: CR37
– year: 2013
  ident: CR40
  publication-title: The nature of statistical learning theory
– ident: CR12
– ident: CR30
– volume: 77
  start-page: 354
  year: 2018
  end-page: 377
  ident: CR16
  article-title: Recent advances in convolutional neural networks
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.10.013
– volume: 46
  start-page: 2393
  issue: 3
  year: 2022
  end-page: 2403
  ident: CR29
  article-title: Streamflow prediction based on artificial intelligence techniques
  publication-title: Iran J Sci Technol Trans Civ Eng
  doi: 10.1007/s40996-021-00696-7
– volume: 38
  start-page: 2767
  issue: 7
  year: 2024
  end-page: 2779
  ident: CR26
  article-title: Improving the probabilistic drought prediction with soil moisture information under the ensemble streamflow prediction framework
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-024-02710-6
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  ident: CR1
  article-title: Impact of climate change on the stream-flow of Ala River, Akure, Nigeria
  publication-title: Sustain Water Resour Manag
  doi: 10.1007/s40899-020-00484-7
– volume: 5
  start-page: 169
  issue: 3
  year: 2015
  end-page: 173
  ident: CR32
  article-title: Survey on training neural networks
  publication-title: Int J Adv Res Comput Sci Softw Eng
– volume: 18
  start-page: 958
  issue: 8
  year: 2013
  end-page: 975
  ident: CR36
  article-title: Streamflow prediction in ungauged basins: review of regionalization methods
  publication-title: J Hydrol Eng
  doi: 10.1061/(asce)he.1943-5584.0000690
– year: 2024
  ident: CR3
  article-title: Long-term natural streamflow forecasting under drought scenarios using data-intelligence modeling
  publication-title: Water Cycle
  doi: 10.1016/j.watcyc.2024.07.001
– volume: 135
  start-page: 104926
  year: 2021
  ident: CR14
  article-title: The proper care and feeding of CAMELS: how limited training data affects streamflow prediction
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2020.104926
– volume: 131
  start-page: 109739
  year: 2022
  ident: CR21
  article-title: The viability of extended marine predators algorithm-based artificial neural networks for streamflow prediction
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109739
– volume: 631
  start-page: 130841
  year: 2024
  ident: CR28
  article-title: Novel time-lag informed deep learning framework for enhanced streamflow prediction and flood early warning in large-scale catchments
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2024.130841
– ident: CR25
– volume: 16
  start-page: 3369
  issue: 4
  year: 2023
  end-page: 3385
  ident: CR33
  article-title: An autoencoder-based stacked LSTM transfer learning model for EC forecasting
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-023-01096-3
– ident: CR27
– ident: CR42
– volume: 80
  start-page: 568
  issue: 17
  year: 2021
  ident: CR45
  article-title: Seasonal and spatial variations in water quality of deep aquifer in the Harran plain, GAP project, southeastern Anatolia, Turkey
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-021-09858-2
– volume: 75
  start-page: 102119
  year: 2023
  ident: CR9
  article-title: Comparative evaluation of LSTM, CNN, and ConvLSTM for hourly short-term streamflow forecasting using deep learning approaches
  publication-title: Eco Inform
  doi: 10.1016/j.ecoinf.2023.102119
– ident: CR44
– volume: 12
  start-page: 165
  issue: 1
  year: 2021
  end-page: 174
  ident: CR11
  article-title: Kısmi En Küçük Kareler Yapısal Eşitlik Modelinin Yeraltı Suyu Kalitesinin Değerlendirilmesinde Kullanımı
  publication-title: Dicle Üniv Mühendislik Fakültesi Mühendislik Dergisi
– volume: 33
  start-page: 4783
  issue: 14
  year: 2019
  end-page: 4797
  ident: CR2
  article-title: Short-term streamflow forecasting using the feature-enhanced regression model
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02399-1
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: CR17
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 33
  start-page: 163
  issue: 1
  year: 2024
  end-page: 190
  ident: CR43
  article-title: A hybrid data-driven deep learning prediction framework for lake water level based on fusion of meteorological and hydrological multi-source data
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-023-10284-3
– volume: 605
  start-page: 127297
  year: 2022
  ident: CR5
  article-title: Improving streamflow prediction in the WRF-Hydro model with LSTM networks
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.127297
– ident: CR38
– volume: 102
  start-page: 107083
  year: 2021
  ident: CR35
  article-title: Short-term daily precipitation forecasting with seasonally-integrated autoencoder
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107083
– year: 2000
  ident: CR7
  publication-title: An introduction to support vector machines and other kernel-based learning methods
  doi: 10.1017/CBO9780511801389
– volume: 54
  start-page: 3263
  issue: 4
  year: 2022
  end-page: 3282
  ident: CR10
  article-title: Flood frequency modeling and prediction of Beki and Pagladia Rivers using deep learning approach
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-022-10773-1
– volume: 11
  start-page: 17497
  issue: 1
  year: 2021
  ident: CR15
  article-title: Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-96751-4
– volume: 79
  start-page: 4412
  issue: 4
  year: 2023
  end-page: 4435
  ident: CR19
  article-title: Prediction model of sparse autoencoder-based bidirectional LSTM for wastewater flow rate
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04827-3
– volume: 9
  start-page: 195
  issue: 11
  year: 2016
  end-page: 202
  ident: CR34
  article-title: Descriptive analysis of rainfall and temperature trends over Akure, Nigeria
  publication-title: J Geogr Reg Plann
  doi: 10.5897/JGRP2016.0583
– ident: CR41
– volume: 70
  start-page: 213
  issue: 2
  year: 2011
  end-page: 221
  ident: CR46
  article-title: Effect of irrigation on a deep aquifer: a case study from the semi-arid Harran Plain, GAP Project, Turkey
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-010-0299-6
– ident: CR20
– ident: 3937_CR12
  doi: 10.3389/frwa.2020.00028
– volume: 135
  start-page: 104926
  year: 2021
  ident: 3937_CR14
  publication-title: Environ Model Softw
  doi: 10.1016/j.envsoft.2020.104926
– volume: 598
  start-page: 126371
  year: 2021
  ident: 3937_CR22
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126371
– volume: 9
  start-page: 195
  issue: 11
  year: 2016
  ident: 3937_CR34
  publication-title: J Geogr Reg Plann
  doi: 10.5897/JGRP2016.0583
– volume: 475
  start-page: 128727
  year: 2024
  ident: 3937_CR6
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2024.128727
– volume: 102
  start-page: 107083
  year: 2021
  ident: 3937_CR35
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107083
– volume: 11
  start-page: 17497
  issue: 1
  year: 2021
  ident: 3937_CR15
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-96751-4
– ident: 3937_CR37
  doi: 10.1109/JIOT.2024.3388043
– ident: 3937_CR20
– volume: 75
  start-page: 102119
  year: 2023
  ident: 3937_CR9
  publication-title: Eco Inform
  doi: 10.1016/j.ecoinf.2023.102119
– year: 2024
  ident: 3937_CR3
  publication-title: Water Cycle
  doi: 10.1016/j.watcyc.2024.07.001
– volume: 54
  start-page: 3263
  issue: 4
  year: 2022
  ident: 3937_CR10
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-022-10773-1
– ident: 3937_CR42
  doi: 10.3390/w14020187
– volume-title: An introduction to support vector machines and other kernel-based learning methods
  year: 2000
  ident: 3937_CR7
  doi: 10.1017/CBO9780511801389
– volume: 198
  start-page: 107121
  year: 2022
  ident: 3937_CR23
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2022.107121
– volume: 631
  start-page: 130841
  year: 2024
  ident: 3937_CR28
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2024.130841
– volume: 605
  start-page: 127297
  year: 2022
  ident: 3937_CR5
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.127297
– volume: 131
  start-page: 109739
  year: 2022
  ident: 3937_CR21
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109739
– volume: 6
  start-page: 3003
  issue: 60
  year: 2012
  ident: 3937_CR47
  publication-title: Appl Math Sci
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  ident: 3937_CR1
  publication-title: Sustain Water Resour Manag
  doi: 10.1007/s40899-020-00484-7
– volume: 46
  start-page: 2393
  issue: 3
  year: 2022
  ident: 3937_CR29
  publication-title: Iran J Sci Technol Trans Civ Eng
  doi: 10.1007/s40996-021-00696-7
– volume: 5
  start-page: 169
  issue: 3
  year: 2015
  ident: 3937_CR32
  publication-title: Int J Adv Res Comput Sci Softw Eng
– ident: 3937_CR39
– volume-title: The nature of statistical learning theory
  year: 2013
  ident: 3937_CR40
– ident: 3937_CR44
  doi: 10.1109/IICSPI.2018.8690387
– volume: 70
  start-page: 213
  issue: 2
  year: 2011
  ident: 3937_CR46
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-010-0299-6
– volume: 33
  start-page: 4783
  issue: 14
  year: 2019
  ident: 3937_CR2
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02399-1
– volume: 16
  start-page: 1241
  issue: 2
  year: 2023
  ident: 3937_CR31
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-023-00952-6
– ident: 3937_CR25
  doi: 10.1109/TITS.2024.3380263
– volume: 16
  start-page: 3369
  issue: 4
  year: 2023
  ident: 3937_CR33
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-023-01096-3
– volume: 38
  start-page: 2767
  issue: 7
  year: 2024
  ident: 3937_CR26
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-024-02710-6
– ident: 3937_CR27
  doi: 10.1109/CVPR.2017.113
– volume: 18
  start-page: 958
  issue: 8
  year: 2013
  ident: 3937_CR36
  publication-title: J Hydrol Eng
  doi: 10.1061/(asce)he.1943-5584.0000690
– volume: 33
  start-page: 163
  issue: 1
  year: 2024
  ident: 3937_CR43
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-023-10284-3
– ident: 3937_CR4
  doi: 10.3115/v1/D14-1179
– ident: 3937_CR38
  doi: 10.1109/ICMLA.2018.00227
– volume: 55
  start-page: 180
  issue: 2
  year: 2024
  ident: 3937_CR13
  publication-title: Hydrol Res
  doi: 10.2166/nh.2024.124
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 3937_CR17
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 12
  start-page: 165
  issue: 1
  year: 2021
  ident: 3937_CR11
  publication-title: Dicle Üniv Mühendislik Fakültesi Mühendislik Dergisi
– volume: 79
  start-page: 4412
  issue: 4
  year: 2023
  ident: 3937_CR19
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04827-3
– volume: 21
  start-page: 101828
  year: 2024
  ident: 3937_CR8
  publication-title: Results Eng
  doi: 10.1016/j.rineng.2024.101828
– volume: 80
  start-page: 568
  issue: 17
  year: 2021
  ident: 3937_CR45
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-021-09858-2
– ident: 3937_CR41
  doi: 10.1016/j.envres.2024.119478
– ident: 3937_CR30
– volume: 77
  start-page: 354
  year: 2018
  ident: 3937_CR16
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.10.013
– volume: 16
  start-page: 100551
  year: 2024
  ident: 3937_CR24
  publication-title: Mach Learn Appl
  doi: 10.1016/j.mlwa.2024.100551
– volume: 511
  start-page: 764
  year: 2014
  ident: 3937_CR18
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.01.062
SSID ssj0010090
Score 2.479808
Snippet Streamflow forecasting is vital for managing water resources, such as flood control, agriculture planning, hydropower generation, environmental management,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5973
SubjectTerms Artificial intelligence
Artificial neural networks
Atmospheric Sciences
Civil Engineering
data collection
Datasets
Drought
Earth and Environmental Science
Earth Sciences
Environment
Environmental management
Flood control
Flood forecasting
Flood management
Geotechnical Engineering & Applied Earth Sciences
Hydroelectric power
Hydroelectric power generation
Hydrogeology
Hydrology/Water Resources
Long short-term memory
Neural networks
Performance evaluation
Quality management
Root-mean-square errors
Statistical models
Stream discharge
Stream flow
Streamflow forecasting
water
Water management
water power
Water quality
Water quality management
Water resources
Water resources management
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yPejBb3E6JYI3Daxp1jbHOR0etIibMvBQ0iTFQe1kH4r_ve917aaigp77mpaXl_x-yfsi5NjTSgrhGuY7UjLRUC4DHmeY9pXHtR8D6pu82YQfhkGvJ2-KpLBRGe1euiTznXqe7OZwTzLAFIb5pD6DjXcR4C7Ahg23nfuZ7wBYQ36zIuFgJAAwi1SZ78f4DEdzjvnFLZqjTXvtf_-5TlYLdkmbU3PYIAs22yQrH2oObpGH2TUC7TwC92a4N9Nz1U_fKLqo1VOSDl4ptuzUaoRB0TQPK6Aqo83JeICFL40d0jOAP0NbYciuOt1rij3V0m1y177oti5Z0WGBaSBeY6ZE3WofzlRCKg3IZOuBSGItXC4DDdTIGBWYxCrJE57EbsPRbsJj7TVA0AKyuzukkg0yu0uojRUc0h3rYEU-42npI7WMTRw4Ok5MUiVOqehIF-XHsQtGGs0LJ6PiIlBclCsu4lVyMnvneVp841fpWjl_UbEQR5ELUlxgL54qOZo9hiWEfhGV2cEEZRoCeVzgVMlpOafzIX7-4t7fxPfJMkezyINhaqQyHk7sAVnSL-P-aHiYG_E7J0zp-A
  priority: 102
  providerName: Springer Nature
Title Improving Short-term Daily Streamflow Forecasting Using an Autoencoder Based CNN-LSTM Model
URI https://link.springer.com/article/10.1007/s11269-024-03937-2
https://www.proquest.com/docview/3126247372
https://www.proquest.com/docview/3154172781
Volume 38
WOSCitedRecordID wos001290982100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_tgwf2ANsArWxURtrbsKgdN46f0FY27YFG1TpgiIfIsR0xqUu2foD473eXpi0gsZe9WIriOFHu7N_Pd-c7gMPYWaNU5LkWxnDVtRFHHue50zaWTueI-r4uNqHTNLm6MoPG4DZpwioXa2K9UPvKkY38fSRkLBUVVflwe8epahR5V5sSGuuwicxGUEhXXw6WXgTkD7WNxeAWSSF0Nodm5kfncDzDEaE4nU7VXP4NTCu2-Y-DtMads-eP_eJteNYwTnY8V5EdWAvlLmz9kYfwBXxfmhbY8AfycU7rNftor0e_Gbmt7U0xqn4xKuPp7IQCpVkdasBsyY5n04qSYfowZicIiZ710pR_Gl72GdVZG72Ez2enl71z3lRd4A7J2JRb1QlO4z5LGesQrUInUUXuVCRN4pAueW8TXwRrZCGLPOoKFxUyd3EXOwZE--gVbJRVGfaAhdzixl0EQVn6fOyMJrqZ-zwRLi980QKx-OWZa1KSU2WMUbZKpkxiylBMWS2mTLbgaPnM7Twhx4O9DxayyZrJOclWgmnB2-VtnFbkK7FlqGbUp6uI2yWiBe8WGrAa4v9vfP3wG_fhqSSlqwNiDmBjOp6FN_DE_ZxeT8ZtWNdfv7Vh8-Q0HVzgVb_Ta9cqTa2et0NsL4Zf7gGl2vpm
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RAFD5BNBEfFEXDIsqQ6BNM3E5n286DMQgSCEtDwpKQ8FDn1kCytLgXCH_K3-g53XZXTeCNB547nV7mm_OdM-cG8CmyWkkZOh4HSnHZ0SFHPc5xG-tI2Ngg67uq2UScpsnpqTqag99NLgyFVTYysRLUrrR0Rv4lDEQkJDVV-Xb1i1PXKPKuNi00JrA48Lc3aLINv-7v4Pp-FmL3R297j9ddBbhFZWPEtWx7G6MdIZW2KI19O5G5sTIUKrGoDjinE5d7rUQuchN2AhvmwtiogwM9slmI8z6Bp5Iqi1GooDiaei1QX6nOdBSaZBKpuk7SmaTq4fsrjozIKRs25uJfIpxpt_85ZCue23312P7QIrysNWq2NdkCr2HOF2_gxV91FpfgbHp0wo7P0d7gxEdsR1_0bxm55fVl3i9vGLUptXpIgeCsCqVgumBb41FJxT6dH7DvSPmObacp7x73Dhn1keu_hZMH-bp3MF-UhV8G5o32RgQ-oCqELrIqJnXaOJME1uQub0HQLHFm65Lr1Pmjn82KRRMsMoRFVsEiEy3YmN5zNSk4cu_o1QYLWS18htkMCC1Yn15GsUG-IF34ckxjOpJ01yRowWaDuNkUdz9x5f4nrsHzvd5hN-vupwfvYUEQ4Kvgn1WYHw3G_gM8s9eji-HgY7V1GPx8aCT-AS2WUZc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghA9lLe6UMBIcAKrG8ebxAeEyi4rqpaoUotUiUPqp6i0Tdp9UPWv8es6k012AYneeuAcx1bizzPfeF4AbxKrlZSx42mkFJc9HXPkcY7bVCfCpga1vqubTaR5nh0dqf0V-NXmwlBYZSsTa0HtKkt35FtxJBIhqanKVmjCIvYHw49n55w6SJGntW2nMYfIrr-8QPNt8mFngHv9Vojh58P-F950GOAWiceUa9n1NkWbQiptUTL7biaDsTIWKrNIDZzTmQteKxFEMHEvsnEQxiY9HOhRs8U47y24nUpUmxQ22O0vPBjIXer7HYXmmUS13STszNP28FsUR-3IKTM25eJPpbhkun85Z2udN7z_P_-tB7DeMG22PT8aD2HFl49g7bf6i4_h--JKhR38QDuEk55iA30yumTkrtenYVRdMGpfavWEAsRZHWLBdMm2Z9OKioA6P2afkAo41s9zvndw-JVRf7nRE_h2I1_3FFbLqvQbwLzR3ojIR1Sd0CVWpUSzjTNZZE1woQNRu92FbUqxU0eQUbEsIk0QKRAiRQ2RQnTg3eKds3khkmtHb7a4KBqhNCmWoOjA68VjFCfkI9Klr2Y0pieJ02ZRB9636FtO8e8Vn12_4iu4iwAs9nby3edwTxD265igTVidjmf-BdyxP6cnk_HL-hQxOL5pIF4BMfZaOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Short-term+Daily+Streamflow+Forecasting+Using+an+Autoencoder+Based+CNN-LSTM+Model&rft.jtitle=Water+resources+management&rft.au=Kumshe%2C+Umar+Muhammad+Mustapha&rft.au=Abdulhamid%2C+Zakariya+Muhammad&rft.au=Mala%2C+Baba+Ahmad&rft.au=Muazu%2C+Tasiu&rft.date=2024-12-01&rft.issn=0920-4741&rft.volume=38&rft.issue=15+p.5973-5989&rft.spage=5973&rft.epage=5989&rft_id=info:doi/10.1007%2Fs11269-024-03937-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon