Improving Short-term Daily Streamflow Forecasting Using an Autoencoder Based CNN-LSTM Model
Streamflow forecasting is vital for managing water resources, such as flood control, agriculture planning, hydropower generation, environmental management, drought management, and water quality management. Motivated by the success of artificial intelligence models for hydrological applications, this...
Gespeichert in:
| Veröffentlicht in: | Water resources management Jg. 38; H. 15; S. 5973 - 5989 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.12.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0920-4741, 1573-1650 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Streamflow forecasting is vital for managing water resources, such as flood control, agriculture planning, hydropower generation, environmental management, drought management, and water quality management. Motivated by the success of artificial intelligence models for hydrological applications, this study proposes a model that integrates an autoencoder, the Convolutional Neural Networks (CNN), and the Long Short Term Memory (LSTM) networks. Thirty years daily dataset were served to the Autoencoder Convolutional Neural Network Long Short Term Memory (AE-CNN-LSTM) and the baseline models. To evaluate the model's accuracy, 80% of the dataset was used for training and the remaining 20% was used to test the performance of these models. Statistical metrics, for instance, the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE), the Mean Absolute Percentage Error (MAPE), the Nash–Sutcliffe Efficiency (NSE), and the Coefficient of determination (R
2
) were employed to evaluate the model’s performance. In terms of train RMSE, test RMSE, train MAE, test MAE, train MAPE, test MAPE, train NSE, test NSE, train R
2
, and test R
2
, the proposed model significantly obtained the best results with values of 2.6299, 2.7971, 0.1676, 0.1881, 16.76, 18.81, 0.98, 0.97, 0.98, and 0.96, respectively. |
|---|---|
| AbstractList | Streamflow forecasting is vital for managing water resources, such as flood control, agriculture planning, hydropower generation, environmental management, drought management, and water quality management. Motivated by the success of artificial intelligence models for hydrological applications, this study proposes a model that integrates an autoencoder, the Convolutional Neural Networks (CNN), and the Long Short Term Memory (LSTM) networks. Thirty years daily dataset were served to the Autoencoder Convolutional Neural Network Long Short Term Memory (AE-CNN-LSTM) and the baseline models. To evaluate the model's accuracy, 80% of the dataset was used for training and the remaining 20% was used to test the performance of these models. Statistical metrics, for instance, the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE), the Mean Absolute Percentage Error (MAPE), the Nash–Sutcliffe Efficiency (NSE), and the Coefficient of determination (R²) were employed to evaluate the model’s performance. In terms of train RMSE, test RMSE, train MAE, test MAE, train MAPE, test MAPE, train NSE, test NSE, train R², and test R², the proposed model significantly obtained the best results with values of 2.6299, 2.7971, 0.1676, 0.1881, 16.76, 18.81, 0.98, 0.97, 0.98, and 0.96, respectively. Streamflow forecasting is vital for managing water resources, such as flood control, agriculture planning, hydropower generation, environmental management, drought management, and water quality management. Motivated by the success of artificial intelligence models for hydrological applications, this study proposes a model that integrates an autoencoder, the Convolutional Neural Networks (CNN), and the Long Short Term Memory (LSTM) networks. Thirty years daily dataset were served to the Autoencoder Convolutional Neural Network Long Short Term Memory (AE-CNN-LSTM) and the baseline models. To evaluate the model's accuracy, 80% of the dataset was used for training and the remaining 20% was used to test the performance of these models. Statistical metrics, for instance, the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE), the Mean Absolute Percentage Error (MAPE), the Nash–Sutcliffe Efficiency (NSE), and the Coefficient of determination (R 2 ) were employed to evaluate the model’s performance. In terms of train RMSE, test RMSE, train MAE, test MAE, train MAPE, test MAPE, train NSE, test NSE, train R 2 , and test R 2 , the proposed model significantly obtained the best results with values of 2.6299, 2.7971, 0.1676, 0.1881, 16.76, 18.81, 0.98, 0.97, 0.98, and 0.96, respectively. Streamflow forecasting is vital for managing water resources, such as flood control, agriculture planning, hydropower generation, environmental management, drought management, and water quality management. Motivated by the success of artificial intelligence models for hydrological applications, this study proposes a model that integrates an autoencoder, the Convolutional Neural Networks (CNN), and the Long Short Term Memory (LSTM) networks. Thirty years daily dataset were served to the Autoencoder Convolutional Neural Network Long Short Term Memory (AE-CNN-LSTM) and the baseline models. To evaluate the model's accuracy, 80% of the dataset was used for training and the remaining 20% was used to test the performance of these models. Statistical metrics, for instance, the Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE), the Mean Absolute Percentage Error (MAPE), the Nash–Sutcliffe Efficiency (NSE), and the Coefficient of determination (R2) were employed to evaluate the model’s performance. In terms of train RMSE, test RMSE, train MAE, test MAE, train MAPE, test MAPE, train NSE, test NSE, train R2, and test R2, the proposed model significantly obtained the best results with values of 2.6299, 2.7971, 0.1676, 0.1881, 16.76, 18.81, 0.98, 0.97, 0.98, and 0.96, respectively. |
| Author | Sangary, Ousmane Mala, Baba Ahmad Ali, Mosaad Ali Hussein Adam, Jibril Muhammad Muazu, Tasiu Bala, Muhammad Muhammad Muhammad, Abdullahi Uwaisu Tijjani, Sani Ba, Abdoul Fatakhou Bello, Aliyu Uthman Kumshe, Umar Muhammad Mustapha Abdulhamid, Zakariya Muhammad |
| Author_xml | – sequence: 1 givenname: Umar Muhammad Mustapha surname: Kumshe fullname: Kumshe, Umar Muhammad Mustapha organization: College of Computer and Information, Hohai University – sequence: 2 givenname: Zakariya Muhammad surname: Abdulhamid fullname: Abdulhamid, Zakariya Muhammad organization: Software College, Northeastern University – sequence: 3 givenname: Baba Ahmad surname: Mala fullname: Mala, Baba Ahmad organization: School of Information and Communication Engineering, Huazhong University of Science and Technology – sequence: 4 givenname: Tasiu surname: Muazu fullname: Muazu, Tasiu organization: College of Computer and Information, Hohai University – sequence: 5 givenname: Abdullahi Uwaisu surname: Muhammad fullname: Muhammad, Abdullahi Uwaisu email: ma.uwais@fud.edu.ng organization: College of Computer and Information, Hohai University, Department of Computer Science, Federal University Dutse – sequence: 6 givenname: Ousmane surname: Sangary fullname: Sangary, Ousmane organization: School of Computer Science, Hubei University of Technology – sequence: 7 givenname: Abdoul Fatakhou surname: Ba fullname: Ba, Abdoul Fatakhou organization: College of Computer and Information, Hohai University – sequence: 8 givenname: Sani surname: Tijjani fullname: Tijjani, Sani organization: Computer Engineering Department, Kano State Polytechnic – sequence: 9 givenname: Jibril Muhammad surname: Adam fullname: Adam, Jibril Muhammad organization: Department of Computer Science, Federal University Dutse – sequence: 10 givenname: Mosaad Ali Hussein surname: Ali fullname: Ali, Mosaad Ali Hussein organization: Mining and Metallurgical Engineering Department, Assiut University – sequence: 11 givenname: Aliyu Uthman surname: Bello fullname: Bello, Aliyu Uthman organization: Department of Information Technology, Federal University Dutse – sequence: 12 givenname: Muhammad Muhammad surname: Bala fullname: Bala, Muhammad Muhammad organization: Department of Computer Science, Kano University of Science and Technology |
| BookMark | eNp9kE1PwyAYgInRxDn9A56aePGC8tXSHnU6NZl6mJ48EEbfapcWFJhm_17qTEx28AIJeR54eQ7QrnUWEDqm5IwSIs8DpayoMGECE15xidkOGtFcckyLnOyiEakYwUIKuo8OQlgSkrSKjNDLXf_u3WdrX7P5m_MRR_B9dqXbbp3NowfdN537yqbOg9EhDtxzGFZts4tVdGCNq8FnlzpAnU0eHvBs_nSf3afD7hDtNboLcPS7j9Hz9Pppcotnjzd3k4sZNjxnEWtBwEgqhKi0EawCUopmYQRnVWlIXtS1LusGdMUa1ix4Tg1v2MIUeQKhKCgfo9PNveknHysIUfVtMNB12oJbBcVpLqhkshzQky106VbepukSxQomJJcsUWxDGe9C8NCod9_22q8VJWrorTa9VeqtfnqrQSq3JNNGHVtno085_1f5Rg3pHfsK_m-qf6xvB-WVmQ |
| CitedBy_id | crossref_primary_10_1007_s12145_025_01911_z crossref_primary_10_1016_j_ejrh_2024_102141 crossref_primary_10_1016_j_engappai_2025_111434 crossref_primary_10_3390_w17131913 crossref_primary_10_1007_s12145_024_01648_1 crossref_primary_10_1007_s11269_025_04166_x crossref_primary_10_1007_s11269_025_04128_3 crossref_primary_10_1007_s40808_025_02514_9 crossref_primary_10_1007_s11269_025_04117_6 crossref_primary_10_1061_JCCEE5_CPENG_6757 crossref_primary_10_1007_s12145_025_01742_y crossref_primary_10_3390_polym17131728 |
| Cites_doi | 10.1016/j.compag.2022.107121 10.1007/s12145-023-00952-6 10.1016/j.amc.2024.128727 10.1016/j.jhydrol.2014.01.062 10.1016/j.mlwa.2024.100551 10.1016/j.rineng.2024.101828 10.2166/nh.2024.124 10.1016/j.jhydrol.2021.126371 10.1016/j.patcog.2017.10.013 10.1007/s40996-021-00696-7 10.1007/s00477-024-02710-6 10.1007/s40899-020-00484-7 10.1061/(asce)he.1943-5584.0000690 10.1016/j.watcyc.2024.07.001 10.1016/j.envsoft.2020.104926 10.1016/j.asoc.2022.109739 10.1016/j.jhydrol.2024.130841 10.1007/s12145-023-01096-3 10.1007/s12665-021-09858-2 10.1016/j.ecoinf.2023.102119 10.1007/s11269-019-02399-1 10.1162/neco.1997.9.8.1735 10.1007/s11053-023-10284-3 10.1016/j.jhydrol.2021.127297 10.1016/j.asoc.2021.107083 10.1017/CBO9780511801389 10.1007/s11063-022-10773-1 10.1038/s41598-021-96751-4 10.1007/s11227-022-04827-3 10.5897/JGRP2016.0583 10.1007/s10064-010-0299-6 10.3389/frwa.2020.00028 10.1109/JIOT.2024.3388043 10.3390/w14020187 10.1109/IICSPI.2018.8690387 10.1109/TITS.2024.3380263 10.1109/CVPR.2017.113 10.3115/v1/D14-1179 10.1109/ICMLA.2018.00227 10.1016/j.envres.2024.119478 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI 7S9 L.6 |
| DOI | 10.1007/s11269-024-03937-2 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ProQuest Biological Science Collection ABI/INFORM Global Science Database Biological Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 5989 |
| ExternalDocumentID | 10_1007_s11269_024_03937_2 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PQGLB 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c352t-a40ec714449ac429e084fbc43298c056dda8dfea92f2fb351c3f2bc65e08e6613 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001290982100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-4741 |
| IngestDate | Sun Nov 09 13:01:39 EST 2025 Tue Dec 02 07:42:07 EST 2025 Tue Nov 18 21:45:44 EST 2025 Sat Nov 29 01:46:02 EST 2025 Fri Feb 21 02:36:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | Deep learning Hydrology LSTM Ala river Autoencoder Streamflow |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-a40ec714449ac429e084fbc43298c056dda8dfea92f2fb351c3f2bc65e08e6613 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 3126247372 |
| PQPubID | 54174 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_3154172781 proquest_journals_3126247372 crossref_primary_10_1007_s11269_024_03937_2 crossref_citationtrail_10_1007_s11269_024_03937_2 springer_journals_10_1007_s11269_024_03937_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20241200 2024-12-00 20241201 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2024 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Gauch, Mai, Lin (CR14) 2021; 135 Cho, Kim (CR5) 2022; 605 Meshram, Meshram, Santos, Benzougagh, Khedher (CR29) 2022; 46 Ghimire, Yaseen, Farooque, Deo, Zhang, Tao (CR15) 2021; 11 Khand, Senay (CR24) 2024; 16 Akinwumi, Adewumi, Obiora-Okeke (CR1) 2020; 7 Coelho, Costa, Ferrás (CR6) 2024; 475 Ogunrayi, Akinseye, Goldberg, Bernhofer (CR34) 2016; 9 CR39 CR38 CR37 Dehghani, Moazam, Mortazavizadeh, Ranjbar, Mirzaei, Mortezavi, Ng, Dehghani (CR9) 2023; 75 Doğan, Yalçin, Yenigün, Bilgili (CR11) 2021; 12 CR12 Kim, Kim, Kim (CR26) 2024; 38 Ma, He, Liu, Ji, Li, Jiang (CR28) 2024; 631 Yenigun, Bilgili, Yesilnacar, Yalcin (CR45) 2021; 80 CR30 Muhammad, Musa, Yarima (CR32) 2015; 5 Vapnik (CR40) 2013 Balthazar, Miranda, Cândido, Capriles, Moraes, Ribeiro, Fayer, Goliatt (CR3) 2024 Huang, Chang, Huang, Chen (CR18) 2014; 511 Kao, Liou, Lee, Chang (CR22) 2021; 598 Ponnoprat (CR35) 2021; 102 Devi, Sharma, Sarma, Phukan, Sarma (CR10) 2022; 54 Yao, Wang, Wu, Lu (CR43) 2024; 33 Huang, Yang, Li, Oh, Kang (CR19) 2023; 79 Muhammad, Abba (CR31) 2023; 16 Muhammad, Djigal, Muazu, Adam, Ba, Dabai, Tijjani, Yahaya, Ashiru, Kumshe, Aliyu, Richard (CR33) 2023; 16 Karbasi, Jamei, Ali, Malik, Yaseen (CR23) 2022; 198 CR4 Hochreiter, Schmidhuber (CR17) 1997; 9 Bai, Bezak, Sapač, Klun, Zhang (CR2) 2019; 33 Zakaria, Shabri (CR47) 2012; 6 Ikram, Ewees, Parmar, Yaseen, Shahid, Kisi (CR21) 2022; 131 CR27 Dayal, Bonthu, T, Saripalle, Mohan (CR8) 2024; 21 CR25 CR44 CR20 CR42 CR41 Fang, Yang, Wen, Li, Yu, Zhou (CR13) 2024; 55 Razavi, Coulibaly (CR36) 2013; 18 Cristianini, Shawe-Taylor (CR7) 2000 Gu, Wang, Kuen, Ma, Shahroudy, Shuai, Liu, Wang, Wang, Cai, Chen (CR16) 2018; 77 Yesilnacar, Yenigun (CR46) 2011; 70 J Huang (3937_CR19) 2023; 79 ZA Zakaria (3937_CR47) 2012; 6 K Cho (3937_CR5) 2022; 605 OA Ogunrayi (3937_CR34) 2016; 9 S Hochreiter (3937_CR17) 1997; 9 Z Yao (3937_CR43) 2024; 33 C Coelho (3937_CR6) 2024; 475 S Huang (3937_CR18) 2014; 511 SG Meshram (3937_CR29) 2022; 46 3937_CR25 K Khand (3937_CR24) 2024; 16 MI Yesilnacar (3937_CR46) 2011; 70 M Karbasi (3937_CR23) 2022; 198 3937_CR44 3937_CR20 3937_CR42 3937_CR41 AM Akinwumi (3937_CR1) 2020; 7 A Dayal (3937_CR8) 2024; 21 K Ma (3937_CR28) 2024; 631 M Gauch (3937_CR14) 2021; 135 3937_CR27 Y Bai (3937_CR2) 2019; 33 Z Doğan (3937_CR11) 2021; 12 J Gu (3937_CR16) 2018; 77 RMA Ikram (3937_CR21) 2022; 131 AU Muhammad (3937_CR31) 2023; 16 I Yenigun (3937_CR45) 2021; 80 IF Kao (3937_CR22) 2021; 598 T Razavi (3937_CR36) 2013; 18 N Cristianini (3937_CR7) 2000 D Ponnoprat (3937_CR35) 2021; 102 3937_CR4 V Vapnik (3937_CR40) 2013 AU Muhammad (3937_CR32) 2015; 5 G Devi (3937_CR10) 2022; 54 3937_CR12 LD Balthazar (3937_CR3) 2024 A Dehghani (3937_CR9) 2023; 75 3937_CR30 GJ Kim (3937_CR26) 2024; 38 J Fang (3937_CR13) 2024; 55 AU Muhammad (3937_CR33) 2023; 16 S Ghimire (3937_CR15) 2021; 11 3937_CR39 3937_CR38 3937_CR37 |
| References_xml | – volume: 198 start-page: 107121 year: 2022 ident: CR23 article-title: Forecasting weekly reference evapotranspiration using Auto Encoder Decoder Bidirectional LSTM model hybridized with a Boruta-CatBoost input optimizer publication-title: Comput Electron Agric doi: 10.1016/j.compag.2022.107121 – volume: 6 start-page: 3003 issue: 60 year: 2012 end-page: 3014 ident: CR47 article-title: Streamflow forecasting at ungaged sites using support vector machines publication-title: Appl Math Sci – volume: 16 start-page: 1241 issue: 2 year: 2023 end-page: 1264 ident: CR31 article-title: Transfer learning for streamflow forecasting using unguaged MOPEX basins data set publication-title: Earth Sci Inf doi: 10.1007/s12145-023-00952-6 – volume: 475 start-page: 128727 year: 2024 ident: CR6 article-title: Enhancing continuous time series modelling with a latent ODE-LSTM approach publication-title: Appl Math Comput doi: 10.1016/j.amc.2024.128727 – volume: 511 start-page: 764 year: 2014 end-page: 775 ident: CR18 article-title: Monthly streamflow prediction using modified EMD-based support vector machine publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.01.062 – volume: 16 start-page: 100551 year: 2024 ident: CR24 article-title: Evaluation of streamflow predictions from LSTM models in water- and energy-limited regions in the United States publication-title: Mach Learn Appl doi: 10.1016/j.mlwa.2024.100551 – volume: 21 start-page: 101828 year: 2024 ident: CR8 article-title: Deep learning for multi-horizon water levelForecasting in KRS reservoir, India publication-title: Results Eng doi: 10.1016/j.rineng.2024.101828 – volume: 55 start-page: 180 issue: 2 year: 2024 end-page: 204 ident: CR13 article-title: A deep learning-based hybrid approach for multi-time-ahead streamflow prediction in an arid region of Northwest China publication-title: Hydrol Res doi: 10.2166/nh.2024.124 – volume: 598 start-page: 126371 year: 2021 ident: CR22 article-title: Fusing stacked autoencoder and long short-term memory for regional multistep-ahead flood inundation forecasts publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.126371 – ident: CR4 – ident: CR39 – ident: CR37 – year: 2013 ident: CR40 publication-title: The nature of statistical learning theory – ident: CR12 – ident: CR30 – volume: 77 start-page: 354 year: 2018 end-page: 377 ident: CR16 article-title: Recent advances in convolutional neural networks publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.10.013 – volume: 46 start-page: 2393 issue: 3 year: 2022 end-page: 2403 ident: CR29 article-title: Streamflow prediction based on artificial intelligence techniques publication-title: Iran J Sci Technol Trans Civ Eng doi: 10.1007/s40996-021-00696-7 – volume: 38 start-page: 2767 issue: 7 year: 2024 end-page: 2779 ident: CR26 article-title: Improving the probabilistic drought prediction with soil moisture information under the ensemble streamflow prediction framework publication-title: Stoch Env Res Risk Assess doi: 10.1007/s00477-024-02710-6 – volume: 7 start-page: 1 issue: 1 year: 2020 ident: CR1 article-title: Impact of climate change on the stream-flow of Ala River, Akure, Nigeria publication-title: Sustain Water Resour Manag doi: 10.1007/s40899-020-00484-7 – volume: 5 start-page: 169 issue: 3 year: 2015 end-page: 173 ident: CR32 article-title: Survey on training neural networks publication-title: Int J Adv Res Comput Sci Softw Eng – volume: 18 start-page: 958 issue: 8 year: 2013 end-page: 975 ident: CR36 article-title: Streamflow prediction in ungauged basins: review of regionalization methods publication-title: J Hydrol Eng doi: 10.1061/(asce)he.1943-5584.0000690 – year: 2024 ident: CR3 article-title: Long-term natural streamflow forecasting under drought scenarios using data-intelligence modeling publication-title: Water Cycle doi: 10.1016/j.watcyc.2024.07.001 – volume: 135 start-page: 104926 year: 2021 ident: CR14 article-title: The proper care and feeding of CAMELS: how limited training data affects streamflow prediction publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2020.104926 – volume: 131 start-page: 109739 year: 2022 ident: CR21 article-title: The viability of extended marine predators algorithm-based artificial neural networks for streamflow prediction publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.109739 – volume: 631 start-page: 130841 year: 2024 ident: CR28 article-title: Novel time-lag informed deep learning framework for enhanced streamflow prediction and flood early warning in large-scale catchments publication-title: J Hydrol doi: 10.1016/j.jhydrol.2024.130841 – ident: CR25 – volume: 16 start-page: 3369 issue: 4 year: 2023 end-page: 3385 ident: CR33 article-title: An autoencoder-based stacked LSTM transfer learning model for EC forecasting publication-title: Earth Sci Inf doi: 10.1007/s12145-023-01096-3 – ident: CR27 – ident: CR42 – volume: 80 start-page: 568 issue: 17 year: 2021 ident: CR45 article-title: Seasonal and spatial variations in water quality of deep aquifer in the Harran plain, GAP project, southeastern Anatolia, Turkey publication-title: Environ Earth Sci doi: 10.1007/s12665-021-09858-2 – volume: 75 start-page: 102119 year: 2023 ident: CR9 article-title: Comparative evaluation of LSTM, CNN, and ConvLSTM for hourly short-term streamflow forecasting using deep learning approaches publication-title: Eco Inform doi: 10.1016/j.ecoinf.2023.102119 – ident: CR44 – volume: 12 start-page: 165 issue: 1 year: 2021 end-page: 174 ident: CR11 article-title: Kısmi En Küçük Kareler Yapısal Eşitlik Modelinin Yeraltı Suyu Kalitesinin Değerlendirilmesinde Kullanımı publication-title: Dicle Üniv Mühendislik Fakültesi Mühendislik Dergisi – volume: 33 start-page: 4783 issue: 14 year: 2019 end-page: 4797 ident: CR2 article-title: Short-term streamflow forecasting using the feature-enhanced regression model publication-title: Water Resour Manag doi: 10.1007/s11269-019-02399-1 – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 ident: CR17 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 33 start-page: 163 issue: 1 year: 2024 end-page: 190 ident: CR43 article-title: A hybrid data-driven deep learning prediction framework for lake water level based on fusion of meteorological and hydrological multi-source data publication-title: Nat Resour Res doi: 10.1007/s11053-023-10284-3 – volume: 605 start-page: 127297 year: 2022 ident: CR5 article-title: Improving streamflow prediction in the WRF-Hydro model with LSTM networks publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.127297 – ident: CR38 – volume: 102 start-page: 107083 year: 2021 ident: CR35 article-title: Short-term daily precipitation forecasting with seasonally-integrated autoencoder publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107083 – year: 2000 ident: CR7 publication-title: An introduction to support vector machines and other kernel-based learning methods doi: 10.1017/CBO9780511801389 – volume: 54 start-page: 3263 issue: 4 year: 2022 end-page: 3282 ident: CR10 article-title: Flood frequency modeling and prediction of Beki and Pagladia Rivers using deep learning approach publication-title: Neural Process Lett doi: 10.1007/s11063-022-10773-1 – volume: 11 start-page: 17497 issue: 1 year: 2021 ident: CR15 article-title: Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks publication-title: Sci Rep doi: 10.1038/s41598-021-96751-4 – volume: 79 start-page: 4412 issue: 4 year: 2023 end-page: 4435 ident: CR19 article-title: Prediction model of sparse autoencoder-based bidirectional LSTM for wastewater flow rate publication-title: J Supercomput doi: 10.1007/s11227-022-04827-3 – volume: 9 start-page: 195 issue: 11 year: 2016 end-page: 202 ident: CR34 article-title: Descriptive analysis of rainfall and temperature trends over Akure, Nigeria publication-title: J Geogr Reg Plann doi: 10.5897/JGRP2016.0583 – ident: CR41 – volume: 70 start-page: 213 issue: 2 year: 2011 end-page: 221 ident: CR46 article-title: Effect of irrigation on a deep aquifer: a case study from the semi-arid Harran Plain, GAP Project, Turkey publication-title: Bull Eng Geol Env doi: 10.1007/s10064-010-0299-6 – ident: CR20 – ident: 3937_CR12 doi: 10.3389/frwa.2020.00028 – volume: 135 start-page: 104926 year: 2021 ident: 3937_CR14 publication-title: Environ Model Softw doi: 10.1016/j.envsoft.2020.104926 – volume: 598 start-page: 126371 year: 2021 ident: 3937_CR22 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.126371 – volume: 9 start-page: 195 issue: 11 year: 2016 ident: 3937_CR34 publication-title: J Geogr Reg Plann doi: 10.5897/JGRP2016.0583 – volume: 475 start-page: 128727 year: 2024 ident: 3937_CR6 publication-title: Appl Math Comput doi: 10.1016/j.amc.2024.128727 – volume: 102 start-page: 107083 year: 2021 ident: 3937_CR35 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107083 – volume: 11 start-page: 17497 issue: 1 year: 2021 ident: 3937_CR15 publication-title: Sci Rep doi: 10.1038/s41598-021-96751-4 – ident: 3937_CR37 doi: 10.1109/JIOT.2024.3388043 – ident: 3937_CR20 – volume: 75 start-page: 102119 year: 2023 ident: 3937_CR9 publication-title: Eco Inform doi: 10.1016/j.ecoinf.2023.102119 – year: 2024 ident: 3937_CR3 publication-title: Water Cycle doi: 10.1016/j.watcyc.2024.07.001 – volume: 54 start-page: 3263 issue: 4 year: 2022 ident: 3937_CR10 publication-title: Neural Process Lett doi: 10.1007/s11063-022-10773-1 – ident: 3937_CR42 doi: 10.3390/w14020187 – volume-title: An introduction to support vector machines and other kernel-based learning methods year: 2000 ident: 3937_CR7 doi: 10.1017/CBO9780511801389 – volume: 198 start-page: 107121 year: 2022 ident: 3937_CR23 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2022.107121 – volume: 631 start-page: 130841 year: 2024 ident: 3937_CR28 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2024.130841 – volume: 605 start-page: 127297 year: 2022 ident: 3937_CR5 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.127297 – volume: 131 start-page: 109739 year: 2022 ident: 3937_CR21 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.109739 – volume: 6 start-page: 3003 issue: 60 year: 2012 ident: 3937_CR47 publication-title: Appl Math Sci – volume: 7 start-page: 1 issue: 1 year: 2020 ident: 3937_CR1 publication-title: Sustain Water Resour Manag doi: 10.1007/s40899-020-00484-7 – volume: 46 start-page: 2393 issue: 3 year: 2022 ident: 3937_CR29 publication-title: Iran J Sci Technol Trans Civ Eng doi: 10.1007/s40996-021-00696-7 – volume: 5 start-page: 169 issue: 3 year: 2015 ident: 3937_CR32 publication-title: Int J Adv Res Comput Sci Softw Eng – ident: 3937_CR39 – volume-title: The nature of statistical learning theory year: 2013 ident: 3937_CR40 – ident: 3937_CR44 doi: 10.1109/IICSPI.2018.8690387 – volume: 70 start-page: 213 issue: 2 year: 2011 ident: 3937_CR46 publication-title: Bull Eng Geol Env doi: 10.1007/s10064-010-0299-6 – volume: 33 start-page: 4783 issue: 14 year: 2019 ident: 3937_CR2 publication-title: Water Resour Manag doi: 10.1007/s11269-019-02399-1 – volume: 16 start-page: 1241 issue: 2 year: 2023 ident: 3937_CR31 publication-title: Earth Sci Inf doi: 10.1007/s12145-023-00952-6 – ident: 3937_CR25 doi: 10.1109/TITS.2024.3380263 – volume: 16 start-page: 3369 issue: 4 year: 2023 ident: 3937_CR33 publication-title: Earth Sci Inf doi: 10.1007/s12145-023-01096-3 – volume: 38 start-page: 2767 issue: 7 year: 2024 ident: 3937_CR26 publication-title: Stoch Env Res Risk Assess doi: 10.1007/s00477-024-02710-6 – ident: 3937_CR27 doi: 10.1109/CVPR.2017.113 – volume: 18 start-page: 958 issue: 8 year: 2013 ident: 3937_CR36 publication-title: J Hydrol Eng doi: 10.1061/(asce)he.1943-5584.0000690 – volume: 33 start-page: 163 issue: 1 year: 2024 ident: 3937_CR43 publication-title: Nat Resour Res doi: 10.1007/s11053-023-10284-3 – ident: 3937_CR4 doi: 10.3115/v1/D14-1179 – ident: 3937_CR38 doi: 10.1109/ICMLA.2018.00227 – volume: 55 start-page: 180 issue: 2 year: 2024 ident: 3937_CR13 publication-title: Hydrol Res doi: 10.2166/nh.2024.124 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 3937_CR17 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 12 start-page: 165 issue: 1 year: 2021 ident: 3937_CR11 publication-title: Dicle Üniv Mühendislik Fakültesi Mühendislik Dergisi – volume: 79 start-page: 4412 issue: 4 year: 2023 ident: 3937_CR19 publication-title: J Supercomput doi: 10.1007/s11227-022-04827-3 – volume: 21 start-page: 101828 year: 2024 ident: 3937_CR8 publication-title: Results Eng doi: 10.1016/j.rineng.2024.101828 – volume: 80 start-page: 568 issue: 17 year: 2021 ident: 3937_CR45 publication-title: Environ Earth Sci doi: 10.1007/s12665-021-09858-2 – ident: 3937_CR41 doi: 10.1016/j.envres.2024.119478 – ident: 3937_CR30 – volume: 77 start-page: 354 year: 2018 ident: 3937_CR16 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.10.013 – volume: 16 start-page: 100551 year: 2024 ident: 3937_CR24 publication-title: Mach Learn Appl doi: 10.1016/j.mlwa.2024.100551 – volume: 511 start-page: 764 year: 2014 ident: 3937_CR18 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.01.062 |
| SSID | ssj0010090 |
| Score | 2.479808 |
| Snippet | Streamflow forecasting is vital for managing water resources, such as flood control, agriculture planning, hydropower generation, environmental management,... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5973 |
| SubjectTerms | Artificial intelligence Artificial neural networks Atmospheric Sciences Civil Engineering data collection Datasets Drought Earth and Environmental Science Earth Sciences Environment Environmental management Flood control Flood forecasting Flood management Geotechnical Engineering & Applied Earth Sciences Hydroelectric power Hydroelectric power generation Hydrogeology Hydrology/Water Resources Long short-term memory Neural networks Performance evaluation Quality management Root-mean-square errors Statistical models Stream discharge Stream flow Streamflow forecasting water Water management water power Water quality Water quality management Water resources Water resources management |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HfTgW1xfRPCmQZtmt81JfOJBF0EFwUPJE4W11X0o_ntnut1dFfTiuXnRmcw3yUzmA9hB2LYp0bcH4wyXUkVoB63nVMoq9s64xIaSbCJpNtP7e3VdXbh1qrTKgU0sDbUrLN2R78eRaAhJpCqHL6-cWKMoulpRaIzDJHo2EaV0XYnrYRQBF1LesSg8IkmEzurRTP_pHI6nOCIUp9epCRffgWnkbf4IkJa4cz733xXPw2zlcbKjvooswJjPF2HmSx3CJXgYXi2wm0f0xznZa3aqn1ofjMLW-jm0indGNJ5WdyhRmpWpBkzn7KjXLagYpvNtdoyQ6NhJs8kvb26vGPGstZbh7vzs9uSCV6wL3KIz1uVaHnib4DlLKm0RrfxBKoOxMhYqteguOadTF7xWIohg4npk4yCMbdSxoUe0j1dgIi9yvwpMGaOtT7BfCDL2XqEWpI1Gqo0W0sWuBtHgl2e2KklOzBitbFRMmcSUoZiyUkyZqMHusM9LvyDHn603BrLJqs3ZyUaCqcH28DNuK4qV6NwXPWpTl-TbpVEN9gYaMBri9xnX_p5xHaYFKV2ZELMBE912z2_ClH3rPnXaW6X6fgLpuvSc priority: 102 providerName: ProQuest |
| Title | Improving Short-term Daily Streamflow Forecasting Using an Autoencoder Based CNN-LSTM Model |
| URI | https://link.springer.com/article/10.1007/s11269-024-03937-2 https://www.proquest.com/docview/3126247372 https://www.proquest.com/docview/3154172781 |
| Volume | 38 |
| WOSCitedRecordID | wos001290982100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB7Rx6E98GiLCJTISNyopazXydrHNrTiQFdRU2irHlZ-ikphU-XRin_PzGY3gaogwcXSasfe1dieb-x5AbxH2HaKyrdH6y2XUicoB13glMoqDd76zMWq2ESW5-ryUg_qoLBp4-3emCQrSb0KdktET3PEFE7xpBlHwbuBcKeoYMPZ8OvSdoCfr25WNB6MJAJmHSrz-Bi_w9FKx3xgFq3Q5uTZ__3nc3haa5fscLEcXsCTUO7A9i85B3fhenmNwIbfUPfmJJvZR3Mz-sHIRG2-x9H4nlHJTmem5BTNKrcCZkp2OJ-NKfGlDxN2hPDnWT_P-efh-SmjmmqjPfhycnze_8TrCgvcoeI140Z2gsvwTCW1cYhMoaNktE6mQiuHqpH3RvkYjBZRRJt2E5dGYV2vi4QBkT19CevluAyvgGlrjQsZ9otRpiFonHHV6yljjZA-9S1IGkYXrk4_TlUwRsUqcTIxrkDGFRXjCtGCD8s-t4vkG3-l3m_mr6g34rRIkUpIqsXTgnfL17iFyC5iyjCeE01Xkh6nkhYcNHO6GuLPX3z9b-RvYEvQsqicYfZhfTaZh7ew6e5mN9NJG9ayi6s2bBwd54MzfDrt9KkVA2qzRTtsV0v9J2yj8Ro |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RqNT2UPoUW6B1pfZErRLHu4kPVcWjCMQSIbFISBxSP1WkJaH7KOJP8Rs7k012KRLcOPQcP5L488zY8_gAPqHatinRtwfjDJdSRSgHredUyir2zrjEhopsIsmy9OREHc7BdZMLQ2GVjUysBLUrLd2Rf40j0RGSSFW-X_zmxBpF3tWGQmMCi31_dYlHtuG3vW1c389C7Pzobe3ymlWAWzQ2RlzLdW8TPEdIpS1KY7-eymCsjIVKLZoDzunUBa-VCCKYuB3ZOAhjO21s6FGbxTjuI1iQVFmMQgXF4dRrgR9e3ekoPJJJVNV1ks4kVQ_fX3HUiJyyYRMu_lWEM-v2lkO20nM7i__bH3oBz2uLmm1MtsBLmPPFK3h2o87iazidXp2wo1943uCkj9i2PutfMXLL6_PQLy8Z0ZRaPaRAcFaFUjBdsI3xqKRin84P2CaqfMe2sox3j3oHjHjk-m_g-EG-7i3MF2Xhl4ApY7T1CfYLQcbeK0R52umk2mghXexaEDVLnNu65Doxf_TzWbFogkWOsMgrWOSiBWvTPheTgiP3tl5psJDXwmeYz4DQgo_Txyg2yBekC1-OqU1bku2aRi340iBuNsTdM767f8YP8GS3d9DNu3vZ_jI8FQT4KvhnBeZHg7Ffhcf2z-hsOHhfbR0GPx8aiX8B7lhSWQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bTxQxFD5BNEYfFG9hBaUm-qQNO53uzvTBGNx1AwEnJGBC4sPQayRZZnAvEv4av85zZmd2kUTeeOB5Om3afj3ntOfyAbxHtW1Tom8PxhkupYpQDlrPqZRV7J1xiQ0V2USSZenRkdpfgssmF4bCKhuZWAlqV1p6I9-MI9EVkkhVNkMdFrHfH3w5-82JQYo8rQ2dxgwiu_7iHK9v4887fdzrD0IMvh32tnnNMMAtGh4TrmXb2wTvFFJpi5LZt1MZjJWxUKlF08A5nbrgtRJBBBN3IhsHYWy3gw09arYY-70H9xOJapPCBtu9uQcDF6F631F4PZOotuuEnVnaHs5FcdSOnDJjEy7-VYoLS_eac7bSeYOnd3m1VuBJbWmzrdnReAZLvngOj6_UX3wBP-dPKuzgF95DOOkp1tcnwwtG7np9GoblOSP6UqvHFCDOqhALpgu2NZ2UVATU-RH7iqaAY70s43sHh98Z8csNX8KPW5ndK1guysKvAlPGaOsT_C8EGXuvEP1pt5tqo4V0sWtB1Gx3butS7MQIMswXRaQJIjlCJK8gkosWfJz_czYrRHJj6_UGF3ktlMb5AhQteDf_jOKEfES68OWU2nQk2bRp1IJPDfoWXfx_xNc3j7gBDxGA-d5OtrsGjwRhv4oJWoflyWjq38AD-2dyMh69rU4Rg-PbBuJf_s5a-w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Short-term+Daily+Streamflow+Forecasting+Using+an+Autoencoder+Based+CNN-LSTM+Model&rft.jtitle=Water+resources+management&rft.au=Kumshe%2C+Umar+Muhammad+Mustapha&rft.au=Abdulhamid%2C+Zakariya+Muhammad&rft.au=Mala%2C+Baba+Ahmad&rft.au=Muazu%2C+Tasiu&rft.date=2024-12-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=38&rft.issue=15&rft.spage=5973&rft.epage=5989&rft_id=info:doi/10.1007%2Fs11269-024-03937-2&rft.externalDocID=10_1007_s11269_024_03937_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |