A Multi-Level Interpretable Sleep Stage Scoring System by Infusing Experts' Knowledge Into a Deep Network Architecture

In recent years, deep learning has shown potential and efficiency in a wide area including computer vision, image and signal processing. Yet, translational challenges remain for user applications due to a lack of interpretability of algorithmic decisions and results. This black box problem is partic...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 46; no. 7; pp. 5044 - 5061
Main Authors: Niknazar, Hamid, Mednick, Sara C.
Format: Journal Article
Language:English
Published: United States IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In recent years, deep learning has shown potential and efficiency in a wide area including computer vision, image and signal processing. Yet, translational challenges remain for user applications due to a lack of interpretability of algorithmic decisions and results. This black box problem is particularly problematic for high-risk applications such as medical-related decision-making. The current study goal was to design an interpretable deep learning system for time series classification of electroencephalogram (EEG) for sleep stage scoring as a step toward designing a transparent system. We have developed an interpretable deep neural network that includes a kernel-based layer guided by a set of principles used for sleep scoring by human experts in the visual analysis of polysomnographic records. A kernel-based convolutional layer was defined and used as the first layer of the system and made available for user interpretation. The trained system and its results were interpreted in four levels from microstructure of EEG signals, such as trained kernels and effect of each kernel on the detected stages, to macrostructures, such as transitions between stages. The proposed system demonstrated greater performance than prior studies and the system learned information consistent with expert knowledge.
AbstractList In recent years, deep learning has shown potential and efficiency in a wide area including computer vision, image and signal processing. Yet, translational challenges remain for user applications due to a lack of interpretability of algorithmic decisions and results. This black box problem is particularly problematic for high-risk applications such as medical-related decision-making. The current study goal was to design an interpretable deep learning system for time series classification of electroencephalogram (EEG) for sleep stage scoring as a step toward designing a transparent system. We have developed an interpretable deep neural network that includes a kernel-based layer guided by a set of principles used for sleep scoring by human experts in the visual analysis of polysomnographic records. A kernel-based convolutional layer was defined and used as the first layer of the system and made available for user interpretation. The trained system and its results were interpreted in four levels from microstructure of EEG signals, such as trained kernels and effect of each kernel on the detected stages, to macrostructures, such as transitions between stages. The proposed system demonstrated greater performance than prior studies and the system learned information consistent with expert knowledge.
In recent years, deep learning has shown potential and efficiency in a wide area including computer vision, image and signal processing. Yet, translational challenges remain for user applications due to a lack of interpretability of algorithmic decisions and results. This black box problem is particularly problematic for high-risk applications such as medical-related decision-making. The current study goal was to design an interpretable deep learning system for time series classification of electroencephalogram (EEG) for sleep stage scoring as a step toward designing a transparent system. We have developed an interpretable deep neural network that includes a kernel-based layer guided by a set of principles used for sleep scoring by human experts in the visual analysis of polysomnographic records. A kernel-based convolutional layer was defined and used as the first layer of the system and made available for user interpretation. The trained system and its results were interpreted in four levels from microstructure of EEG signals, such as trained kernels and effect of each kernel on the detected stages, to macrostructures, such as transitions between stages. The proposed system demonstrated greater performance than prior studies and the system learned information consistent with expert knowledge.In recent years, deep learning has shown potential and efficiency in a wide area including computer vision, image and signal processing. Yet, translational challenges remain for user applications due to a lack of interpretability of algorithmic decisions and results. This black box problem is particularly problematic for high-risk applications such as medical-related decision-making. The current study goal was to design an interpretable deep learning system for time series classification of electroencephalogram (EEG) for sleep stage scoring as a step toward designing a transparent system. We have developed an interpretable deep neural network that includes a kernel-based layer guided by a set of principles used for sleep scoring by human experts in the visual analysis of polysomnographic records. A kernel-based convolutional layer was defined and used as the first layer of the system and made available for user interpretation. The trained system and its results were interpreted in four levels from microstructure of EEG signals, such as trained kernels and effect of each kernel on the detected stages, to macrostructures, such as transitions between stages. The proposed system demonstrated greater performance than prior studies and the system learned information consistent with expert knowledge.
Author Mednick, Sara C.
Niknazar, Hamid
Author_xml – sequence: 1
  givenname: Hamid
  orcidid: 0000-0003-0413-9133
  surname: Niknazar
  fullname: Niknazar, Hamid
  email: hniknaza@uci.edu
  organization: Department of Cognitive Sciences, University of California, Irvine, CA, USA
– sequence: 2
  givenname: Sara C.
  orcidid: 0000-0002-0906-3097
  surname: Mednick
  fullname: Mednick, Sara C.
  organization: Department of Cognitive Sciences, University of California, Irvine, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38358869$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLeFP4AQssQBLln8Fcc-rkoLK7aAtOUcOc6kuGTj1HZa9t_Xyy4I9cDJI-t5ZkbznqCjwQ-A0EtK5pQS_f7q2-JyOWeEiTnnUtKKPEEzRiUpNNPsCM0IlaxQiqljdBLjDSFUlIQ_Q8dc8VIpqWfoboEvpz65YgV30OPlkCCMAZJpesDrHmDE62Suc219cMM1Xm9jgg1utpntprj7Ov81QkjxLf48-Pse2kznPh4b_GHnf4F078NPvAj2h0tg0xTgOXramT7Ci8N7ir5fnF-dfSpWXz8uzxarwvKSpcIwaRsBpq1azTW1jJdcCqoa01lOpQQN1raqIcJqpTVVAkphuoq0VrdNC_wUvdv3HYO_nSCmeuOihb43A_gp1vlOigmmKMvom0fojZ_CkLerOZGiIoyxKlOvD9TUbKCtx-A2JmzrPxfNANsDNvgYA3R_EUrqXWz179jqXWz1IbYsqUeSdckk54cUjOv_r77aqw4A_pkluKwI5Q-vWqVF
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_bbe_2024_06_004
crossref_primary_10_1088_1361_6501_ade327
crossref_primary_10_3390_bioengineering11121226
Cites_doi 10.1016/j.neunet.2020.07.010
10.1371/journal.pone.0216456
10.1016/S1389-9457(01)00115-0
10.1177/074873048600100404
10.1016/j.bspc.2022.103486
10.1109/TBME.2015.2510365
10.1523/JNEUROSCI.2604-11.2011
10.1016/j.physa.2020.125685
10.1109/JBHI.2020.2978004
10.1016/j.jneumeth.2019.108320
10.1142/s0129183113500174
10.1109/TNSRE.2017.2721116
10.1016/j.neuroimage.2017.07.018
10.1111/j.1439-054X.2006.00101.x
10.1016/j.dt.2019.12.002
10.3389/fphys.2021.628502
10.1109/ACCESS.2022.3163250
10.1016/j.jneumeth.2016.07.012
10.1016/j.cub.2008.06.033
10.1007/s10439-015-1444-y
10.1016/j.jneumeth.2011.12.022
10.1016/j.bbe.2020.01.010
10.5664/jcsm.2350
10.1161/01.CTR.101.23.e215
10.3390/s20174677
10.1007/s10916-014-0018-0
10.1016/j.artmed.2021.102038
10.1371/journal.pone.0144720
10.1159/000441975
10.1016/j.nbscr.2019.01.001
10.1109/TNSRE.2016.2552539
10.1109/CVPR.2017.354
10.1109/CVPR.2018.00920
10.1111/jsr.12169
10.1109/TCBB.2019.2912955
10.1016/j.bspc.2020.102037
10.1109/10.966600
10.1016/j.bspc.2019.101576
10.1016/j.bspc.2020.102326
10.1109/TNSRE.2017.2733220
10.1145/3233547.3233725
10.1111/j.1365-2869.2008.00700.x
10.1053/smrv.2002.0252
10.1016/j.eswa.2018.03.020
10.1016/j.smrv.2011.06.003
10.1016/j.bspc.2017.12.001
10.1007/978-3-030-28954-6_9
10.1109/TBME.2018.2872652
10.1093/sleep/zsx139
10.3414/ME09-01-0054
10.1109/TNSRE.2015.2465177
10.1109/tnsre.2023.3243589
10.1016/j.cmpb.2019.105089
10.1038/s41467-018-07229-3
10.1016/j.cmpb.2016.09.008
10.1016/j.neucom.2016.04.049
10.1016/j.bbe.2015.11.003
10.1109/TIP.2020.2993098
10.3389/fpsyg.2014.00099
10.1109/TNSRE.2018.2813138
10.1109/TCYB.2017.2788081
10.1093/sleep/32.2.139
10.3389/fnins.2021.614182
10.1016/j.eswa.2016.07.004
10.1088/1361-6579/ab921e
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2024.3366170
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 5061
ExternalDocumentID 38358869
10_1109_TPAMI_2024_3366170
10436701
Genre orig-research
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  grantid: R01-AG062288
– fundername: NIA NIH HHS
  grantid: R01 AG062288
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c352t-a26cb4ead7d9391c23536418bafc3166e9eccd8b04c9899184e54af70dc9dbde3
IEDL.DBID RIE
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001240147800029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 02:07:42 EDT 2025
Sun Nov 30 04:52:55 EST 2025
Thu Apr 03 07:02:31 EDT 2025
Sat Nov 29 02:58:26 EST 2025
Tue Nov 18 22:13:16 EST 2025
Wed Aug 27 01:58:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-a26cb4ead7d9391c23536418bafc3166e9eccd8b04c9899184e54af70dc9dbde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0413-9133
0000-0002-0906-3097
PMID 38358869
PQID 3064702227
PQPubID 85458
PageCount 18
ParticipantIDs pubmed_primary_38358869
crossref_primary_10_1109_TPAMI_2024_3366170
proquest_miscellaneous_2928242812
proquest_journals_3064702227
ieee_primary_10436701
crossref_citationtrail_10_1109_TPAMI_2024_3366170
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref59
Phan (ref91) 2020; 41
Seo (ref54) 2020; 61
Iber (ref10) 2007
Phan (ref52)
Sokolovsky (ref33) 2020; 17
Zhang (ref36) 2020; 183
Ghimatgar (ref81) 2019; 324
Rodenbeck (ref94) 2006; 10
ref45
ref48
ref47
Liu (ref78) 2020; 55
ref8
Diykh (ref17) 2016; 24
Hassan (ref20) 2016; 36
Hassan (ref28) 2016; 137
Zeiler (ref64)
Stephansen (ref38) 2018; 9
Dao (ref58)
Seifpour (ref84) 2018; 104
Liang (ref87) 2016; 63
ref39
Hu (ref43) 2020; 16
Kingma (ref75) 2017
Seeliger (ref30) 2018; 180
Cai (ref93) 2021; 68
Sanders (ref21)
Gillick (ref31)
Koh (ref5)
Vilamala (ref66)
Sattari (ref9) 2019; 6
Agarwal (ref25) 2001; 48
Liang (ref85) 2012; 205
Zhang (ref3)
Jozefowicz (ref32) 2016
Diykh (ref16) 2016; 63
Chen (ref29)
Jadhav (ref92) 2020; 40
Hassan (ref86) 2016; 271
Noé (ref46) 2002
Li (ref35) 2020; 1678
Acharya (ref18) 2015; 74
ref14
Radha (ref19)
Şen (ref22) 2014; 38
Hinterberger (ref98) 2014; 5
Danker-Hopfe (ref13) 2009; 18
Ronzhina (ref24) 2012; 16
Peker (ref23) 2016; 207
Allada (ref7) 2008; 18
Devuyst (ref74) 2005
Phan (ref37) 2019; 66
Zhang (ref34) 2019; 49
ref95
Humayun (ref90)
Chambon (ref51) 2018; 26
ref89
Phan (ref49) 2022; 44
Qu (ref79) 2020; 24
Fu (ref80) 2021; 12
Sors (ref56) 2018; 42
Rahuja (ref41)
Selvaraju (ref63)
Pathak (ref65) 2021; 114
Phan (ref57)
Chang (ref42)
Tsinalis (ref88) 2016
Tsinalis (ref76) 2016; 44
Simonyan (ref60) 2013
Al-Hussaini (ref68)
Yang (ref82) 2022; 71
Angelov (ref2) 2020; 130
Kales (ref11) 1968
Liu (ref44) 2021; 567
Dong (ref55) 2018; 26
Ioffe (ref72)
Supratak (ref77) 2017; 25
Doshi-Velez (ref1) 2017
Baek (ref69) 2022; 10
Andrillon (ref97) 2011; 31
Wang (ref6) 2020; 29
Bau (ref4) 2017
Sundararajan (ref61) 2017
Zhou (ref62)
ref71
ref70
ref73
Shen (ref83) 2020; 20
Fraiwan (ref15) 2010; 49
ref67
De Gennaro (ref96) 2003; 7
Enshaeifar (ref26) 2016; 24
Hassan (ref27) 2016; 2
Wang (ref50) 2022; 74
Eltrass (ref40) 2021; 65
Collop (ref12) 2002; 3
Sun (ref53) 2017; 40
References_xml – volume: 130
  start-page: 185
  year: 2020
  ident: ref2
  article-title: Towards explainable deep neural networks (xDNN)
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.07.010
– start-page: 721
  volume-title: Proc. 4th Mach. Learn. Healthcare Conf.
  ident: ref68
  article-title: SLEEPER: Interpretable sleep staging via prototypes from expert rules
– start-page: 1
  volume-title: Proc. IEEE EMBS Int. Conf. Biomed. Health Inform.
  ident: ref90
  article-title: End-to-end sleep staging with raw single channel EEG using deep residual ConvNets
– start-page: 1
  volume-title: Proc. IEEE Int. Conf. Intell. Technol.
  ident: ref41
  article-title: A deep neural network approach to automatic multi-class classification of electrocardiogram signals
– ident: ref89
  doi: 10.1371/journal.pone.0216456
– start-page: 3549
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  ident: ref3
  article-title: MDNet: A semantically and visually interpretable medical image diagnosis network
– volume: 3
  start-page: 43
  issue: 1
  year: 2002
  ident: ref12
  article-title: Scoring variability between polysomnography technologists in different sleep laboratories
  publication-title: Sleep Med.
  doi: 10.1016/S1389-9457(01)00115-0
– start-page: 1
  volume-title: Proc. IEEE 27th Int. Workshop Mach. Learn. Signal Process.
  ident: ref66
  article-title: Deep convolutional neural networks for interpretable analysis of EEG sleep stage scoring
– ident: ref95
  doi: 10.1177/074873048600100404
– volume: 74
  year: 2022
  ident: ref50
  article-title: A novel sleep staging network based on multi-scale dual attention
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.103486
– volume: 63
  start-page: 2108
  issue: 10
  year: 2016
  ident: ref87
  article-title: Combination of expert knowledge and a genetic fuzzy inference system for automatic sleep staging
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2510365
– volume: 31
  start-page: 17821
  issue: 49
  year: 2011
  ident: ref97
  article-title: Sleep spindles in humans: Insights from intracranial EEG and unit recordings
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2604-11.2011
– volume: 567
  year: 2021
  ident: ref44
  article-title: Automatic sleep staging with a single-channel EEG based on ensemble empirical mode decomposition
  publication-title: Physica A: Stat. Mech. Appl.
  doi: 10.1016/j.physa.2020.125685
– volume: 24
  start-page: 2833
  issue: 10
  year: 2020
  ident: ref79
  article-title: A residual based attention model for EEG based sleep staging
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2978004
– volume: 324
  year: 2019
  ident: ref81
  article-title: An automatic single-channel EEG-based sleep stage scoring method based on hidden Markov model
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108320
– start-page: 448
  volume-title: Proc. 32nd Int. Conf. Mach. Learn.
  ident: ref72
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– start-page: 818
  volume-title: Proc. 13th Eur. Conf. Comput. Vis.
  ident: ref64
  article-title: Visualizing and understanding convolutional networks
– year: 2017
  ident: ref75
  article-title: Adam: A method for stochastic optimization
– year: 2017
  ident: ref61
  article-title: Axiomatic attribution for deep networks
– ident: ref59
  doi: 10.1142/s0129183113500174
– volume: 25
  start-page: 1998
  issue: 11
  year: 2017
  ident: ref77
  article-title: DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2721116
– year: 2017
  ident: ref1
  article-title: Towards a rigorous science of interpretable machine learning
– volume: 180
  start-page: 253
  year: 2018
  ident: ref30
  article-title: Convolutional neural network-based encoding and decoding of visual object recognition in space and time
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.07.018
– volume: 10
  start-page: 159
  issue: 4
  year: 2006
  ident: ref94
  article-title: A review of sleep EEG patterns part I: A compilation of amended rules for their visual recognition according to Rechtschaffen and Kales
  publication-title: Somnologie
  doi: 10.1111/j.1439-054X.2006.00101.x
– volume: 16
  start-page: 1116
  issue: 6
  year: 2020
  ident: ref43
  article-title: Gabor-CNN for object detection based on small samples
  publication-title: Defence Technol.
  doi: 10.1016/j.dt.2019.12.002
– start-page: 618
  volume-title: Proc. IEEE Int. Conf. Comput. Vis.
  ident: ref63
  article-title: Grad-CAM: Visual explanations from deep networks via gradient-based localization
– volume: 12
  year: 2021
  ident: ref80
  article-title: Deep learning in automatic sleep staging with a single channel electroencephalography
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2021.628502
– volume: 10
  start-page: 36895
  year: 2022
  ident: ref69
  article-title: Automatic sleep scoring using intrinsic mode based on interpretable deep neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3163250
– volume: 68
  start-page: 777
  issue: 2
  year: 2021
  ident: ref93
  article-title: A graph-temporal fused dual-input convolutional neural network for detecting sleep stages from EEG signals
  publication-title: IEEE Trans. Circuits Syst. II: Express Briefs
– volume: 2
  issue: 3
  year: 2016
  ident: ref27
  article-title: Computer-aided obstructive sleep apnea identification using statistical features in the EMD domain and extreme learning machine
  publication-title: Biomed. Phys. Eng. Exp.
– volume: 271
  start-page: 107
  year: 2016
  ident: ref86
  article-title: A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.07.012
– volume: 18
  start-page: R670
  issue: 15
  year: 2008
  ident: ref7
  article-title: Unearthing the phylogenetic roots of sleep
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2008.06.033
– volume: 44
  start-page: 1587
  issue: 5
  year: 2016
  ident: ref76
  article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1444-y
– volume: 205
  start-page: 169
  issue: 1
  year: 2012
  ident: ref85
  article-title: A rule-based automatic sleep staging method
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2011.12.022
– volume: 40
  start-page: 494
  issue: 1
  year: 2020
  ident: ref92
  article-title: Automatic sleep stage classification using time–frequency images of CWT and transfer learning using convolution neural network
  publication-title: Biocybernetics Biomed. Eng.
  doi: 10.1016/j.bbe.2020.01.010
– start-page: 1296
  volume-title: Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics: Hum. Lang. Technol.
  ident: ref31
  article-title: Multilingual language processing from bytes
– ident: ref14
  doi: 10.5664/jcsm.2350
– ident: ref71
  doi: 10.1161/01.CTR.101.23.e215
– volume: 20
  issue: 17
  year: 2020
  ident: ref83
  article-title: An automatic sleep stage classification algorithm using improved model based essence features
  publication-title: Sensors
  doi: 10.3390/s20174677
– volume: 38
  issue: 3
  year: 2014
  ident: ref22
  article-title: A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-014-0018-0
– volume: 114
  year: 2021
  ident: ref65
  article-title: STQS: Interpretable multi-modal spatial-temporal-sequential model for automatic sleep scoring
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2021.102038
– ident: ref8
  doi: 10.1371/journal.pone.0144720
– volume: 74
  start-page: 268
  issue: 5/6
  year: 2015
  ident: ref18
  article-title: Nonlinear dynamics measures for automated EEG-Based sleep stage detection
  publication-title: Eur. Neurol.
  doi: 10.1159/000441975
– start-page: 2921
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  ident: ref62
  article-title: Learning deep features for discriminative localization
– volume: 6
  start-page: 53
  year: 2019
  ident: ref9
  article-title: Does working memory improvement benefit from sleep in older adults?
  publication-title: Neurobiol. Sleep Circadian Rhythms
  doi: 10.1016/j.nbscr.2019.01.001
– volume: 1678
  year: 2020
  ident: ref35
  article-title: A computationally efficient single-channel EEG sleep stage scoring approach using simple structured CNN
  publication-title: J. Phys.: Conf. Ser.
– volume: 24
  start-page: 1159
  issue: 11
  year: 2016
  ident: ref17
  article-title: EEG sleep stages classification based on time domain features and structural graph similarity
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2552539
– year: 2017
  ident: ref4
  article-title: Network dissection: Quantifying interpretability of deep visual representations
  doi: 10.1109/CVPR.2017.354
– ident: ref70
  doi: 10.1109/CVPR.2018.00920
– year: 2005
  ident: ref74
  article-title: The DREAMS databases and assessment algorithm
– ident: ref47
  doi: 10.1111/jsr.12169
– volume: 17
  start-page: 1835
  issue: 6
  year: 2020
  ident: ref33
  article-title: Deep learning for automated feature discovery and classification of sleep stages
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2019.2912955
– volume: 61
  year: 2020
  ident: ref54
  article-title: Intra- and inter-epoch temporal context network (IITNet) using sub-epoch features for automatic sleep scoring on raw single-channel EEG
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102037
– volume: 48
  start-page: 1412
  issue: 12
  year: 2001
  ident: ref25
  article-title: Computer-assisted sleep staging
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.966600
– volume: 55
  year: 2020
  ident: ref78
  article-title: Diffuse to fuse EEG spectra–Intrinsic geometry of sleep dynamics for classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.101576
– volume: 65
  year: 2021
  ident: ref40
  article-title: A new automated CNN deep learning approach for identification of ECG congestive heart failure and arrhythmia using constant-Q non-stationary Gabor transform
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102326
– volume: 26
  start-page: 324
  issue: 2
  year: 2018
  ident: ref55
  article-title: Mixed neural network approach for temporal sleep stage classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2733220
– ident: ref48
  doi: 10.1145/3233547.3233725
– volume: 18
  start-page: 74
  issue: 1
  year: 2009
  ident: ref13
  article-title: Interrater reliability for sleep scoring according to the Rechtschaffen and Kales and the new AASM standard
  publication-title: J. Sleep Res.
  doi: 10.1111/j.1365-2869.2008.00700.x
– start-page: 1885
  volume-title: Proc. 34th Int. Conf. Mach. Learn.
  ident: ref5
  article-title: Understanding black-box predictions via influence functions
– volume: 7
  start-page: 423
  issue: 5
  year: 2003
  ident: ref96
  article-title: Sleep spindles: An overview
  publication-title: Sleep Med. Rev.
  doi: 10.1053/smrv.2002.0252
– volume: 104
  start-page: 277
  year: 2018
  ident: ref84
  article-title: A new automatic sleep staging system based on statistical behavior of local extrema using single channel EEG signal
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.03.020
– volume: 16
  start-page: 251
  issue: 3
  year: 2012
  ident: ref24
  article-title: Sleep scoring using artificial neural networks
  publication-title: Sleep Med. Rev.
  doi: 10.1016/j.smrv.2011.06.003
– year: 2016
  ident: ref88
  article-title: Automatic sleep stage scoring with single-channel EEG using convolutional neural networks
– volume: 42
  start-page: 107
  year: 2018
  ident: ref56
  article-title: A convolutional neural network for sleep stage scoring from raw single-channel EEG
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.12.001
– ident: ref73
  doi: 10.1007/978-3-030-28954-6_9
– volume: 66
  start-page: 1285
  issue: 5
  year: 2019
  ident: ref37
  article-title: Joint classification and prediction CNN framework for automatic sleep stage classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2872652
– volume: 40
  issue: 10
  year: 2017
  ident: ref53
  article-title: Large-scale automated sleep staging
  publication-title: Sleep
  doi: 10.1093/sleep/zsx139
– volume: 49
  start-page: 230
  issue: 3
  year: 2010
  ident: ref15
  article-title: Classification of sleep stages using multi-wavelet time frequency entropy and LDA
  publication-title: Methods Inf. Med.
  doi: 10.3414/ME09-01-0054
– volume: 24
  start-page: 57
  issue: 1
  year: 2016
  ident: ref26
  article-title: Quaternion singular spectrum analysis of electroencephalogram with application in sleep analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2465177
– ident: ref67
  doi: 10.1109/tnsre.2023.3243589
– volume: 183
  year: 2020
  ident: ref36
  article-title: Orthogonal convolutional neural networks for automatic sleep stage classification based on single-channel EEG
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105089
– year: 2016
  ident: ref32
  article-title: Exploring the limits of language modeling
– year: 2002
  ident: ref46
  article-title: CGCNN: Complex Gabor convolutional neural network on raw speech
– volume: 9
  issue: 1
  year: 2018
  ident: ref38
  article-title: Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy
  publication-title: Nature Commun.
  doi: 10.1038/s41467-018-07229-3
– volume: 71
  year: 2022
  ident: ref82
  article-title: A novel sleep stage contextual refinement algorithm leveraging conditional random fields
  publication-title: IEEE Trans. Instrum. Meas.
– volume-title: The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications
  year: 2007
  ident: ref10
– start-page: 1452
  volume-title: Proc. IEEE 40th Annu. Int. Conf. Eng. Med. Biol. Soc.
  ident: ref52
  article-title: Automatic sleep stage classification using single-channel EEG: Learning sequential features with attention-based recurrent neural networks
– start-page: 4579
  volume-title: Proc. 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
  ident: ref21
  article-title: Sleep stage classification with cross frequency coupling
– volume: 44
  start-page: 5903
  issue: 9
  year: 2022
  ident: ref49
  article-title: XSleepNet: Multi-view sequential model for automatic sleep staging
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 137
  start-page: 247
  year: 2016
  ident: ref28
  article-title: Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.09.008
– volume: 207
  start-page: 165
  year: 2016
  ident: ref23
  article-title: An efficient sleep scoring system based on EEG signal using complex-valued machine learning algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.04.049
– volume: 36
  start-page: 256
  issue: 1
  year: 2016
  ident: ref20
  article-title: Computer-aided obstructive sleep apnea screening from single-lead electrocardiogram using statistical and spectral features and bootstrap aggregating
  publication-title: Biocybernetics Biomed. Eng.
  doi: 10.1016/j.bbe.2015.11.003
– volume-title: A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects
  year: 1968
  ident: ref11
– year: 2013
  ident: ref60
  article-title: Deep inside convolutional networks: Visualising image classification models and saliency maps
– volume: 29
  start-page: 6707
  year: 2020
  ident: ref6
  article-title: Interpret neural networks by extracting critical subnetworks
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2993098
– start-page: 3108
  volume-title: Proc. 40th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
  ident: ref58
  article-title: Compressed sensing of EEG with gabor dictionary: Effect of time and frequency resolution
– volume: 5
  year: 2014
  ident: ref98
  article-title: Decreased electrophysiological activity represents the conscious state of emptiness in meditation
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2014.00099
– start-page: 3640
  volume-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  ident: ref29
  article-title: Attention to scale: Scale-aware semantic image segmentation
– volume: 26
  start-page: 758
  issue: 4
  year: 2018
  ident: ref51
  article-title: A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2813138
– start-page: 905
  volume-title: Proc. Interspeech ISCA: ISCA
  ident: ref42
  article-title: Robust CNN-based speech recognition with Gabor filter kernels
– volume: 49
  start-page: 839
  issue: 3
  year: 2019
  ident: ref34
  article-title: Spatial–temporal recurrent neural network for emotion recognition
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2788081
– start-page: 1876
  volume-title: Proc. IEEE 36th Annu. Int. Conf. Eng. Med. Biol. Soc.
  ident: ref19
  article-title: Comparison of feature and classifier algorithms for online automatic sleep staging based on a single EEG signal
– start-page: 453
  volume-title: Proc. IEEE 40th Annu. Int. Conf. Eng. Med. Biol. Soc.
  ident: ref57
  article-title: DNN filter bank improves 1-Max pooling CNN for single-channel EEG automatic sleep stage classification
– ident: ref39
  doi: 10.1093/sleep/32.2.139
– ident: ref45
  doi: 10.3389/fnins.2021.614182
– volume: 63
  start-page: 241
  year: 2016
  ident: ref16
  article-title: Complex networks approach for EEG signal sleep stages classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.07.004
– volume: 41
  issue: 6
  year: 2020
  ident: ref91
  article-title: Personalized automatic sleep staging with single-night data: A pilot study with Kullback–Leibler divergence regularization
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab921e
SSID ssj0014503
Score 2.4875913
Snippet In recent years, deep learning has shown potential and efficiency in a wide area including computer vision, image and signal processing. Yet, translational...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5044
SubjectTerms Adult
Algorithms
Artificial neural networks
Black-box problem
Brain modeling
Computer vision
convolutional neural network
Deep Learning
electroencephalogram
Electroencephalography
Feature extraction
Female
Humans
interpretable system
Kernel
Machine learning
Male
Neural Networks, Computer
Polysomnography
Signal processing
Signal Processing, Computer-Assisted
Sleep
sleep stages
Sleep Stages - physiology
Time-frequency analysis
Young Adult
Title A Multi-Level Interpretable Sleep Stage Scoring System by Infusing Experts' Knowledge Into a Deep Network Architecture
URI https://ieeexplore.ieee.org/document/10436701
https://www.ncbi.nlm.nih.gov/pubmed/38358869
https://www.proquest.com/docview/3064702227
https://www.proquest.com/docview/2928242812
Volume 46
WOSCitedRecordID wos001240147800029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB9aKaIP2lo_ola2IPShRJPNJpt9PPygpfYQ1HJvYT8mh3DciXcn-N87u0nOe7Hg20JmNwszw85v9zczAMeyFspJLuJcp3ksKMKNjeY6lrkpnEuUTUPZxX9Xst8vBwN13Sarh1wYRAzkMzzxw_CW7yZ27q_KyMOFrzdGYOejlEWTrLV4MhB5aINMIQy5OOGILkMmUae3172_vwkLcnGSZYUvQb4GqwTN8rL0ROelAyl0WHk72AyHzuXmO7f7GTba6JL1GnP4Ah9wvAWbXecG1jryFqwvlSH8Ck89FvJw4yvPIGKvPEQzQnYzQnxgFJMOaWwDXY81Zc6ZeSbZ2jPnhyyUTJ5Nf7A_3SWdX2fCNDv38_sN25z1lt4ttuHu8uL27Ffc9mOILYVps1jzwhpBpiedylRqeZZnhUhLo2ubpUWBiuzBlSYRVhGMI-yIudC1TJxVzjjMdmBlPBnjHjAKlgWKmivte6CRtEyQFzVmuROlLU0EaaeUyrbFyn3PjFEVQEuiqqDTyuu0anUawc_FnIemVMd_pbe9xpYkG2VFcNgpv2rdeVp5mCZD2nAE3xefyRH964oe42Q-rbgi9EpgLuUR7DZGs1i8s7X9N356AGt-bw0N-BBWZo9z_Aaf7NPsfvp4RNY-KI-Ctb8Ac3T4Ig
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-KitUHv2p1ra0pFPpQVnez2Y88HrWieB5Cr8W3kI9ZKRx34t0J_vdOsrvXe7HQt8BOsoGZIfNLZn4D8KWshXQlF3Gu0zwWFOHGRnMdl7kpnEukTQPt4u9-ORhUd3fyti1WD7UwiBiSz_DUD8NbvpvYub8qIw8Xnm-MwM6qb53VlmstHg1EHhohUxBDTk5IoquRSeTZ8LZ3c0VokIvTLCs8CfkGrBM4y6vKpzovHUmhx8rr4WY4di62_3PDO7DVxpes1xjELrzB8R5sd70bWOvKe7C5RET4Dp56LFTixn2fQ8T-ZiKaEbKfI8QHRlHpPY1tSNhjDdE5M88kW_vc-XsWSJNn06_surum8-tMmGbnfv6gyTdnvaWXi334dfFj-P0ybjsyxJYCtVmseWGNIOMrncxkanmWZ4VIK6Nrm6VFgZIswlUmEVYSkCP0iLnQdZk4K51xmL2HlfFkjIfAKFwWKGoutVclSZcJ8qLGLHeispWJIO2UomxLV-67ZoxUgC2JVEGnyutUtTqN4NtizkND1vFP6X2vsSXJRlkRHHfKV61DT5UHamUoHI7g8-IzuaJ_X9FjnMynikvCrwTnUh7BQWM0i8U7Wzt65acn8PZyeNNX_avB9QfY8PtskoKPYWX2OMePsGafZn-mj5-Czb8Aq2f6gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Level+Interpretable+Sleep+Stage+Scoring+System+by+Infusing+Experts%E2%80%99+Knowledge+Into+a+Deep+Network+Architecture&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Niknazar%2C+Hamid&rft.au=Mednick%2C+Sara+C.&rft.date=2024-07-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=46&rft.issue=7&rft.spage=5044&rft.epage=5061&rft_id=info:doi/10.1109%2FTPAMI.2024.3366170&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2024_3366170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon