Predicting the Water Inflow Into the Dam Reservoir Using the Hybrid Intelligent GP-ANN- NSGA-II Method

A key issue for effective management and operating of dam reservoirs is predicting the water inflow values into dam reservoir. To address this subject, here, genetic programming (GP) is used by proposing two cases. In the first case, water inflow values are predicted separately for each month. Howev...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Water resources management Ročník 38; číslo 11; s. 4137 - 4159
Hlavní autoři: Moeini, Ramtin, Nasiri, Kamran, Hosseini, Seyed Hossein
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.09.2024
Springer Nature B.V
Témata:
ISSN:0920-4741, 1573-1650
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A key issue for effective management and operating of dam reservoirs is predicting the water inflow values into dam reservoir. To address this subject, here, genetic programming (GP) is used by proposing two cases. In the first case, water inflow values are predicted separately for each month. However, in the second case, these values are predicted simultaneously for all months. Furthermore, for each case, two approaches are proposed here. In the first approach, the hybrid method, called the ANN-NGSA-II method, is proposed to find proper input data sets. However, in the second approach, the useful input data sets are found automatically using the GP method. For comparison purpose, the ANN and SARIMA models are also used, to predict the water inflow values. As a case study, in this research, the Zayandehroud dam reservoir is selected. The results indicate that the ANN model outperforms both results of the GP and SARIMA methods. In other words, correlation coefficient (R 2 ), Nash Sutcliffe (NS), and root means square error (RMSE) values of ANN are 0.97, (0.88), 0.954 (0.87), and 17.19 (30.54) million cubic meters, respectively, for training (test) data set.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0920-4741
1573-1650
DOI:10.1007/s11269-024-03856-2