Semi-Identical Twins Variational AutoEncoder for Few-Shot Learning

Data augmentation is a popular way for few-shot learning (FSL). It generates more samples as supplements and then transforms the FSL task into a common supervised learning problem for a solution. However, most data-augmentation-based FSL approaches only consider the prior visual knowledge for featur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 35; číslo 7; s. 9455 - 9469
Hlavní autoři: Zhang, Yi, Huang, Sheng, Peng, Xi, Yang, Dan
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Data augmentation is a popular way for few-shot learning (FSL). It generates more samples as supplements and then transforms the FSL task into a common supervised learning problem for a solution. However, most data-augmentation-based FSL approaches only consider the prior visual knowledge for feature generation, thereby leading to low diversity and poor quality of generated data. In this study, we attempt to address this issue by incorporating both prior visual and prior semantic knowledge to condition the feature generation process. Inspired by some genetic characteristics of semi-identical twins, a novel multimodal generative FSL approach was developed named semi-identical twins variational autoencoder (STVAE) to better exploit the complementarity of these modality information by considering the multimodal conditional feature generation process as a process that semi-identical twins are born and collaborate to simulate their father. STVAE conducts feature synthesis by pairing two conditional variational autoencoders (CVAEs) with the same seed but different modality conditions. Subsequently, the generated features of two CVAEs are considered as semi-identical twins and adaptively combined to yield the final feature, which is considered as their fake father. STVAE requires that the final feature can be converted back into its paired conditions while ensuring these conditions remain consistent with the original in both representation and function. Moreover, STVAE is able to work in the partial modality-absence case due to the adaptive linear feature combination strategy. STVAE essentially provides a novel idea to exploit the complementarity of different modality prior information inspired by genetics in FSL. Extensive experimental results demonstrate that our work achieves promising performances in comparison to the recent state-of-the-art approaches, as well as validate its effectiveness on FSL under various modality settings.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2022.3233553