Multiple voice disorders in the same individual: Investigating handcrafted features, multi-label classification algorithms, and base-learners

Non-invasive acoustic analyses of voice disorders have been at the forefront of current biomedical research. Usual strategies, essentially based on machine learning (ML) algorithms, commonly classify a subject as being either healthy or pathologically-affected. Nevertheless, the latter state is not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Speech communication Jg. 152; S. 102952
Hauptverfasser: Barbon, Sylvio, Guido, Rodrigo Capobianco, Aguiar, Gabriel Jonas, Santana, Everton José, Proença, Mario Lemes, Patil, Hemant A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.07.2023
Schlagworte:
ISSN:0167-6393, 1872-7182
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Non-invasive acoustic analyses of voice disorders have been at the forefront of current biomedical research. Usual strategies, essentially based on machine learning (ML) algorithms, commonly classify a subject as being either healthy or pathologically-affected. Nevertheless, the latter state is not always a result of a sole laryngeal issue, i.e., multiple disorders might exist, demanding multi-label classification procedures for effective diagnoses. Consequently, the objective of this paper is to investigate the application of five multi-label classification methods based on problem transformation to play the role of base-learners, i.e., Label Powerset, Binary Relevance, Nested Stacking, Classifier Chains, and Dependent Binary Relevance with Random Forest (RF) and Support Vector Machine (SVM), in addition to a Deep Neural Network (DNN) from an algorithm adaptation method, to detect multiple voice disorders, i.e., Dysphonia, Laryngitis, Reinke’s Edema, Vox Senilis, and Central Laryngeal Motion Disorder. Receiving as input three handcrafted features, i.e., signal energy (SE), zero-crossing rates (ZCRs), and signal entropy (SH), which allow for interpretable descriptors in terms of speech analysis, production, and perception, we observed that the DNN-based approach powered with SE-based feature vectors presented the best values of F1-score among the tested methods, i.e., 0.943, as the averaged value from all the balancing scenarios, under Saarbrücken Voice Database (SVD) and considering 20% of balancing rate with Synthetic Minority Over-sampling Technique (SMOTE). Finally, our findings of most false negatives for laryngitis may explain the reason why its detection is a serious issue in speech technology. The results we report provide an original contribution, allowing for the consistent detection of multiple speech pathologies and advancing the state-of-the-art in the field of handcrafted acoustic-based non-invasive diagnosis of voice disorders. •The proposed approach detects multiple voice disorders in one individual.•Energy, zero-crossing rates, and entropy were successfully used as features.•Over 90% of accuracy was obtained under SVD database using SMOTE.
AbstractList Non-invasive acoustic analyses of voice disorders have been at the forefront of current biomedical research. Usual strategies, essentially based on machine learning (ML) algorithms, commonly classify a subject as being either healthy or pathologically-affected. Nevertheless, the latter state is not always a result of a sole laryngeal issue, i.e., multiple disorders might exist, demanding multi-label classification procedures for effective diagnoses. Consequently, the objective of this paper is to investigate the application of five multi-label classification methods based on problem transformation to play the role of base-learners, i.e., Label Powerset, Binary Relevance, Nested Stacking, Classifier Chains, and Dependent Binary Relevance with Random Forest (RF) and Support Vector Machine (SVM), in addition to a Deep Neural Network (DNN) from an algorithm adaptation method, to detect multiple voice disorders, i.e., Dysphonia, Laryngitis, Reinke’s Edema, Vox Senilis, and Central Laryngeal Motion Disorder. Receiving as input three handcrafted features, i.e., signal energy (SE), zero-crossing rates (ZCRs), and signal entropy (SH), which allow for interpretable descriptors in terms of speech analysis, production, and perception, we observed that the DNN-based approach powered with SE-based feature vectors presented the best values of F1-score among the tested methods, i.e., 0.943, as the averaged value from all the balancing scenarios, under Saarbrücken Voice Database (SVD) and considering 20% of balancing rate with Synthetic Minority Over-sampling Technique (SMOTE). Finally, our findings of most false negatives for laryngitis may explain the reason why its detection is a serious issue in speech technology. The results we report provide an original contribution, allowing for the consistent detection of multiple speech pathologies and advancing the state-of-the-art in the field of handcrafted acoustic-based non-invasive diagnosis of voice disorders. •The proposed approach detects multiple voice disorders in one individual.•Energy, zero-crossing rates, and entropy were successfully used as features.•Over 90% of accuracy was obtained under SVD database using SMOTE.
ArticleNumber 102952
Author Aguiar, Gabriel Jonas
Barbon, Sylvio
Guido, Rodrigo Capobianco
Patil, Hemant A.
Santana, Everton José
Proença, Mario Lemes
Author_xml – sequence: 1
  givenname: Sylvio
  surname: Barbon
  fullname: Barbon, Sylvio
  organization: Department of Engineering and Architecture, University of Trieste, Piazzale Europa, 1 - 34127, Trieste FVG, Italy
– sequence: 2
  givenname: Rodrigo Capobianco
  orcidid: 0000-0002-0924-8024
  surname: Guido
  fullname: Guido, Rodrigo Capobianco
  email: guido@ieee.org
  organization: Instituto de Biociências, Letras e Ciências Exatas, Unesp - Univ Estadual Paulista (São Paulo State University), Rua Cristóvão Colombo 2265, Jd Nazareth, 15054-000, São José do Rio Preto SP, Brazil
– sequence: 3
  givenname: Gabriel Jonas
  surname: Aguiar
  fullname: Aguiar, Gabriel Jonas
  organization: Computer Science Department, Londrina State University, Rodovia Celso Garcia Cid/PR 445, km 380, Campus Universitário, Zip code: 86057-970, Londrina PR, Brazil
– sequence: 4
  givenname: Everton José
  surname: Santana
  fullname: Santana, Everton José
  organization: Computer Science Department, Londrina State University, Rodovia Celso Garcia Cid/PR 445, km 380, Campus Universitário, Zip code: 86057-970, Londrina PR, Brazil
– sequence: 5
  givenname: Mario Lemes
  surname: Proença
  fullname: Proença, Mario Lemes
  organization: Computer Science Department, Londrina State University, Rodovia Celso Garcia Cid/PR 445, km 380, Campus Universitário, Zip code: 86057-970, Londrina PR, Brazil
– sequence: 6
  givenname: Hemant A.
  surname: Patil
  fullname: Patil, Hemant A.
  organization: Speech Research Lab, Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT), Gandhinagar 382007, India
BookMark eNqFkE1OAzEMhSNUJFrgBixyAKZMMv8skFDFTyUQG_ZRJnFaV5lMlaSVOAR3JqWsWMDKlvW-Z_vNyMSNDgi5Yvmc5ay-2czDFtQ4zHnOizTiXcVPyJS1Dc8a1vIJmSZZk9VFV5yRWQibPM_LtuVT8vm6sxG3Fuh-RAVUYxi9Bh8oOhrXQIMcIPUa96h30t7SpdtDiLiSEd2KrqXTyksTQVMDMu48hGs6HEwzK3uwVFkZAhpUCRgdlXY1eozrIckSS3sZILMgvUtLL8ipkTbA5U89J--PD--L5-zl7Wm5uH_JVFHxmHV9UbKOG87Tw11fadPwomqhbDrdlZD3UKu64JVhsoJWmaYue15DJblhlVbFObk92io_huDBCIXx-7zoJVrBcnHIVWzEMVdxyFUcc01w-Qveehyk__gPuztikP7aI3gRFIJToNGDikKP-LfBFyeSmik
CitedBy_id crossref_primary_10_1038_s41598_025_03444_3
crossref_primary_10_3390_a18060338
crossref_primary_10_1007_s10772_024_10166_w
crossref_primary_10_1007_s11042_025_20694_5
crossref_primary_10_1016_j_specom_2024_103100
Cites_doi 10.1016/j.jvoice.2015.08.010
10.1145/3077136.3080834
10.32614/RJ-2018-041
10.1016/j.bspc.2014.02.001
10.1016/j.cmpb.2018.12.019
10.1016/j.ipm.2018.01.002
10.1109/TKDE.2006.162
10.1016/j.compbiomed.2015.07.017
10.1121/1.1906358
10.1016/j.eswa.2016.12.035
10.1016/j.sigpro.2012.05.028
10.1016/j.bspc.2018.01.007
10.1007/978-3-540-24775-3_5
10.1016/j.neucom.2015.02.085
10.1109/APSIPA.2017.8282229
10.1016/j.cmpb.2017.11.010
10.1016/j.artmed.2013.02.001
10.1016/j.compeleceng.2016.08.021
10.1109/MEMB.2009.934248
10.1109/ACCESS.2017.2696056
10.1109/ICASSP.2004.1325955
10.1016/j.artmed.2018.09.004
10.1016/S0167-6393(99)00080-1
10.1016/j.inffus.2010.12.001
10.1109/JBHI.2015.2467375
10.1016/j.eswa.2014.08.036
10.1016/j.bspc.2007.05.003
10.1016/j.knosys.2016.05.011
10.1016/j.compbiomed.2015.07.026
10.1016/j.sigpro.2015.08.019
10.1109/89.905995
10.1016/j.ins.2016.08.077
10.1016/j.patcog.2016.02.013
10.1016/j.ymeth.2018.07.007
10.1109/PROC.1966.4841
10.1109/ACCESS.2018.2816338
10.1016/j.inffus.2017.09.006
10.1109/CIST.2014.7016648
10.1109/KBEI.2015.7436106
10.1109/TASL.2010.2104141
10.1016/S0169-2607(01)00161-4
10.1016/j.jvoice.2012.05.002
10.1109/PGEC.1965.264137
10.1016/j.compbiomed.2013.03.006
10.1016/j.neucom.2015.12.012
10.1016/j.bspc.2018.12.024
10.1109/ICACC.2013.37
10.1016/j.neucom.2018.08.053
10.1016/j.jvoice.2018.07.014
10.1016/j.bspc.2013.11.002
10.1016/j.artmed.2015.07.005
10.1121/1.4934731
10.1039/c3mb25466f
10.4018/jdwm.2007070101
10.1016/j.cmpb.2018.10.017
10.1016/j.cmpb.2019.06.006
10.1016/j.bspc.2018.08.037
10.1007/978-3-030-00350-0_13
10.1613/jair.953
10.1016/j.compbiomed.2017.07.006
10.1109/JIOT.2020.2983911
10.1007/s10994-011-5256-5
10.1016/j.patcog.2014.09.018
10.1023/A:1010933404324
10.1007/s00500-020-04866-z
10.1016/j.patcog.2013.09.029
10.1145/1007730.1007735
10.1007/s11265-018-1376-5
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.specom.2023.102952
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Social Welfare & Social Work
Psychology
EISSN 1872-7182
ExternalDocumentID 10_1016_j_specom_2023_102952
S0167639323000869
GroupedDBID --K
--M
-~X
.DC
.~1
07C
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
9JO
AACTN
AADFP
AAEDT
AAEDW
AAFJI
AAGJA
AAGJQ
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABIVO
ABJNI
ABMAC
ABMMH
ABOYX
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACXNI
ACZNC
ADBBV
ADEZE
ADIYS
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFYLN
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSO
SST
SSV
SSY
SSZ
T5K
WUQ
XFK
XJE
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c352t-9b34192f222029b5df72358e479d94e0be6c6325f1a5e8cf764b26e5a2f15dc3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001036871600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-6393
IngestDate Sat Nov 29 07:26:57 EST 2025
Tue Nov 18 20:57:18 EST 2025
Fri Feb 23 02:34:48 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Multiple voice disorders
Handcrafted feature extraction
Multi-label classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-9b34192f222029b5df72358e479d94e0be6c6325f1a5e8cf764b26e5a2f15dc3
ORCID 0000-0002-0924-8024
OpenAccessLink https://hdl.handle.net/11368/3055525
ParticipantIDs crossref_citationtrail_10_1016_j_specom_2023_102952
crossref_primary_10_1016_j_specom_2023_102952
elsevier_sciencedirect_doi_10_1016_j_specom_2023_102952
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Speech communication
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, Chen (b43) 2015; 42
Read (b61) 2011; 85
Casper, Leonard (b16) 2011
Zhang, Zhou (b85) 2006; 18
Lachhab, O., et al., 2014. Improving the recognition of pathological voice using the discriminant HLDA Transformation. In: 3rd IEEE International Coloquium in Information Science and Technology. CIST, pp. 370–373.
Batista, Prati, Monard (b13) 2004; 6
Ali (b4) 2016; 30
Wosiak, Glinka, Zakrzewska (b81) 2018; 100
Godbole, S., Sarawagi, S., 2004. Discriminative Methods for Multi-Labeled Classification. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Sidney, Australia. pp. 22–30.
Guido (b32) 2018; 41
Lee (b39) 2013; 58
Rivolli, Carvalho (b62) 2018; 10
Al-Naheri (b2) 2017; 6
Verde, De Pietro, Sannino (b76) 2018; 6
Belhaj, Bouzid, Ellouze (b14) 2015; 10
Muhammad (b54) 2012; 26
Tsoumakas, Vlahavas (b74) 2007
David (b22) 2018; 154
Markaki, Stylianou (b46) 2011; 19
Mekyska (b49) 2015; 167
Xia, Xu (b82) 2012; 13
Mastelini (b48) 2019; 91
Misra, H., 2004. Spectral entropy based feature for robust ASR. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, QB, Canada. p. 193.
Muhammad, Melhem (b52) 2014; 11
Schroeder (b67) 1966; 54
Babatsouli (b11) 2016; 4
Chollet (b18) 2018
Guido (b30) 2016; 179
Licklider (b41) 1948; 20
Saarela, Ryynanen, Ayramo (b63) 2019; 95
Ankıshan (b8) 2019; 48
Gómez-García, Moro-Velázquez, Godino-Llorente (b29) 2019; 51
Hegde (b34) 2019; 33
Wang, Bi, Zhang (b80) 2020; 7
Lenc, Kral (b40) 2016
Martinez (b47) 2012
Muhammad (b53) 2012; 26
Tsoumakas, Katakis, Vlahavas (b73) 2009
Pereira (b56) 2018; 54
Almeida (b5) 2018; 320
Orozco-Arroyave (b55) 2015; 19
Senge, R., et al., 2013. Rectifying classifier chains for multi-label classification. In: Proceedings Workshop LWA, Lernen-Wissensentdeckung-Adaptivitat, Bamberg, Germany. pp. 151–158.
Georgoulas (b26) 2007; 2
Barry, Putzer (b12) 2007
Vinay, Bharathi (b79) 2019; 6
Cover (b19) 1965
Zhang, Mei, Chen, Li (b84) 2016; 56
Saeedi, Almasganj (b64) 2013; 43
Areiza-Laverde, H.J., Castro-Ospina, A.E., Peluffo-Ordonez, D.H., 2018. Voice pathology detection using artificial neural networks and support vector machines powered by a multicriteria optimization algorithm. In: International Workshop on Experimental and Efficient Algorithms, L’Aquila, Italy. pp. 148–159.
Ghasem (b27) 2019; 177
Zarinbal, Zarandia, Turksen (b83) 2015; 48
Akbari, Arjmandi (b1) 2014; 10
Zhau, Hansen, Kaiser (b86) 2001
Zufferey (b88) 2015; 65
Arji (b10) 2019; 168
Liu, J., et al., 2017. Deep learning for extreme multi-label text classification. In: Proc. of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan. pp. 115–124.
Al-Nasheri (b3) 2018; 6
Ji (b36) 2020; 24
Techakesari, Ford (b71) 2013; 93
Rallapalli, Alexander (b60) 2015; 138
Hemmerling, Skalski, Gajda (b35) 2016; 69
Krawczyk, Schaefer, Wozniak (b37) 2015; 65
Lin (b42) 2013; 9
Lorenzo, Claudia (b45) 2002; 68
Pranav, Sabarimalai (b58) 2017; 22
Guido (b31) 2016; 105
Zhong (b87) 2016; 126
Chawla (b17) 2002; 16
AlRshoud (b6) 2019; 171
Amami, Smiti (b7) 2017; 57
Montanes (b51) 2014; 47
Quatieri (b59) 2008
Haixiang (b33) 2017; 73
Tsoumakas, Katakis (b72) 2007; 3
Breiman (b15) 2001; 45
Sasou, A., 2017. Automatic identification of pathological voice quality based on the GRBAS categorization. In: Asia-Pacific and Information Processing Association Annual Summit and Conference. APSIPA ASC, Malaysia, pp. 1243–1247.
Cummins, Baird, Schuller (b21) 2018; 151
Shilaskar, Ghatol, Chatur (b69) 2017; 384
Sorower (b70) 2010
Fonseca, Pereira (b25) 2008; 28
de Carvalho, Freitas (b23) 2009
Salehi, P., 2015. Using patient’s speech signal for vocal ford disorders detection based on lifting scheme. In: IEEE 2nd International Conference on Knowledge-Based Engineering and Innovation. KBEI, Tehran, Iran, pp. 561–568.
Crammer, Singer (b20) 2003; 3
Vikram, C.M., Umarani, K., 2013. Phoneme independent pathological voice detection using wavelet bases, MFCCs and GMM-SVM hybrid classifier. In: International Conference on Advances in Computing, Communications and Informatics. ICACCI, Chengdu, China, pp. 153–156.
Vapnik (b75) 1995
Doddington (b24) 2000
Potharaju, Sreedevi (b57) 2016; 9
Verde, Pietro, Sannino (b77) 2018; 42
Pereira (10.1016/j.specom.2023.102952_b56) 2018; 54
Barry (10.1016/j.specom.2023.102952_b12) 2007
Ankıshan (10.1016/j.specom.2023.102952_b8) 2019; 48
Liu (10.1016/j.specom.2023.102952_b43) 2015; 42
Gómez-García (10.1016/j.specom.2023.102952_b29) 2019; 51
Al-Naheri (10.1016/j.specom.2023.102952_b2) 2017; 6
Rivolli (10.1016/j.specom.2023.102952_b62) 2018; 10
Zhau (10.1016/j.specom.2023.102952_b86) 2001
Zufferey (10.1016/j.specom.2023.102952_b88) 2015; 65
Guido (10.1016/j.specom.2023.102952_b30) 2016; 179
10.1016/j.specom.2023.102952_b38
Quatieri (10.1016/j.specom.2023.102952_b59) 2008
Tsoumakas (10.1016/j.specom.2023.102952_b73) 2009
10.1016/j.specom.2023.102952_b78
Lenc (10.1016/j.specom.2023.102952_b40) 2016
Tsoumakas (10.1016/j.specom.2023.102952_b72) 2007; 3
10.1016/j.specom.2023.102952_b9
Xia (10.1016/j.specom.2023.102952_b82) 2012; 13
Casper (10.1016/j.specom.2023.102952_b16) 2011
Ghasem (10.1016/j.specom.2023.102952_b27) 2019; 177
AlRshoud (10.1016/j.specom.2023.102952_b6) 2019; 171
Chawla (10.1016/j.specom.2023.102952_b17) 2002; 16
Haixiang (10.1016/j.specom.2023.102952_b33) 2017; 73
Crammer (10.1016/j.specom.2023.102952_b20) 2003; 3
David (10.1016/j.specom.2023.102952_b22) 2018; 154
Lorenzo (10.1016/j.specom.2023.102952_b45) 2002; 68
Licklider (10.1016/j.specom.2023.102952_b41) 1948; 20
Breiman (10.1016/j.specom.2023.102952_b15) 2001; 45
Lin (10.1016/j.specom.2023.102952_b42) 2013; 9
de Carvalho (10.1016/j.specom.2023.102952_b23) 2009
Muhammad (10.1016/j.specom.2023.102952_b54) 2012; 26
Belhaj (10.1016/j.specom.2023.102952_b14) 2015; 10
Lee (10.1016/j.specom.2023.102952_b39) 2013; 58
10.1016/j.specom.2023.102952_b28
Read (10.1016/j.specom.2023.102952_b61) 2011; 85
Ali (10.1016/j.specom.2023.102952_b4) 2016; 30
Hegde (10.1016/j.specom.2023.102952_b34) 2019; 33
Markaki (10.1016/j.specom.2023.102952_b46) 2011; 19
Potharaju (10.1016/j.specom.2023.102952_b57) 2016; 9
10.1016/j.specom.2023.102952_b68
10.1016/j.specom.2023.102952_b66
Babatsouli (10.1016/j.specom.2023.102952_b11) 2016; 4
Techakesari (10.1016/j.specom.2023.102952_b71) 2013; 93
Amami (10.1016/j.specom.2023.102952_b7) 2017; 57
Ji (10.1016/j.specom.2023.102952_b36) 2020; 24
Guido (10.1016/j.specom.2023.102952_b32) 2018; 41
Wang (10.1016/j.specom.2023.102952_b80) 2020; 7
Guido (10.1016/j.specom.2023.102952_b31) 2016; 105
Pranav (10.1016/j.specom.2023.102952_b58) 2017; 22
Zhang (10.1016/j.specom.2023.102952_b85) 2006; 18
Almeida (10.1016/j.specom.2023.102952_b5) 2018; 320
Martinez (10.1016/j.specom.2023.102952_b47) 2012
Muhammad (10.1016/j.specom.2023.102952_b53) 2012; 26
Hemmerling (10.1016/j.specom.2023.102952_b35) 2016; 69
10.1016/j.specom.2023.102952_b65
Schroeder (10.1016/j.specom.2023.102952_b67) 1966; 54
Akbari (10.1016/j.specom.2023.102952_b1) 2014; 10
Doddington (10.1016/j.specom.2023.102952_b24) 2000
Saeedi (10.1016/j.specom.2023.102952_b64) 2013; 43
Krawczyk (10.1016/j.specom.2023.102952_b37) 2015; 65
Vinay (10.1016/j.specom.2023.102952_b79) 2019; 6
Wosiak (10.1016/j.specom.2023.102952_b81) 2018; 100
Verde (10.1016/j.specom.2023.102952_b77) 2018; 42
Cover (10.1016/j.specom.2023.102952_b19) 1965
Georgoulas (10.1016/j.specom.2023.102952_b26) 2007; 2
Sorower (10.1016/j.specom.2023.102952_b70) 2010
Muhammad (10.1016/j.specom.2023.102952_b52) 2014; 11
Zhang (10.1016/j.specom.2023.102952_b84) 2016; 56
Batista (10.1016/j.specom.2023.102952_b13) 2004; 6
Montanes (10.1016/j.specom.2023.102952_b51) 2014; 47
Al-Nasheri (10.1016/j.specom.2023.102952_b3) 2018; 6
Orozco-Arroyave (10.1016/j.specom.2023.102952_b55) 2015; 19
Zarinbal (10.1016/j.specom.2023.102952_b83) 2015; 48
Shilaskar (10.1016/j.specom.2023.102952_b69) 2017; 384
Fonseca (10.1016/j.specom.2023.102952_b25) 2008; 28
Saarela (10.1016/j.specom.2023.102952_b63) 2019; 95
Mastelini (10.1016/j.specom.2023.102952_b48) 2019; 91
10.1016/j.specom.2023.102952_b50
Chollet (10.1016/j.specom.2023.102952_b18) 2018
Mekyska (10.1016/j.specom.2023.102952_b49) 2015; 167
Vapnik (10.1016/j.specom.2023.102952_b75) 1995
Tsoumakas (10.1016/j.specom.2023.102952_b74) 2007
10.1016/j.specom.2023.102952_b44
Cummins (10.1016/j.specom.2023.102952_b21) 2018; 151
Rallapalli (10.1016/j.specom.2023.102952_b60) 2015; 138
Arji (10.1016/j.specom.2023.102952_b10) 2019; 168
Verde (10.1016/j.specom.2023.102952_b76) 2018; 6
Zhong (10.1016/j.specom.2023.102952_b87) 2016; 126
References_xml – start-page: 201
  year: 2001
  end-page: 216
  ident: b86
  article-title: Non-linear feature based classification of speech under stress
  publication-title: IEEE Trans. Speech Audio Process.
– volume: 10
  start-page: 24
  year: 2018
  end-page: 37
  ident: b62
  article-title: The utiml package: Multi-label classification in R
  publication-title: R J.
– volume: 54
  start-page: 720
  year: 1966
  end-page: 734
  ident: b67
  article-title: Vocoders: Analysis and synthesis of speech
  publication-title: Proc. IEEE
– volume: 6
  start-page: 20
  year: 2004
  end-page: 29
  ident: b13
  article-title: A study of the behavior of several methods for balancing machine learning training data
  publication-title: ACM SIGKDD Explor. Newsl.
– volume: 10
  start-page: 495
  year: 2015
  ident: b14
  article-title: Edema and nodule pathological voice identification by SVM classifier on speech signal
  publication-title: Comput. Softw.
– volume: 3
  start-page: 1
  year: 2007
  end-page: 13
  ident: b72
  article-title: Multi-label classification: An overview
  publication-title: Int. J. Data Warehous. Min. (IJDWM)
– volume: 167
  start-page: 94
  year: 2015
  end-page: 111
  ident: b49
  article-title: Robust and complex approach of pathological speech signal analysis
  publication-title: Neurocomputing
– start-page: 667
  year: 2009
  end-page: 685
  ident: b73
  article-title: Mining multi-label data
  publication-title: Data Mining and Knowledge Discovery Handbook
– volume: 42
  start-page: 134
  year: 2018
  end-page: 144
  ident: b77
  article-title: A methodology for voice classification based on the personalized fundamental frequency estimation
  publication-title: Biomed. Signal Process. Control
– start-page: 177
  year: 2009
  end-page: 195
  ident: b23
  article-title: A tutorial on multi-label classification techniques
  publication-title: Found. Comput. Intell.
– volume: 20
  start-page: 150
  year: 1948
  end-page: 159
  ident: b41
  article-title: The influence of interaural phase relations upon the masking of speech by white noise
  publication-title: J. Acoust. Soc. Am.
– volume: 54
  start-page: 359
  year: 2018
  end-page: 369
  ident: b56
  article-title: Correlation analysis of performance measures for multi-label classification
  publication-title: Inf. Process. Manage.
– volume: 65
  start-page: 34
  year: 2015
  end-page: 43
  ident: b88
  article-title: Performance comparison of multi-label learning algorithms on clinical data for chronic diseases
  publication-title: Comput. Biol. Med.
– volume: 177
  start-page: 277
  year: 2019
  end-page: 283
  ident: b27
  article-title: Diagnosis of autism spectrum disorder based on complex network features
  publication-title: Comput. Methods Programs Biomed.
– volume: 105
  start-page: 248
  year: 2016
  end-page: 269
  ident: b31
  article-title: ZCR-aided neurocomputing: A study with applications
  publication-title: Knowl.-Based Syst.
– volume: 11
  start-page: 1
  year: 2014
  end-page: 9
  ident: b52
  article-title: Pathological voice detection and binary classification using MPEG-7 audio features
  publication-title: Biomed. Signal Process. Control
– start-page: 225
  year: 2000
  end-page: 254
  ident: b24
  article-title: The NIST speaker recognition evaluation: Overview, methodology, systems, results, perspective
  publication-title: Speech Commun.
– reference: Misra, H., 2004. Spectral entropy based feature for robust ASR. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, QB, Canada. p. 193.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: b17
  article-title: Smote: Synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
– reference: Salehi, P., 2015. Using patient’s speech signal for vocal ford disorders detection based on lifting scheme. In: IEEE 2nd International Conference on Knowledge-Based Engineering and Innovation. KBEI, Tehran, Iran, pp. 561–568.
– volume: 6
  start-page: 6969
  year: 2017
  end-page: 6974
  ident: b2
  article-title: Voice pathology detection and classification using auto-correlation and entropy features in different frequency regions
  publication-title: IEEE Access
– volume: 13
  start-page: 31
  year: 2012
  end-page: 47
  ident: b82
  article-title: Entropy/cross entropy-based group decision making under intuitionistic fuzzy environment
  publication-title: Inform. Fusion
– volume: 168
  start-page: 39
  year: 2019
  end-page: 57
  ident: b10
  article-title: A systematic literature review and classification of knowledge discovery in traditional medicine
  publication-title: Comput. Methods Programs Biomed.
– year: 2008
  ident: b59
  article-title: Discrete-Time Speech Signal Processing: Principles and Practice
– volume: 33
  start-page: 947.e11
  year: 2019
  end-page: 947.e33
  ident: b34
  article-title: A survey on machine learning approaches for automatic detection of voice disorders
  publication-title: J. Voice
– year: 1995
  ident: b75
  article-title: The Nature of Statistical Learning Theory
– volume: 30
  start-page: 757.e7
  year: 2016
  end-page: 757.e19
  ident: b4
  article-title: Automatic voice pathology detection with running speech by using estimation of auditory spectrum and cepstral coefficients based on the all-pole model
  publication-title: J. Voice
– volume: 69
  start-page: 270
  year: 2016
  end-page: 276
  ident: b35
  article-title: Voice data mining for laryngeal pathology assessment
  publication-title: Comput. Biol. Med.
– volume: 138
  start-page: 3061
  year: 2015
  end-page: 3072
  ident: b60
  article-title: Neural-scaled entropy predicts the effects of nonlinear frequency compression on speech perception
  publication-title: J. Acoust. Soc. Am.
– start-page: 406
  year: 2007
  end-page: 417
  ident: b74
  article-title: Random k-labelsets: An ensemble method for multilabel classification
  publication-title: European Conference on Machine Learning
– volume: 6
  start-page: 16246
  year: 2018
  end-page: 16255
  ident: b76
  article-title: Voice disorder identification by using machine learning techniques
  publication-title: IEEE Access
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b15
  article-title: Random forests
  publication-title: Mach. Learn.
– reference: Liu, J., et al., 2017. Deep learning for extreme multi-label text classification. In: Proc. of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan. pp. 115–124.
– volume: 56
  start-page: 1
  year: 2016
  end-page: 15
  ident: b84
  article-title: Feature selection in mixed data: A method using a novel fuzzy rough set-based information entropy
  publication-title: Pattern Recognit.
– reference: Areiza-Laverde, H.J., Castro-Ospina, A.E., Peluffo-Ordonez, D.H., 2018. Voice pathology detection using artificial neural networks and support vector machines powered by a multicriteria optimization algorithm. In: International Workshop on Experimental and Efficient Algorithms, L’Aquila, Italy. pp. 148–159.
– volume: 41
  start-page: 161
  year: 2018
  end-page: 175
  ident: b32
  article-title: A tutorial-review on entropy-based handcrafted feature extraction for information fusion
  publication-title: Inf. Fusion
– reference: Godbole, S., Sarawagi, S., 2004. Discriminative Methods for Multi-Labeled Classification. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, Sidney, Australia. pp. 22–30.
– volume: 179
  start-page: 264
  year: 2016
  end-page: 282
  ident: b30
  article-title: A tutorial on signal energy and its applications
  publication-title: Neurocomputing
– start-page: 460
  year: 2016
  end-page: 471
  ident: b40
  article-title: Deep neural networks for czech multi-label document classification
  publication-title: International Conference on Intelligent Text Processing and Computational Linguistics
– year: 2007
  ident: b12
  article-title: Saarbrücken Voice Database
– volume: 68
  start-page: 135
  year: 2002
  end-page: 145
  ident: b45
  article-title: Software corrections of vocal disorders
  publication-title: Comput. Methods Programs Biomed.
– reference: Senge, R., et al., 2013. Rectifying classifier chains for multi-label classification. In: Proceedings Workshop LWA, Lernen-Wissensentdeckung-Adaptivitat, Bamberg, Germany. pp. 151–158.
– volume: 100
  start-page: 279
  year: 2018
  end-page: 288
  ident: b81
  article-title: Multi-label classification methods for improving comorbidities identification
  publication-title: Comput. Biol. Med.
– start-page: 25
  year: 2010
  ident: b70
  article-title: A Literature Survey on Algorithms for Multi-Label Learning, Vol. 18, no. 1
– year: 2011
  ident: b16
  article-title: Understanding Voice Problems: A Physiological Perspective for Diagnosis and Treatment
– volume: 65
  start-page: 219
  year: 2015
  end-page: 227
  ident: b37
  article-title: A hybrid cost-sensitive ensemble for imbalanced breast thermogram classification
  publication-title: Artif. Intell. Med.
– volume: 42
  start-page: 1083
  year: 2015
  end-page: 1093
  ident: b43
  article-title: A multi-label classification based approach for sentiment classification
  publication-title: Expert Syst. Appl.
– volume: 91
  start-page: 191
  year: 2019
  end-page: 215
  ident: b48
  article-title: Multi-output tree chaining: An interpretative modelling and lightweight multi-target approach
  publication-title: J. Signal Process. Syst.
– volume: 171
  start-page: 9
  year: 2019
  ident: b6
  article-title: Implementation of voice pathology detection system using feature selection
  publication-title: Comput. Methods Programs Biomed.
– volume: 3
  start-page: 1025
  year: 2003
  end-page: 1058
  ident: b20
  article-title: A family of additive online algorithms for category ranking
  publication-title: J. Mach. Learn. Res.
– start-page: 99
  year: 2012
  end-page: 109
  ident: b47
  article-title: Voice pathology detection on the Saarbrücken voice database with calibration and fusion of scores using multifocal toolkit
  publication-title: Advances in Speech and Language Technologies for Iberian Languages
– reference: Lachhab, O., et al., 2014. Improving the recognition of pathological voice using the discriminant HLDA Transformation. In: 3rd IEEE International Coloquium in Information Science and Technology. CIST, pp. 370–373.
– volume: 24
  start-page: 15327
  year: 2020
  end-page: 15340
  ident: b36
  article-title: Multi-label learning for crop leaf diseases recognition and severity estimation based on convolutional neural networks
  publication-title: Soft Comput.
– volume: 58
  start-page: 51
  year: 2013
  end-page: 61
  ident: b39
  article-title: Prediction of body mass index status from voice signals based on machine learning for automated medical applications
  publication-title: Artif. Intell. Med.
– volume: 2
  start-page: 69
  year: 2007
  end-page: 79
  ident: b26
  article-title: Novel approach for fetal heart rate classification introducing grammatical evolution
  publication-title: Biomed. Signal Process. Control
– volume: 85
  start-page: 333
  year: 2011
  ident: b61
  article-title: Classifier chains for multi-label classification
  publication-title: Mach. Learn.
– volume: 320
  start-page: 35
  year: 2018
  end-page: 46
  ident: b5
  article-title: Applying multi-label techniques in emotion identification of short texts
  publication-title: Neurocomputing
– volume: 9
  start-page: 1
  year: 2016
  end-page: 7
  ident: b57
  article-title: An improved prediction of kidney disease using smote
  publication-title: Indian J. Sci. Technol.
– volume: 19
  start-page: 1820
  year: 2015
  end-page: 1828
  ident: b55
  article-title: Characterization methods for the detection of multiple voice disorders: Neurological, functional, and laryngeal diseases
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 10
  start-page: 209
  year: 2014
  end-page: 223
  ident: b1
  article-title: An efficient voice pathology classification scheme based on applying multi-layer linear discriminant analysis to wavelet packet-based features
  publication-title: Biomed. Signal Process. Control
– volume: 22
  start-page: 398
  year: 2017
  end-page: 408
  ident: b58
  article-title: Effective glottal instant detection and electroglottographic parameter extraction for automated voice pathology assessment
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 48
  start-page: 933
  year: 2015
  end-page: 940
  ident: b83
  article-title: Relative entropy collaborative fuzzy clustering method
  publication-title: Pattern Recognit.
– volume: 18
  start-page: 1338
  year: 2006
  end-page: 1351
  ident: b85
  article-title: Multi-label neural networks with applications to functional genomics and text categorization
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 6
  start-page: 6961
  year: 2018
  end-page: 6974
  ident: b3
  article-title: Voice pathology detection and classification using auto-correlation and entropy features in different frequency regions
  publication-title: IEEE Access
– year: 2018
  ident: b18
  article-title: Keras: The python deep learning library. ascl
– volume: 73
  start-page: 220
  year: 2017
  end-page: 239
  ident: b33
  article-title: Learning from class-imbalanced data: Review of methods and applications
  publication-title: Expert Syst. Appl.
– volume: 43
  start-page: 699
  year: 2013
  end-page: 704
  ident: b64
  article-title: Wavelet adaptation for automatic voice disorder sorting
  publication-title: Comput. Biol. Med.
– volume: 7
  start-page: 8218
  year: 2020
  end-page: 8227
  ident: b80
  article-title: Locational detection of false data injection attack in smart grid: A multi-label classification approach
  publication-title: IEEE Internet Things J.
– volume: 6
  start-page: 517
  year: 2019
  end-page: 520
  ident: b79
  article-title: Dysfluency recognition by using spectral entropy features
  publication-title: Int. J. Eng. Adv. Technol. (IJEAT)
– volume: 4
  start-page: 605
  year: 2016
  end-page: 627
  ident: b11
  article-title: Entropy as a measure of mixedupness of realizations in child speech
  publication-title: Poznan Stud. Contemp. Linguistics
– reference: Vikram, C.M., Umarani, K., 2013. Phoneme independent pathological voice detection using wavelet bases, MFCCs and GMM-SVM hybrid classifier. In: International Conference on Advances in Computing, Communications and Informatics. ICACCI, Chengdu, China, pp. 153–156.
– volume: 57
  start-page: 257
  year: 2017
  end-page: 265
  ident: b7
  article-title: An incremental method combining density clustering and support vector machines for voice pathology detection
  publication-title: Comput. Electr. Eng.
– volume: 26
  start-page: 817e19
  year: 2012
  end-page: 27
  ident: b54
  article-title: Multidirectional regression (MDR)-based features for automatic voice disorder detection
  publication-title: J. Voice
– volume: 151
  start-page: 41
  year: 2018
  end-page: 54
  ident: b21
  article-title: Speech analysis for health: Current state-of-the-art and the increasing impact of deep learning
  publication-title: Methods
– volume: 154
  start-page: 89
  year: 2018
  end-page: 97
  ident: b22
  article-title: Diadochokinesis-based expert system considering articulatory features of plosive consonants for early detection of Parkinson’s disease
  publication-title: Comput. Methods Programs Biomed.
– volume: 126
  start-page: 125
  year: 2016
  end-page: 133
  ident: b87
  article-title: Nonlinear signal processing for vocal folds damage detection based on heterogeneous sensor network
  publication-title: Signal Process.
– start-page: 326
  year: 1965
  end-page: 334
  ident: b19
  article-title: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
  publication-title: IEEE Trans. Electron. Comput.
– volume: 26
  start-page: 817.e19
  year: 2012
  end-page: 817.e27
  ident: b53
  article-title: Multidirectional regression (MDR)-based features for automatic voice disorder detection
  publication-title: J. Voice
– reference: Sasou, A., 2017. Automatic identification of pathological voice quality based on the GRBAS categorization. In: Asia-Pacific and Information Processing Association Annual Summit and Conference. APSIPA ASC, Malaysia, pp. 1243–1247.
– volume: 19
  start-page: 1938
  year: 2011
  end-page: 1948
  ident: b46
  article-title: Voice pathology detection and discrimination based on modulation spectral features
  publication-title: IEEE Trans. Audio, Speech, Lang. Process.
– volume: 28
  start-page: 44
  year: 2008
  end-page: 48
  ident: b25
  article-title: Normal versus pathological voice signals: Using wavelet analysis and support vector machines
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 93
  start-page: 12
  year: 2013
  end-page: 22
  ident: b71
  article-title: Relative entropy rate based model selection for linear hybrid system filters of uncertain nonlinear systems
  publication-title: Signal Process.
– volume: 9
  start-page: 634
  year: 2013
  end-page: 644
  ident: b42
  article-title: Iloc-animal: A multi-label learning classifier for predicting subcellular localization of animal proteins
  publication-title: Mol. Biosyst.
– volume: 51
  start-page: 181
  year: 2019
  end-page: 199
  ident: b29
  article-title: On the design of automatic voice condition analysis systems, Part I: Review of concepts and an insight to the state of the art
  publication-title: Biomed. Signal Process. Control
– volume: 47
  start-page: 1494
  year: 2014
  end-page: 1508
  ident: b51
  article-title: Dependent binary relevance models for multi-label classification
  publication-title: Pattern Recognit.
– volume: 48
  start-page: 221
  year: 2019
  end-page: 233
  ident: b8
  article-title: Classification of acoustic signals with new feature: Fibonacci space (FSp)
  publication-title: Biomed. Signal Process. Control
– volume: 384
  start-page: 205
  year: 2017
  end-page: 219
  ident: b69
  article-title: Medical decision support system for extremely imbalanced datasets
  publication-title: Inform. Sci.
– volume: 95
  start-page: 88
  year: 2019
  end-page: 95
  ident: b63
  article-title: Predicting hospital associated disability from imbalanced data using supervised learning
  publication-title: Artif. Intell. Med.
– volume: 30
  start-page: 757.e7
  issue: 6
  year: 2016
  ident: 10.1016/j.specom.2023.102952_b4
  article-title: Automatic voice pathology detection with running speech by using estimation of auditory spectrum and cepstral coefficients based on the all-pole model
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2015.08.010
– ident: 10.1016/j.specom.2023.102952_b44
  doi: 10.1145/3077136.3080834
– volume: 10
  start-page: 24
  issue: 2
  year: 2018
  ident: 10.1016/j.specom.2023.102952_b62
  article-title: The utiml package: Multi-label classification in R
  publication-title: R J.
  doi: 10.32614/RJ-2018-041
– volume: 11
  start-page: 1
  year: 2014
  ident: 10.1016/j.specom.2023.102952_b52
  article-title: Pathological voice detection and binary classification using MPEG-7 audio features
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.02.001
– volume: 171
  start-page: 9
  year: 2019
  ident: 10.1016/j.specom.2023.102952_b6
  article-title: Implementation of voice pathology detection system using feature selection
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.12.019
– volume: 54
  start-page: 359
  issue: 3
  year: 2018
  ident: 10.1016/j.specom.2023.102952_b56
  article-title: Correlation analysis of performance measures for multi-label classification
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2018.01.002
– volume: 18
  start-page: 1338
  issue: 10
  year: 2006
  ident: 10.1016/j.specom.2023.102952_b85
  article-title: Multi-label neural networks with applications to functional genomics and text categorization
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2006.162
– volume: 65
  start-page: 34
  year: 2015
  ident: 10.1016/j.specom.2023.102952_b88
  article-title: Performance comparison of multi-label learning algorithms on clinical data for chronic diseases
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.07.017
– volume: 20
  start-page: 150
  issue: 150
  year: 1948
  ident: 10.1016/j.specom.2023.102952_b41
  article-title: The influence of interaural phase relations upon the masking of speech by white noise
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1906358
– volume: 73
  start-page: 220
  year: 2017
  ident: 10.1016/j.specom.2023.102952_b33
  article-title: Learning from class-imbalanced data: Review of methods and applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.12.035
– volume: 93
  start-page: 12
  year: 2013
  ident: 10.1016/j.specom.2023.102952_b71
  article-title: Relative entropy rate based model selection for linear hybrid system filters of uncertain nonlinear systems
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.05.028
– start-page: 177
  issue: 5
  year: 2009
  ident: 10.1016/j.specom.2023.102952_b23
  article-title: A tutorial on multi-label classification techniques
  publication-title: Found. Comput. Intell.
– volume: 42
  start-page: 134
  year: 2018
  ident: 10.1016/j.specom.2023.102952_b77
  article-title: A methodology for voice classification based on the personalized fundamental frequency estimation
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.01.007
– ident: 10.1016/j.specom.2023.102952_b28
  doi: 10.1007/978-3-540-24775-3_5
– volume: 167
  start-page: 94
  year: 2015
  ident: 10.1016/j.specom.2023.102952_b49
  article-title: Robust and complex approach of pathological speech signal analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.085
– ident: 10.1016/j.specom.2023.102952_b66
  doi: 10.1109/APSIPA.2017.8282229
– volume: 154
  start-page: 89
  year: 2018
  ident: 10.1016/j.specom.2023.102952_b22
  article-title: Diadochokinesis-based expert system considering articulatory features of plosive consonants for early detection of Parkinson’s disease
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.11.010
– volume: 58
  start-page: 51
  issue: 1
  year: 2013
  ident: 10.1016/j.specom.2023.102952_b39
  article-title: Prediction of body mass index status from voice signals based on machine learning for automated medical applications
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2013.02.001
– start-page: 667
  year: 2009
  ident: 10.1016/j.specom.2023.102952_b73
  article-title: Mining multi-label data
– volume: 57
  start-page: 257
  year: 2017
  ident: 10.1016/j.specom.2023.102952_b7
  article-title: An incremental method combining density clustering and support vector machines for voice pathology detection
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2016.08.021
– volume: 28
  start-page: 44
  issue: 5
  year: 2008
  ident: 10.1016/j.specom.2023.102952_b25
  article-title: Normal versus pathological voice signals: Using wavelet analysis and support vector machines
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/MEMB.2009.934248
– start-page: 460
  year: 2016
  ident: 10.1016/j.specom.2023.102952_b40
  article-title: Deep neural networks for czech multi-label document classification
– volume: 6
  start-page: 6961
  year: 2018
  ident: 10.1016/j.specom.2023.102952_b3
  article-title: Voice pathology detection and classification using auto-correlation and entropy features in different frequency regions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2696056
– volume: 3
  start-page: 1025
  year: 2003
  ident: 10.1016/j.specom.2023.102952_b20
  article-title: A family of additive online algorithms for category ranking
  publication-title: J. Mach. Learn. Res.
– volume: 10
  start-page: 495
  issue: 5
  year: 2015
  ident: 10.1016/j.specom.2023.102952_b14
  article-title: Edema and nodule pathological voice identification by SVM classifier on speech signal
  publication-title: Comput. Softw.
– ident: 10.1016/j.specom.2023.102952_b50
  doi: 10.1109/ICASSP.2004.1325955
– volume: 95
  start-page: 88
  year: 2019
  ident: 10.1016/j.specom.2023.102952_b63
  article-title: Predicting hospital associated disability from imbalanced data using supervised learning
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2018.09.004
– start-page: 225
  issue: 31
  year: 2000
  ident: 10.1016/j.specom.2023.102952_b24
  article-title: The NIST speaker recognition evaluation: Overview, methodology, systems, results, perspective
  publication-title: Speech Commun.
  doi: 10.1016/S0167-6393(99)00080-1
– volume: 13
  start-page: 31
  issue: 1
  year: 2012
  ident: 10.1016/j.specom.2023.102952_b82
  article-title: Entropy/cross entropy-based group decision making under intuitionistic fuzzy environment
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2010.12.001
– volume: 4
  start-page: 605
  issue: 52
  year: 2016
  ident: 10.1016/j.specom.2023.102952_b11
  article-title: Entropy as a measure of mixedupness of realizations in child speech
  publication-title: Poznan Stud. Contemp. Linguistics
– volume: 19
  start-page: 1820
  issue: 6
  year: 2015
  ident: 10.1016/j.specom.2023.102952_b55
  article-title: Characterization methods for the detection of multiple voice disorders: Neurological, functional, and laryngeal diseases
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2015.2467375
– volume: 42
  start-page: 1083
  issue: 3
  year: 2015
  ident: 10.1016/j.specom.2023.102952_b43
  article-title: A multi-label classification based approach for sentiment classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.08.036
– volume: 2
  start-page: 69
  issue: 2
  year: 2007
  ident: 10.1016/j.specom.2023.102952_b26
  article-title: Novel approach for fetal heart rate classification introducing grammatical evolution
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2007.05.003
– volume: 105
  start-page: 248
  year: 2016
  ident: 10.1016/j.specom.2023.102952_b31
  article-title: ZCR-aided neurocomputing: A study with applications
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.05.011
– volume: 69
  start-page: 270
  year: 2016
  ident: 10.1016/j.specom.2023.102952_b35
  article-title: Voice data mining for laryngeal pathology assessment
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.07.026
– volume: 126
  start-page: 125
  year: 2016
  ident: 10.1016/j.specom.2023.102952_b87
  article-title: Nonlinear signal processing for vocal folds damage detection based on heterogeneous sensor network
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2015.08.019
– start-page: 201
  issue: 9
  year: 2001
  ident: 10.1016/j.specom.2023.102952_b86
  article-title: Non-linear feature based classification of speech under stress
  publication-title: IEEE Trans. Speech Audio Process.
  doi: 10.1109/89.905995
– volume: 384
  start-page: 205
  year: 2017
  ident: 10.1016/j.specom.2023.102952_b69
  article-title: Medical decision support system for extremely imbalanced datasets
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2016.08.077
– volume: 56
  start-page: 1
  year: 2016
  ident: 10.1016/j.specom.2023.102952_b84
  article-title: Feature selection in mixed data: A method using a novel fuzzy rough set-based information entropy
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.02.013
– volume: 151
  start-page: 41
  year: 2018
  ident: 10.1016/j.specom.2023.102952_b21
  article-title: Speech analysis for health: Current state-of-the-art and the increasing impact of deep learning
  publication-title: Methods
  doi: 10.1016/j.ymeth.2018.07.007
– start-page: 406
  year: 2007
  ident: 10.1016/j.specom.2023.102952_b74
  article-title: Random k-labelsets: An ensemble method for multilabel classification
– volume: 54
  start-page: 720
  issue: 5
  year: 1966
  ident: 10.1016/j.specom.2023.102952_b67
  article-title: Vocoders: Analysis and synthesis of speech
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1966.4841
– volume: 6
  start-page: 16246
  year: 2018
  ident: 10.1016/j.specom.2023.102952_b76
  article-title: Voice disorder identification by using machine learning techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2816338
– volume: 41
  start-page: 161
  year: 2018
  ident: 10.1016/j.specom.2023.102952_b32
  article-title: A tutorial-review on entropy-based handcrafted feature extraction for information fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.09.006
– ident: 10.1016/j.specom.2023.102952_b38
  doi: 10.1109/CIST.2014.7016648
– volume: 22
  start-page: 398
  issue: 2
  year: 2017
  ident: 10.1016/j.specom.2023.102952_b58
  article-title: Effective glottal instant detection and electroglottographic parameter extraction for automated voice pathology assessment
  publication-title: IEEE J. Biomed. Health Inf.
– ident: 10.1016/j.specom.2023.102952_b65
  doi: 10.1109/KBEI.2015.7436106
– volume: 19
  start-page: 1938
  issue: 7
  year: 2011
  ident: 10.1016/j.specom.2023.102952_b46
  article-title: Voice pathology detection and discrimination based on modulation spectral features
  publication-title: IEEE Trans. Audio, Speech, Lang. Process.
  doi: 10.1109/TASL.2010.2104141
– volume: 68
  start-page: 135
  issue: 2
  year: 2002
  ident: 10.1016/j.specom.2023.102952_b45
  article-title: Software corrections of vocal disorders
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/S0169-2607(01)00161-4
– volume: 26
  start-page: 817.e19
  issue: 6
  year: 2012
  ident: 10.1016/j.specom.2023.102952_b53
  article-title: Multidirectional regression (MDR)-based features for automatic voice disorder detection
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2012.05.002
– start-page: 326
  issue: 3
  year: 1965
  ident: 10.1016/j.specom.2023.102952_b19
  article-title: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
  publication-title: IEEE Trans. Electron. Comput.
  doi: 10.1109/PGEC.1965.264137
– volume: 43
  start-page: 699
  issue: 6
  year: 2013
  ident: 10.1016/j.specom.2023.102952_b64
  article-title: Wavelet adaptation for automatic voice disorder sorting
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2013.03.006
– volume: 179
  start-page: 264
  year: 2016
  ident: 10.1016/j.specom.2023.102952_b30
  article-title: A tutorial on signal energy and its applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.012
– year: 2007
  ident: 10.1016/j.specom.2023.102952_b12
– start-page: 25
  year: 2010
  ident: 10.1016/j.specom.2023.102952_b70
– volume: 51
  start-page: 181
  year: 2019
  ident: 10.1016/j.specom.2023.102952_b29
  article-title: On the design of automatic voice condition analysis systems, Part I: Review of concepts and an insight to the state of the art
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.12.024
– ident: 10.1016/j.specom.2023.102952_b68
– year: 1995
  ident: 10.1016/j.specom.2023.102952_b75
– start-page: 99
  year: 2012
  ident: 10.1016/j.specom.2023.102952_b47
  article-title: Voice pathology detection on the Saarbrücken voice database with calibration and fusion of scores using multifocal toolkit
– ident: 10.1016/j.specom.2023.102952_b78
  doi: 10.1109/ICACC.2013.37
– volume: 320
  start-page: 35
  year: 2018
  ident: 10.1016/j.specom.2023.102952_b5
  article-title: Applying multi-label techniques in emotion identification of short texts
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.08.053
– volume: 33
  start-page: 947.e11
  issue: 6
  year: 2019
  ident: 10.1016/j.specom.2023.102952_b34
  article-title: A survey on machine learning approaches for automatic detection of voice disorders
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2018.07.014
– volume: 10
  start-page: 209
  year: 2014
  ident: 10.1016/j.specom.2023.102952_b1
  article-title: An efficient voice pathology classification scheme based on applying multi-layer linear discriminant analysis to wavelet packet-based features
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.11.002
– volume: 6
  start-page: 517
  issue: 8
  year: 2019
  ident: 10.1016/j.specom.2023.102952_b79
  article-title: Dysfluency recognition by using spectral entropy features
  publication-title: Int. J. Eng. Adv. Technol. (IJEAT)
– volume: 6
  start-page: 6969
  year: 2017
  ident: 10.1016/j.specom.2023.102952_b2
  article-title: Voice pathology detection and classification using auto-correlation and entropy features in different frequency regions
  publication-title: IEEE Access
– volume: 65
  start-page: 219
  issue: 3
  year: 2015
  ident: 10.1016/j.specom.2023.102952_b37
  article-title: A hybrid cost-sensitive ensemble for imbalanced breast thermogram classification
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2015.07.005
– volume: 138
  start-page: 3061
  issue: 5
  year: 2015
  ident: 10.1016/j.specom.2023.102952_b60
  article-title: Neural-scaled entropy predicts the effects of nonlinear frequency compression on speech perception
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4934731
– volume: 9
  start-page: 634
  issue: 4
  year: 2013
  ident: 10.1016/j.specom.2023.102952_b42
  article-title: Iloc-animal: A multi-label learning classifier for predicting subcellular localization of animal proteins
  publication-title: Mol. Biosyst.
  doi: 10.1039/c3mb25466f
– volume: 3
  start-page: 1
  issue: 3
  year: 2007
  ident: 10.1016/j.specom.2023.102952_b72
  article-title: Multi-label classification: An overview
  publication-title: Int. J. Data Warehous. Min. (IJDWM)
  doi: 10.4018/jdwm.2007070101
– volume: 168
  start-page: 39
  year: 2019
  ident: 10.1016/j.specom.2023.102952_b10
  article-title: A systematic literature review and classification of knowledge discovery in traditional medicine
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.10.017
– volume: 177
  start-page: 277
  year: 2019
  ident: 10.1016/j.specom.2023.102952_b27
  article-title: Diagnosis of autism spectrum disorder based on complex network features
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.06.006
– year: 2011
  ident: 10.1016/j.specom.2023.102952_b16
– volume: 48
  start-page: 221
  year: 2019
  ident: 10.1016/j.specom.2023.102952_b8
  article-title: Classification of acoustic signals with new feature: Fibonacci space (FSp)
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.08.037
– ident: 10.1016/j.specom.2023.102952_b9
  doi: 10.1007/978-3-030-00350-0_13
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.specom.2023.102952_b17
  article-title: Smote: Synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.953
– volume: 100
  start-page: 279
  year: 2018
  ident: 10.1016/j.specom.2023.102952_b81
  article-title: Multi-label classification methods for improving comorbidities identification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.07.006
– volume: 7
  start-page: 8218
  issue: 9
  year: 2020
  ident: 10.1016/j.specom.2023.102952_b80
  article-title: Locational detection of false data injection attack in smart grid: A multi-label classification approach
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2983911
– volume: 85
  start-page: 333
  issue: 3
  year: 2011
  ident: 10.1016/j.specom.2023.102952_b61
  article-title: Classifier chains for multi-label classification
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-011-5256-5
– volume: 48
  start-page: 933
  issue: 3
  year: 2015
  ident: 10.1016/j.specom.2023.102952_b83
  article-title: Relative entropy collaborative fuzzy clustering method
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.09.018
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.specom.2023.102952_b15
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 9
  start-page: 1
  issue: 31
  year: 2016
  ident: 10.1016/j.specom.2023.102952_b57
  article-title: An improved prediction of kidney disease using smote
  publication-title: Indian J. Sci. Technol.
– volume: 24
  start-page: 15327
  year: 2020
  ident: 10.1016/j.specom.2023.102952_b36
  article-title: Multi-label learning for crop leaf diseases recognition and severity estimation based on convolutional neural networks
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-04866-z
– volume: 47
  start-page: 1494
  issue: 3
  year: 2014
  ident: 10.1016/j.specom.2023.102952_b51
  article-title: Dependent binary relevance models for multi-label classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.09.029
– volume: 6
  start-page: 20
  issue: 1
  year: 2004
  ident: 10.1016/j.specom.2023.102952_b13
  article-title: A study of the behavior of several methods for balancing machine learning training data
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1007730.1007735
– year: 2018
  ident: 10.1016/j.specom.2023.102952_b18
– volume: 91
  start-page: 191
  issue: 2
  year: 2019
  ident: 10.1016/j.specom.2023.102952_b48
  article-title: Multi-output tree chaining: An interpretative modelling and lightweight multi-target approach
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-018-1376-5
– year: 2008
  ident: 10.1016/j.specom.2023.102952_b59
– volume: 26
  start-page: 817e19
  issue: 6
  year: 2012
  ident: 10.1016/j.specom.2023.102952_b54
  article-title: Multidirectional regression (MDR)-based features for automatic voice disorder detection
  publication-title: J. Voice
  doi: 10.1016/j.jvoice.2012.05.002
SSID ssj0004882
Score 2.4528763
Snippet Non-invasive acoustic analyses of voice disorders have been at the forefront of current biomedical research. Usual strategies, essentially based on machine...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102952
SubjectTerms Deep learning
Handcrafted feature extraction
Multi-label classification
Multiple voice disorders
Title Multiple voice disorders in the same individual: Investigating handcrafted features, multi-label classification algorithms, and base-learners
URI https://dx.doi.org/10.1016/j.specom.2023.102952
Volume 152
WOSCitedRecordID wos001036871600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7182
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004882
  issn: 0167-6393
  databaseCode: AIEXJ
  dateStart: 20220201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7182
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004882
  issn: 0167-6393
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLoe9ICivhQX5gLh0gzbOm1u1Ki8tK6RWYm-R4zglS0iqpK12fwS_i7_FjB2nKUW8JC5RZdlN1Plqz0y--YaQZzAMTizzLC91PQhQHGFxxgLLzTg6xG6SJieq2URwfh5eXEQfBoNvphZmXQRlGV5dRYv_amoYA2Nj6exfmLv7UhiAz2B0uILZ4fpHhn9vKILrCjYBfAOj5DUbw2hs-BcUCjF1WJgS6IltlPMR5tJFjc3D01EmlfCnMrbiHlqAGlmMBDrdyDLS-OHFvKrz5Sedt8FcPJ6OlmpJ0VLsjQc8XUgpkO3eK0zZpFPrRLMAptfFWjPEFDlolaeV5oGndT6vRqd8USmx9G7KeL7KNVf8NU8g_C_Ue4EuYJgCgLguf5tgB-oKi7YazRLoJz6Y05Fk22zcTkWOTpDCxg9el940pd7UwwCiCDvc3vW1cO7OCaKTGZcvsNC1QqkC5qC8RaSn_6DNPcXb4d0gkMPgMLpB9lngRbC97o_fTi7ebUp0Q9W3rHs8U8WpqIa79_q5l9TzfGa3ya02ZKFjDbU7ZCDLIXlw1ia6G_qcnnXa3M2QHHRn6vWQHOnyb_pRFhmvJcw1A1X9-S75asBKFVhpB1aalxTAShGsdAPWl3QLqrQHVWqgekx7QKXbQKUboB5TWEu3YHqPzF5NZqdvrLZBiCUgblhaUYJqhCwDHxd-tcRLswArv6UbRGnkypNE-sJ3mJfZ3JOhyALfTZgvPc4y20uFc5_slVUpHxIKgU4SiSh1Qpa6vhPw1I9sntq2cITvcnZIHGOPWLTi-djDpYgNS_Iy1laM0YqxtuIhsbpVCy0e85v5gTF13DrA2rGNAZ2_XPnon1c-JgebP9cR2VvWK_mE3BTrZd7UT1sYfwdf-t1A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+voice+disorders+in+the+same+individual%3A+Investigating+handcrafted+features%2C+multi-label+classification+algorithms%2C+and+base-learners&rft.jtitle=Speech+communication&rft.au=Barbon%2C+Sylvio&rft.au=Guido%2C+Rodrigo+Capobianco&rft.au=Aguiar%2C+Gabriel+Jonas&rft.au=Santana%2C+Everton+Jos%C3%A9&rft.date=2023-07-01&rft.pub=Elsevier+B.V&rft.issn=0167-6393&rft.eissn=1872-7182&rft.volume=152&rft_id=info:doi/10.1016%2Fj.specom.2023.102952&rft.externalDocID=S0167639323000869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6393&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6393&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6393&client=summon