An Integrated Multitasking Intelligent Bearing Fault Diagnosis Scheme Based on Representation Learning Under Imbalanced Sample Condition
Accurate bearing fault diagnosis is of great significance of the safety and reliability of rotary mechanical system. In practice, the sample proportion between faulty data and healthy data in rotating mechanical system is imbalanced. Furthermore, there are commonalities between the bearing fault det...
Uložené v:
| Vydané v: | IEEE transaction on neural networks and learning systems Ročník 35; číslo 5; s. 6231 - 6242 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Accurate bearing fault diagnosis is of great significance of the safety and reliability of rotary mechanical system. In practice, the sample proportion between faulty data and healthy data in rotating mechanical system is imbalanced. Furthermore, there are commonalities between the bearing fault detection, classification, and identification tasks. Based on these observations, this article proposes a novel integrated multitasking intelligent bearing fault diagnosis scheme with the aid of representation learning under imbalanced sample condition, which realizes bearing fault detection, classification, and unknown fault identification. Specifically, in the unsupervised condition, a bearing fault detection approach based on modified denoising autoencoder (DAE) with self-attention mechanism for bottleneck layer (MDAE-SAMB) is proposed in the integrated scheme, which only uses the healthy data for training. The self-attention mechanism is introduced into the neurons in the bottleneck layer, which can assign different weights to the neurons in the bottleneck layer. Moreover, the transfer learning based on representation learning is proposed for few-shot fault classification. Only a few fault samples are used for offline training, and high-accuracy online bearing fault classification is achieved. Finally, according to the known fault data, the unknown bearing faults can be effectively identified. A bearing dataset generated by rotor dynamics experiment rig (RDER) and a public bearing dataset demonstrates the applicability of the proposed integrated fault diagnosis scheme. |
|---|---|
| AbstractList | Accurate bearing fault diagnosis is of great significance of the safety and reliability of rotary mechanical system. In practice, the sample proportion between faulty data and healthy data in rotating mechanical system is imbalanced. Furthermore, there are commonalities between the bearing fault detection, classification, and identification tasks. Based on these observations, this article proposes a novel integrated multitasking intelligent bearing fault diagnosis scheme with the aid of representation learning under imbalanced sample condition, which realizes bearing fault detection, classification, and unknown fault identification. Specifically, in the unsupervised condition, a bearing fault detection approach based on modified denoising autoencoder (DAE) with self-attention mechanism for bottleneck layer (MDAE-SAMB) is proposed in the integrated scheme, which only uses the healthy data for training. The self-attention mechanism is introduced into the neurons in the bottleneck layer, which can assign different weights to the neurons in the bottleneck layer. Moreover, the transfer learning based on representation learning is proposed for few-shot fault classification. Only a few fault samples are used for offline training, and high-accuracy online bearing fault classification is achieved. Finally, according to the known fault data, the unknown bearing faults can be effectively identified. A bearing dataset generated by rotor dynamics experiment rig (RDER) and a public bearing dataset demonstrates the applicability of the proposed integrated fault diagnosis scheme. Accurate bearing fault diagnosis is of great significance of the safety and reliability of rotary mechanical system. In practice, the sample proportion between faulty data and healthy data in rotating mechanical system is imbalanced. Furthermore, there are commonalities between the bearing fault detection, classification, and identification tasks. Based on these observations, this article proposes a novel integrated multitasking intelligent bearing fault diagnosis scheme with the aid of representation learning under imbalanced sample condition, which realizes bearing fault detection, classification, and unknown fault identification. Specifically, in the unsupervised condition, a bearing fault detection approach based on modified denoising autoencoder (DAE) with self-attention mechanism for bottleneck layer (MDAE-SAMB) is proposed in the integrated scheme, which only uses the healthy data for training. The self-attention mechanism is introduced into the neurons in the bottleneck layer, which can assign different weights to the neurons in the bottleneck layer. Moreover, the transfer learning based on representation learning is proposed for few-shot fault classification. Only a few fault samples are used for offline training, and high-accuracy online bearing fault classification is achieved. Finally, according to the known fault data, the unknown bearing faults can be effectively identified. A bearing dataset generated by rotor dynamics experiment rig (RDER) and a public bearing dataset demonstrates the applicability of the proposed integrated fault diagnosis scheme.Accurate bearing fault diagnosis is of great significance of the safety and reliability of rotary mechanical system. In practice, the sample proportion between faulty data and healthy data in rotating mechanical system is imbalanced. Furthermore, there are commonalities between the bearing fault detection, classification, and identification tasks. Based on these observations, this article proposes a novel integrated multitasking intelligent bearing fault diagnosis scheme with the aid of representation learning under imbalanced sample condition, which realizes bearing fault detection, classification, and unknown fault identification. Specifically, in the unsupervised condition, a bearing fault detection approach based on modified denoising autoencoder (DAE) with self-attention mechanism for bottleneck layer (MDAE-SAMB) is proposed in the integrated scheme, which only uses the healthy data for training. The self-attention mechanism is introduced into the neurons in the bottleneck layer, which can assign different weights to the neurons in the bottleneck layer. Moreover, the transfer learning based on representation learning is proposed for few-shot fault classification. Only a few fault samples are used for offline training, and high-accuracy online bearing fault classification is achieved. Finally, according to the known fault data, the unknown bearing faults can be effectively identified. A bearing dataset generated by rotor dynamics experiment rig (RDER) and a public bearing dataset demonstrates the applicability of the proposed integrated fault diagnosis scheme. |
| Author | Zhang, Ke An, Yiyao Yin, Shen Luo, Hao Zhang, Jiusi |
| Author_xml | – sequence: 1 givenname: Jiusi orcidid: 0000-0001-7971-680X surname: Zhang fullname: Zhang, Jiusi email: hit_zjs@163.com organization: Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China – sequence: 2 givenname: Ke orcidid: 0000-0001-9747-9895 surname: Zhang fullname: Zhang, Ke email: smeta@163.com organization: College of Automation, Chongqing University, Chongqing, China – sequence: 3 givenname: Yiyao orcidid: 0000-0001-8180-4083 surname: An fullname: An, Yiyao email: anyiyao@cqu.edu.cn organization: College of Automation, Chongqing University, Chongqing, China – sequence: 4 givenname: Hao orcidid: 0000-0003-2143-2438 surname: Luo fullname: Luo, Hao email: hao.luo@hit.edu.cn organization: Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China – sequence: 5 givenname: Shen orcidid: 0000-0002-3802-9269 surname: Yin fullname: Yin, Shen email: shen.yin@ntnu.no organization: Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim, Norway |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37018605$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1uEzEQgC1UREvpCyCEVuLSS4J_dm3vsU1bGikUibQSN8vxToLLrjfY3kPfgMdmtkkr1AO-2DP6Ptsz85YchD4AIe8ZnTJG68-3NzeL5ZRTzqeCC85K9YoccSb5hAutD57P6schOUnpnuKStJJl_YYcCkWZxuiI_DkLxTxk2ESboSm-Dm322aZfPmwe823rNxBycQ42jrkri0Rx4e0m9MmnYul-QgfFuU1o96H4DtsICQ2bPYYL1MLo3YUGYjHvVra1wSG7tN22hWLWh8aP6Dvyem3bBCf7_ZjcXV3ezq4ni29f5rOzxcSJiudJbR0FJRVTZa1W0sqKN9o51VRaqWYtasxoqssSJBVaYqFl6VZKAcKSsVock9PdvdvY_x4gZdP55LBOG6AfkuGqVthMWnJEP71A7_shBvydEbSiAhnNkPq4p4ZVB43ZRt_Z-GCeeowA3wEu9ilFWD8jjJpxluZxlmacpdnPEiX9QnJ-19McrW__r37YqR4A_nmLUs1pKf4Ca6yrfA |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1038_s41598_024_84863_6 crossref_primary_10_3390_electronics12091982 crossref_primary_10_1002_asjc_3213 crossref_primary_10_1002_cem_3624 crossref_primary_10_1109_TIM_2025_3550622 crossref_primary_10_1088_1361_6501_adf7c5 crossref_primary_10_1016_j_knosys_2025_113772 crossref_primary_10_1109_TIM_2025_3548795 crossref_primary_10_1016_j_engappai_2025_111991 crossref_primary_10_1016_j_engappai_2025_110824 crossref_primary_10_1007_s00521_024_09617_x crossref_primary_10_3390_s24061959 crossref_primary_10_1109_TIM_2024_3350149 crossref_primary_10_1177_14759217241276019 crossref_primary_10_1088_1361_6501_ad50f4 crossref_primary_10_1109_TIM_2023_3298416 crossref_primary_10_1177_0309524X231183374 crossref_primary_10_1016_j_apacoust_2025_110877 crossref_primary_10_1007_s00034_023_02582_1 crossref_primary_10_1016_j_jfranklin_2025_107735 crossref_primary_10_1109_TIM_2024_3373103 crossref_primary_10_3390_s23187706 crossref_primary_10_3390_s25133908 crossref_primary_10_1016_j_compind_2024_104229 crossref_primary_10_3390_electronics12194099 crossref_primary_10_1109_TIM_2023_3307757 crossref_primary_10_1088_1361_6501_ace9f0 crossref_primary_10_1007_s00034_023_02518_9 crossref_primary_10_1016_j_aei_2025_103706 crossref_primary_10_1155_2024_9071328 crossref_primary_10_3390_su15043065 crossref_primary_10_1007_s10489_024_06067_9 crossref_primary_10_3390_pr11030924 crossref_primary_10_3390_s24248053 crossref_primary_10_1007_s00034_023_02429_9 crossref_primary_10_1007_s00034_024_02618_0 crossref_primary_10_1016_j_conengprac_2024_106229 crossref_primary_10_1587_transfun_2024EAP1108 crossref_primary_10_1177_09544054241289810 crossref_primary_10_1007_s12652_023_04664_z crossref_primary_10_3390_act14090464 crossref_primary_10_3390_en16114491 crossref_primary_10_1109_TIM_2025_3583374 crossref_primary_10_1109_TIM_2025_3550600 crossref_primary_10_1109_TII_2024_3485801 crossref_primary_10_1016_j_isatra_2025_03_004 crossref_primary_10_3390_act12050216 crossref_primary_10_1007_s42835_024_02036_x crossref_primary_10_1088_1402_4896_ad0ae3 crossref_primary_10_1109_TFUZZ_2025_3567089 crossref_primary_10_1109_TR_2024_3510387 crossref_primary_10_1016_j_ymssp_2024_112127 crossref_primary_10_1088_1361_6501_add7fb crossref_primary_10_1109_TTE_2024_3525077 crossref_primary_10_1016_j_neucom_2024_129012 crossref_primary_10_1109_TIM_2025_3552470 crossref_primary_10_1016_j_engappai_2025_111612 crossref_primary_10_1016_j_engappai_2025_110643 crossref_primary_10_1016_j_measurement_2024_116152 crossref_primary_10_1109_TIM_2025_3562242 crossref_primary_10_1109_JIOT_2024_3466916 crossref_primary_10_3390_math12132142 crossref_primary_10_1109_TIM_2025_3551907 crossref_primary_10_3390_s23146368 crossref_primary_10_1109_TIM_2023_3323048 crossref_primary_10_1109_TNNLS_2025_3567475 crossref_primary_10_3390_machines12110792 crossref_primary_10_1109_TIM_2023_3342858 crossref_primary_10_3390_math13050797 crossref_primary_10_1109_TIM_2023_3280492 crossref_primary_10_3390_e25060845 crossref_primary_10_1038_s41598_023_31532_9 crossref_primary_10_3390_s23115334 crossref_primary_10_1109_TIM_2025_3553894 crossref_primary_10_1088_2631_8695_adff49 crossref_primary_10_1109_TIM_2025_3575181 crossref_primary_10_1109_TPEL_2023_3275791 crossref_primary_10_1016_j_measurement_2025_117772 crossref_primary_10_1016_j_ress_2025_110979 crossref_primary_10_1109_TII_2024_3413352 crossref_primary_10_1177_14759217241291268 crossref_primary_10_1016_j_knosys_2024_112396 crossref_primary_10_1109_TIM_2023_3327480 |
| Cites_doi | 10.1016/j.ress.2022.108986 10.2174/2210298102666220318100051 10.1109/ACCESS.2019.2956775 10.1109/tim.2022.3227956 10.1109/TITS.2019.2897583 10.1016/j.neucom.2020.11.070 10.1109/TNNLS.2015.2512714 10.1016/j.measurement.2021.110460 10.1109/TSMC.2020.3042876 10.1109/TNNLS.2019.2927301 10.1016/j.ress.2020.107050 10.1109/TITS.2020.3029946 10.1109/TTE.2021.3109137 10.1016/j.ress.2022.108357 10.1109/tnnls.2021.3123876 10.1109/TFUZZ.2021.3075501 10.1109/tnnls.2021.3094901 10.1109/TIM.2013.2245180 10.1109/TII.2019.2917233 10.1016/j.knosys.2019.04.022 10.1109/MIE.2021.3080232 10.1016/j.sigpro.2016.07.028 10.1109/TASLP.2019.2938863 10.1016/j.ress.2021.107938 10.1109/TIM.2020.2995441 10.1109/TIE.2021.3066933 10.1016/j.ymssp.2013.09.003 10.1109/TIM.2022.3200106 10.1016/j.knosys.2017.10.024 10.1016/j.knosys.2020.105971 10.1109/tnnls.2022.3201511 10.1109/TCYB.2021.3108034 10.3390/su12104218 10.1007/s11265-018-1378-3 10.1109/TNNLS.2021.3060494 10.1109/tnnls.2021.3098985 10.1109/TII.2020.2994621 10.1016/j.ress.2021.108257 10.1016/j.neunet.2020.07.016 10.1016/j.conengprac.2020.104673 10.1109/TNNLS.2020.3008938 10.1109/tnnls.2021.3094799 10.1016/j.ress.2021.108297 10.1016/j.isatra.2019.11.010 10.1007/978-3-319-50815-3 10.1109/JSEN.2018.2866708 10.1109/LSP.2019.2936310 10.1109/TNNLS.2018.2838679 10.1109/TII.2018.2810226 10.3390/s17030549 10.1109/TII.2021.3078712 10.1109/TCYB.2021.3054626 10.1109/OJIES.2020.3046044 10.1109/tmech.2022.3202642 10.1016/j.ymssp.2006.11.003 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2022.3232147 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 6242 |
| ExternalDocumentID | 37018605 10_1109_TNNLS_2022_3232147 10008204 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Key Research and Development, China grantid: 2020yfb2009405 – fundername: National Natural Science Foundation of China grantid: U20A20186; 62073104 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c352t-9ac0e76717497b6a652d8cc7d5877df39a6580844e6038637044cb77e7b661193 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 156 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000915824800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Sep 28 03:15:50 EDT 2025 Mon Jun 30 06:47:23 EDT 2025 Thu Jul 24 03:25:39 EDT 2025 Sat Nov 29 01:40:24 EST 2025 Tue Nov 18 22:41:42 EST 2025 Wed Aug 27 02:02:16 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-9ac0e76717497b6a652d8cc7d5877df39a6580844e6038637044cb77e7b661193 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9747-9895 0000-0003-2143-2438 0000-0001-8180-4083 0000-0001-7971-680X 0000-0002-3802-9269 |
| PMID | 37018605 |
| PQID | 3050304281 |
| PQPubID | 85436 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_10008204 proquest_miscellaneous_2797147042 proquest_journals_3050304281 crossref_citationtrail_10_1109_TNNLS_2022_3232147 pubmed_primary_37018605 crossref_primary_10_1109_TNNLS_2022_3232147 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref46 doi: 10.1016/j.ress.2022.108986 – ident: ref14 doi: 10.2174/2210298102666220318100051 – ident: ref27 doi: 10.1109/ACCESS.2019.2956775 – ident: ref42 doi: 10.1109/tim.2022.3227956 – ident: ref7 doi: 10.1109/TITS.2019.2897583 – ident: ref40 doi: 10.1016/j.neucom.2020.11.070 – ident: ref8 doi: 10.1109/TNNLS.2015.2512714 – ident: ref30 doi: 10.1016/j.measurement.2021.110460 – ident: ref2 doi: 10.1109/TSMC.2020.3042876 – ident: ref28 doi: 10.1109/TNNLS.2019.2927301 – ident: ref38 doi: 10.1016/j.ress.2020.107050 – ident: ref6 doi: 10.1109/TITS.2020.3029946 – ident: ref3 doi: 10.1109/TTE.2021.3109137 – ident: ref16 doi: 10.1016/j.ress.2022.108357 – ident: ref29 doi: 10.1109/tnnls.2021.3123876 – ident: ref22 doi: 10.1109/TFUZZ.2021.3075501 – ident: ref24 doi: 10.1109/tnnls.2021.3094901 – ident: ref51 doi: 10.1109/TIM.2013.2245180 – ident: ref35 doi: 10.1109/TII.2019.2917233 – ident: ref33 doi: 10.1016/j.knosys.2019.04.022 – ident: ref10 doi: 10.1109/MIE.2021.3080232 – ident: ref55 doi: 10.1016/j.sigpro.2016.07.028 – ident: ref26 doi: 10.1109/TASLP.2019.2938863 – ident: ref34 doi: 10.1016/j.ress.2021.107938 – ident: ref37 doi: 10.1109/TIM.2020.2995441 – ident: ref15 doi: 10.1109/TIE.2021.3066933 – ident: ref52 doi: 10.1016/j.ymssp.2013.09.003 – ident: ref12 doi: 10.1109/TIM.2022.3200106 – ident: ref32 doi: 10.1016/j.knosys.2017.10.024 – ident: ref41 doi: 10.1016/j.knosys.2020.105971 – ident: ref1 doi: 10.1109/tnnls.2022.3201511 – ident: ref23 doi: 10.1109/TCYB.2021.3108034 – ident: ref49 doi: 10.3390/su12104218 – ident: ref53 doi: 10.1007/s11265-018-1378-3 – ident: ref11 doi: 10.1109/TNNLS.2021.3060494 – ident: ref25 doi: 10.1109/tnnls.2021.3098985 – ident: ref36 doi: 10.1109/TII.2020.2994621 – ident: ref43 doi: 10.1016/j.ress.2021.108257 – ident: ref21 doi: 10.1016/j.neunet.2020.07.016 – ident: ref45 doi: 10.1016/j.conengprac.2020.104673 – ident: ref47 doi: 10.1109/TNNLS.2020.3008938 – ident: ref13 doi: 10.1109/tnnls.2021.3094799 – ident: ref20 doi: 10.1016/j.ress.2021.108297 – ident: ref17 doi: 10.1016/j.isatra.2019.11.010 – ident: ref4 doi: 10.1007/978-3-319-50815-3 – ident: ref48 doi: 10.1109/JSEN.2018.2866708 – ident: ref31 doi: 10.1109/LSP.2019.2936310 – ident: ref44 doi: 10.1109/TNNLS.2018.2838679 – ident: ref18 doi: 10.1109/TII.2018.2810226 – ident: ref54 doi: 10.3390/s17030549 – ident: ref39 doi: 10.1109/TII.2021.3078712 – ident: ref19 doi: 10.1109/TCYB.2021.3054626 – ident: ref9 doi: 10.1109/OJIES.2020.3046044 – ident: ref5 doi: 10.1109/tmech.2022.3202642 – ident: ref50 doi: 10.1016/j.ymssp.2006.11.003 |
| SSID | ssj0000605649 |
| Score | 2.7018232 |
| Snippet | Accurate bearing fault diagnosis is of great significance of the safety and reliability of rotary mechanical system. In practice, the sample proportion between... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6231 |
| SubjectTerms | Classification Datasets Fault classification Fault detection Fault diagnosis Feature extraction imbalanced sample condition Machine learning Mechanical systems modified denoising autoencoder with self-attention mechanism for bottleneck layer (MDAE-SAMB) Multitasking Neurons Representation learning Representations Rotor dynamics Task analysis Training Transfer learning unknown fault identification |
| Title | An Integrated Multitasking Intelligent Bearing Fault Diagnosis Scheme Based on Representation Learning Under Imbalanced Sample Condition |
| URI | https://ieeexplore.ieee.org/document/10008204 https://www.ncbi.nlm.nih.gov/pubmed/37018605 https://www.proquest.com/docview/3050304281 https://www.proquest.com/docview/2797147042 |
| Volume | 35 |
| WOSCitedRecordID | wos000915824800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBdrGaMv6z66LltbPNjbSJs4jj8e267HDsox1g7uLSS2biu0yWju9jfsz55sJ6EvHezNOIpjIglJtvQTwEeyIsidFKksG5MKhyptypWikZAWlUYRcWYv1WKhl0vzdShWD7UwiBiSz_DYD8Ndvuvsxh-VneTRYokt2FJKxWKt6UAlI8dcBneX55KnvFDLsUgmMyfXi8XlFYWDnB8XPDTn2YFnhcpyLX3nugc2KTRZedzfDHZntvufO34BzwcHk51GiXgJT7B9Bbtj8wY26PJr-HPasvmIFeFYLMSte39yzuYTTueanZEq-LlZTRTsc8zMu-lpoZ94h-yMrKBjXcu-hZTaoZKpZQNu6w8WGiux-V3jcygt0V7VHpCYnXf-spxI9-D77OL6_Es6tGVILXlr69TUNkMlKQ4URjWyliV32lrlSq2UWxWGZnSmhUCZFVrSTxbCNkohEcucHMY3sN12Lb4FVlreCLPSqBshClcbbUvn7MoIZzQWPIF8ZExlB8xy3zrjtgqxS2aqwNfK87Ua-JrAp-mdXxGx45_Ue55rDygjwxI4GAWgGrS6rwoPnuODzDyBD9Nj0kd_yVK32G36iiujaF2iSmA_Cs60-Chv7x756HvYob2JmE95ANvr-w0ewlP7e33T3x-R0C_1URD6v2Ca-sU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQdAL5VEgUMBI3FDaxHH8OLaFVVcsEaKLtLcosb1QiSao2eU38LMZPxL1UiRuljNxrMyMZsae-QbgHVoRSw1nKS9blTJjRdqWa4EjxrUV0rKAM7sQVSVXK_UlFqv7WhhrrU8-s4du6O_yTa-37qjsKA8Wi92GOyVjNA_lWtORSoauOfcOL805TWkhVmOZTKaOllW1OMeAkNLDgvr2PLtwrxBZLrnrXXfNKvk2Kzd7nN7yzPb-c88P4UF0MclxkIlHcMt2j2FvbN9AojY_gT_HHZmPaBGGhFLcZnBn52Q-IXVuyAkqg5ubNUhBPoTcvIsBF_phLy05QTtoSN-Rrz6pNtYydSQit34nvrUSmV-2LotSI-154yCJyWnvrsuRdB--zT4uT8_S2Jgh1eivbVLV6MwKjpEgU6LlDS-pkVoLU0ohzLpQOCMzyZjlWSE5_mTGdCuERWKeo8v4FHa6vrPPgZSatkytpZUtY4VplNSlMXqtmFHSFjSBfGRMrSNquWue8bP20Uumas_X2vG1jnxN4P30zq-A2fFP6n3HtWuUgWEJHIwCUEe9HurCwee4MDNP4O30GDXSXbM0ne23Q02FErguUiXwLAjOtPgoby9u-OgbuH-2_LyoF_Pq00vYxX2ykF15ADubq619BXf1783FcPXai_5fpYv9JA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Integrated+Multitasking+Intelligent+Bearing+Fault+Diagnosis+Scheme+Based+on+Representation+Learning+Under+Imbalanced+Sample+Condition&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Jiusi&rft.au=Zhang%2C+Ke&rft.au=An%2C+Yiyao&rft.au=Luo%2C+Hao&rft.date=2024-05-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=35&rft.issue=5&rft.spage=6231&rft_id=info:doi/10.1109%2FTNNLS.2022.3232147&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |