An Integrated Multitasking Intelligent Bearing Fault Diagnosis Scheme Based on Representation Learning Under Imbalanced Sample Condition

Accurate bearing fault diagnosis is of great significance of the safety and reliability of rotary mechanical system. In practice, the sample proportion between faulty data and healthy data in rotating mechanical system is imbalanced. Furthermore, there are commonalities between the bearing fault det...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transaction on neural networks and learning systems Ročník 35; číslo 5; s. 6231 - 6242
Hlavní autori: Zhang, Jiusi, Zhang, Ke, An, Yiyao, Luo, Hao, Yin, Shen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.05.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Accurate bearing fault diagnosis is of great significance of the safety and reliability of rotary mechanical system. In practice, the sample proportion between faulty data and healthy data in rotating mechanical system is imbalanced. Furthermore, there are commonalities between the bearing fault detection, classification, and identification tasks. Based on these observations, this article proposes a novel integrated multitasking intelligent bearing fault diagnosis scheme with the aid of representation learning under imbalanced sample condition, which realizes bearing fault detection, classification, and unknown fault identification. Specifically, in the unsupervised condition, a bearing fault detection approach based on modified denoising autoencoder (DAE) with self-attention mechanism for bottleneck layer (MDAE-SAMB) is proposed in the integrated scheme, which only uses the healthy data for training. The self-attention mechanism is introduced into the neurons in the bottleneck layer, which can assign different weights to the neurons in the bottleneck layer. Moreover, the transfer learning based on representation learning is proposed for few-shot fault classification. Only a few fault samples are used for offline training, and high-accuracy online bearing fault classification is achieved. Finally, according to the known fault data, the unknown bearing faults can be effectively identified. A bearing dataset generated by rotor dynamics experiment rig (RDER) and a public bearing dataset demonstrates the applicability of the proposed integrated fault diagnosis scheme.
AbstractList Accurate bearing fault diagnosis is of great significance of the safety and reliability of rotary mechanical system. In practice, the sample proportion between faulty data and healthy data in rotating mechanical system is imbalanced. Furthermore, there are commonalities between the bearing fault detection, classification, and identification tasks. Based on these observations, this article proposes a novel integrated multitasking intelligent bearing fault diagnosis scheme with the aid of representation learning under imbalanced sample condition, which realizes bearing fault detection, classification, and unknown fault identification. Specifically, in the unsupervised condition, a bearing fault detection approach based on modified denoising autoencoder (DAE) with self-attention mechanism for bottleneck layer (MDAE-SAMB) is proposed in the integrated scheme, which only uses the healthy data for training. The self-attention mechanism is introduced into the neurons in the bottleneck layer, which can assign different weights to the neurons in the bottleneck layer. Moreover, the transfer learning based on representation learning is proposed for few-shot fault classification. Only a few fault samples are used for offline training, and high-accuracy online bearing fault classification is achieved. Finally, according to the known fault data, the unknown bearing faults can be effectively identified. A bearing dataset generated by rotor dynamics experiment rig (RDER) and a public bearing dataset demonstrates the applicability of the proposed integrated fault diagnosis scheme.
Accurate bearing fault diagnosis is of great significance of the safety and reliability of rotary mechanical system. In practice, the sample proportion between faulty data and healthy data in rotating mechanical system is imbalanced. Furthermore, there are commonalities between the bearing fault detection, classification, and identification tasks. Based on these observations, this article proposes a novel integrated multitasking intelligent bearing fault diagnosis scheme with the aid of representation learning under imbalanced sample condition, which realizes bearing fault detection, classification, and unknown fault identification. Specifically, in the unsupervised condition, a bearing fault detection approach based on modified denoising autoencoder (DAE) with self-attention mechanism for bottleneck layer (MDAE-SAMB) is proposed in the integrated scheme, which only uses the healthy data for training. The self-attention mechanism is introduced into the neurons in the bottleneck layer, which can assign different weights to the neurons in the bottleneck layer. Moreover, the transfer learning based on representation learning is proposed for few-shot fault classification. Only a few fault samples are used for offline training, and high-accuracy online bearing fault classification is achieved. Finally, according to the known fault data, the unknown bearing faults can be effectively identified. A bearing dataset generated by rotor dynamics experiment rig (RDER) and a public bearing dataset demonstrates the applicability of the proposed integrated fault diagnosis scheme.Accurate bearing fault diagnosis is of great significance of the safety and reliability of rotary mechanical system. In practice, the sample proportion between faulty data and healthy data in rotating mechanical system is imbalanced. Furthermore, there are commonalities between the bearing fault detection, classification, and identification tasks. Based on these observations, this article proposes a novel integrated multitasking intelligent bearing fault diagnosis scheme with the aid of representation learning under imbalanced sample condition, which realizes bearing fault detection, classification, and unknown fault identification. Specifically, in the unsupervised condition, a bearing fault detection approach based on modified denoising autoencoder (DAE) with self-attention mechanism for bottleneck layer (MDAE-SAMB) is proposed in the integrated scheme, which only uses the healthy data for training. The self-attention mechanism is introduced into the neurons in the bottleneck layer, which can assign different weights to the neurons in the bottleneck layer. Moreover, the transfer learning based on representation learning is proposed for few-shot fault classification. Only a few fault samples are used for offline training, and high-accuracy online bearing fault classification is achieved. Finally, according to the known fault data, the unknown bearing faults can be effectively identified. A bearing dataset generated by rotor dynamics experiment rig (RDER) and a public bearing dataset demonstrates the applicability of the proposed integrated fault diagnosis scheme.
Author Zhang, Ke
An, Yiyao
Yin, Shen
Luo, Hao
Zhang, Jiusi
Author_xml – sequence: 1
  givenname: Jiusi
  orcidid: 0000-0001-7971-680X
  surname: Zhang
  fullname: Zhang, Jiusi
  email: hit_zjs@163.com
  organization: Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Ke
  orcidid: 0000-0001-9747-9895
  surname: Zhang
  fullname: Zhang, Ke
  email: smeta@163.com
  organization: College of Automation, Chongqing University, Chongqing, China
– sequence: 3
  givenname: Yiyao
  orcidid: 0000-0001-8180-4083
  surname: An
  fullname: An, Yiyao
  email: anyiyao@cqu.edu.cn
  organization: College of Automation, Chongqing University, Chongqing, China
– sequence: 4
  givenname: Hao
  orcidid: 0000-0003-2143-2438
  surname: Luo
  fullname: Luo, Hao
  email: hao.luo@hit.edu.cn
  organization: Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China
– sequence: 5
  givenname: Shen
  orcidid: 0000-0002-3802-9269
  surname: Yin
  fullname: Yin, Shen
  email: shen.yin@ntnu.no
  organization: Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim, Norway
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37018605$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEQgC1UREvpCyCEVuLSS4J_dm3vsU1bGikUibQSN8vxToLLrjfY3kPfgMdmtkkr1AO-2DP6Ptsz85YchD4AIe8ZnTJG68-3NzeL5ZRTzqeCC85K9YoccSb5hAutD57P6schOUnpnuKStJJl_YYcCkWZxuiI_DkLxTxk2ESboSm-Dm322aZfPmwe823rNxBycQ42jrkri0Rx4e0m9MmnYul-QgfFuU1o96H4DtsICQ2bPYYL1MLo3YUGYjHvVra1wSG7tN22hWLWh8aP6Dvyem3bBCf7_ZjcXV3ezq4ni29f5rOzxcSJiudJbR0FJRVTZa1W0sqKN9o51VRaqWYtasxoqssSJBVaYqFl6VZKAcKSsVock9PdvdvY_x4gZdP55LBOG6AfkuGqVthMWnJEP71A7_shBvydEbSiAhnNkPq4p4ZVB43ZRt_Z-GCeeowA3wEu9ilFWD8jjJpxluZxlmacpdnPEiX9QnJ-19McrW__r37YqR4A_nmLUs1pKf4Ca6yrfA
CODEN ITNNAL
CitedBy_id crossref_primary_10_1038_s41598_024_84863_6
crossref_primary_10_3390_electronics12091982
crossref_primary_10_1002_asjc_3213
crossref_primary_10_1002_cem_3624
crossref_primary_10_1109_TIM_2025_3550622
crossref_primary_10_1088_1361_6501_adf7c5
crossref_primary_10_1016_j_knosys_2025_113772
crossref_primary_10_1109_TIM_2025_3548795
crossref_primary_10_1016_j_engappai_2025_111991
crossref_primary_10_1016_j_engappai_2025_110824
crossref_primary_10_1007_s00521_024_09617_x
crossref_primary_10_3390_s24061959
crossref_primary_10_1109_TIM_2024_3350149
crossref_primary_10_1177_14759217241276019
crossref_primary_10_1088_1361_6501_ad50f4
crossref_primary_10_1109_TIM_2023_3298416
crossref_primary_10_1177_0309524X231183374
crossref_primary_10_1016_j_apacoust_2025_110877
crossref_primary_10_1007_s00034_023_02582_1
crossref_primary_10_1016_j_jfranklin_2025_107735
crossref_primary_10_1109_TIM_2024_3373103
crossref_primary_10_3390_s23187706
crossref_primary_10_3390_s25133908
crossref_primary_10_1016_j_compind_2024_104229
crossref_primary_10_3390_electronics12194099
crossref_primary_10_1109_TIM_2023_3307757
crossref_primary_10_1088_1361_6501_ace9f0
crossref_primary_10_1007_s00034_023_02518_9
crossref_primary_10_1016_j_aei_2025_103706
crossref_primary_10_1155_2024_9071328
crossref_primary_10_3390_su15043065
crossref_primary_10_1007_s10489_024_06067_9
crossref_primary_10_3390_pr11030924
crossref_primary_10_3390_s24248053
crossref_primary_10_1007_s00034_023_02429_9
crossref_primary_10_1007_s00034_024_02618_0
crossref_primary_10_1016_j_conengprac_2024_106229
crossref_primary_10_1587_transfun_2024EAP1108
crossref_primary_10_1177_09544054241289810
crossref_primary_10_1007_s12652_023_04664_z
crossref_primary_10_3390_act14090464
crossref_primary_10_3390_en16114491
crossref_primary_10_1109_TIM_2025_3583374
crossref_primary_10_1109_TIM_2025_3550600
crossref_primary_10_1109_TII_2024_3485801
crossref_primary_10_1016_j_isatra_2025_03_004
crossref_primary_10_3390_act12050216
crossref_primary_10_1007_s42835_024_02036_x
crossref_primary_10_1088_1402_4896_ad0ae3
crossref_primary_10_1109_TFUZZ_2025_3567089
crossref_primary_10_1109_TR_2024_3510387
crossref_primary_10_1016_j_ymssp_2024_112127
crossref_primary_10_1088_1361_6501_add7fb
crossref_primary_10_1109_TTE_2024_3525077
crossref_primary_10_1016_j_neucom_2024_129012
crossref_primary_10_1109_TIM_2025_3552470
crossref_primary_10_1016_j_engappai_2025_111612
crossref_primary_10_1016_j_engappai_2025_110643
crossref_primary_10_1016_j_measurement_2024_116152
crossref_primary_10_1109_TIM_2025_3562242
crossref_primary_10_1109_JIOT_2024_3466916
crossref_primary_10_3390_math12132142
crossref_primary_10_1109_TIM_2025_3551907
crossref_primary_10_3390_s23146368
crossref_primary_10_1109_TIM_2023_3323048
crossref_primary_10_1109_TNNLS_2025_3567475
crossref_primary_10_3390_machines12110792
crossref_primary_10_1109_TIM_2023_3342858
crossref_primary_10_3390_math13050797
crossref_primary_10_1109_TIM_2023_3280492
crossref_primary_10_3390_e25060845
crossref_primary_10_1038_s41598_023_31532_9
crossref_primary_10_3390_s23115334
crossref_primary_10_1109_TIM_2025_3553894
crossref_primary_10_1088_2631_8695_adff49
crossref_primary_10_1109_TIM_2025_3575181
crossref_primary_10_1109_TPEL_2023_3275791
crossref_primary_10_1016_j_measurement_2025_117772
crossref_primary_10_1016_j_ress_2025_110979
crossref_primary_10_1109_TII_2024_3413352
crossref_primary_10_1177_14759217241291268
crossref_primary_10_1016_j_knosys_2024_112396
crossref_primary_10_1109_TIM_2023_3327480
Cites_doi 10.1016/j.ress.2022.108986
10.2174/2210298102666220318100051
10.1109/ACCESS.2019.2956775
10.1109/tim.2022.3227956
10.1109/TITS.2019.2897583
10.1016/j.neucom.2020.11.070
10.1109/TNNLS.2015.2512714
10.1016/j.measurement.2021.110460
10.1109/TSMC.2020.3042876
10.1109/TNNLS.2019.2927301
10.1016/j.ress.2020.107050
10.1109/TITS.2020.3029946
10.1109/TTE.2021.3109137
10.1016/j.ress.2022.108357
10.1109/tnnls.2021.3123876
10.1109/TFUZZ.2021.3075501
10.1109/tnnls.2021.3094901
10.1109/TIM.2013.2245180
10.1109/TII.2019.2917233
10.1016/j.knosys.2019.04.022
10.1109/MIE.2021.3080232
10.1016/j.sigpro.2016.07.028
10.1109/TASLP.2019.2938863
10.1016/j.ress.2021.107938
10.1109/TIM.2020.2995441
10.1109/TIE.2021.3066933
10.1016/j.ymssp.2013.09.003
10.1109/TIM.2022.3200106
10.1016/j.knosys.2017.10.024
10.1016/j.knosys.2020.105971
10.1109/tnnls.2022.3201511
10.1109/TCYB.2021.3108034
10.3390/su12104218
10.1007/s11265-018-1378-3
10.1109/TNNLS.2021.3060494
10.1109/tnnls.2021.3098985
10.1109/TII.2020.2994621
10.1016/j.ress.2021.108257
10.1016/j.neunet.2020.07.016
10.1016/j.conengprac.2020.104673
10.1109/TNNLS.2020.3008938
10.1109/tnnls.2021.3094799
10.1016/j.ress.2021.108297
10.1016/j.isatra.2019.11.010
10.1007/978-3-319-50815-3
10.1109/JSEN.2018.2866708
10.1109/LSP.2019.2936310
10.1109/TNNLS.2018.2838679
10.1109/TII.2018.2810226
10.3390/s17030549
10.1109/TII.2021.3078712
10.1109/TCYB.2021.3054626
10.1109/OJIES.2020.3046044
10.1109/tmech.2022.3202642
10.1016/j.ymssp.2006.11.003
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2022.3232147
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 6242
ExternalDocumentID 37018605
10_1109_TNNLS_2022_3232147
10008204
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key Research and Development, China
  grantid: 2020yfb2009405
– fundername: National Natural Science Foundation of China
  grantid: U20A20186; 62073104
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c352t-9ac0e76717497b6a652d8cc7d5877df39a6580844e6038637044cb77e7b661193
IEDL.DBID RIE
ISICitedReferencesCount 156
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000915824800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 03:15:50 EDT 2025
Mon Jun 30 06:47:23 EDT 2025
Thu Jul 24 03:25:39 EDT 2025
Sat Nov 29 01:40:24 EST 2025
Tue Nov 18 22:41:42 EST 2025
Wed Aug 27 02:02:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-9ac0e76717497b6a652d8cc7d5877df39a6580844e6038637044cb77e7b661193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9747-9895
0000-0003-2143-2438
0000-0001-8180-4083
0000-0001-7971-680X
0000-0002-3802-9269
PMID 37018605
PQID 3050304281
PQPubID 85436
PageCount 12
ParticipantIDs ieee_primary_10008204
proquest_miscellaneous_2797147042
proquest_journals_3050304281
crossref_citationtrail_10_1109_TNNLS_2022_3232147
pubmed_primary_37018605
crossref_primary_10_1109_TNNLS_2022_3232147
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref46
  doi: 10.1016/j.ress.2022.108986
– ident: ref14
  doi: 10.2174/2210298102666220318100051
– ident: ref27
  doi: 10.1109/ACCESS.2019.2956775
– ident: ref42
  doi: 10.1109/tim.2022.3227956
– ident: ref7
  doi: 10.1109/TITS.2019.2897583
– ident: ref40
  doi: 10.1016/j.neucom.2020.11.070
– ident: ref8
  doi: 10.1109/TNNLS.2015.2512714
– ident: ref30
  doi: 10.1016/j.measurement.2021.110460
– ident: ref2
  doi: 10.1109/TSMC.2020.3042876
– ident: ref28
  doi: 10.1109/TNNLS.2019.2927301
– ident: ref38
  doi: 10.1016/j.ress.2020.107050
– ident: ref6
  doi: 10.1109/TITS.2020.3029946
– ident: ref3
  doi: 10.1109/TTE.2021.3109137
– ident: ref16
  doi: 10.1016/j.ress.2022.108357
– ident: ref29
  doi: 10.1109/tnnls.2021.3123876
– ident: ref22
  doi: 10.1109/TFUZZ.2021.3075501
– ident: ref24
  doi: 10.1109/tnnls.2021.3094901
– ident: ref51
  doi: 10.1109/TIM.2013.2245180
– ident: ref35
  doi: 10.1109/TII.2019.2917233
– ident: ref33
  doi: 10.1016/j.knosys.2019.04.022
– ident: ref10
  doi: 10.1109/MIE.2021.3080232
– ident: ref55
  doi: 10.1016/j.sigpro.2016.07.028
– ident: ref26
  doi: 10.1109/TASLP.2019.2938863
– ident: ref34
  doi: 10.1016/j.ress.2021.107938
– ident: ref37
  doi: 10.1109/TIM.2020.2995441
– ident: ref15
  doi: 10.1109/TIE.2021.3066933
– ident: ref52
  doi: 10.1016/j.ymssp.2013.09.003
– ident: ref12
  doi: 10.1109/TIM.2022.3200106
– ident: ref32
  doi: 10.1016/j.knosys.2017.10.024
– ident: ref41
  doi: 10.1016/j.knosys.2020.105971
– ident: ref1
  doi: 10.1109/tnnls.2022.3201511
– ident: ref23
  doi: 10.1109/TCYB.2021.3108034
– ident: ref49
  doi: 10.3390/su12104218
– ident: ref53
  doi: 10.1007/s11265-018-1378-3
– ident: ref11
  doi: 10.1109/TNNLS.2021.3060494
– ident: ref25
  doi: 10.1109/tnnls.2021.3098985
– ident: ref36
  doi: 10.1109/TII.2020.2994621
– ident: ref43
  doi: 10.1016/j.ress.2021.108257
– ident: ref21
  doi: 10.1016/j.neunet.2020.07.016
– ident: ref45
  doi: 10.1016/j.conengprac.2020.104673
– ident: ref47
  doi: 10.1109/TNNLS.2020.3008938
– ident: ref13
  doi: 10.1109/tnnls.2021.3094799
– ident: ref20
  doi: 10.1016/j.ress.2021.108297
– ident: ref17
  doi: 10.1016/j.isatra.2019.11.010
– ident: ref4
  doi: 10.1007/978-3-319-50815-3
– ident: ref48
  doi: 10.1109/JSEN.2018.2866708
– ident: ref31
  doi: 10.1109/LSP.2019.2936310
– ident: ref44
  doi: 10.1109/TNNLS.2018.2838679
– ident: ref18
  doi: 10.1109/TII.2018.2810226
– ident: ref54
  doi: 10.3390/s17030549
– ident: ref39
  doi: 10.1109/TII.2021.3078712
– ident: ref19
  doi: 10.1109/TCYB.2021.3054626
– ident: ref9
  doi: 10.1109/OJIES.2020.3046044
– ident: ref5
  doi: 10.1109/tmech.2022.3202642
– ident: ref50
  doi: 10.1016/j.ymssp.2006.11.003
SSID ssj0000605649
Score 2.7018232
Snippet Accurate bearing fault diagnosis is of great significance of the safety and reliability of rotary mechanical system. In practice, the sample proportion between...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6231
SubjectTerms Classification
Datasets
Fault classification
Fault detection
Fault diagnosis
Feature extraction
imbalanced sample condition
Machine learning
Mechanical systems
modified denoising autoencoder with self-attention mechanism for bottleneck layer (MDAE-SAMB)
Multitasking
Neurons
Representation learning
Representations
Rotor dynamics
Task analysis
Training
Transfer learning
unknown fault identification
Title An Integrated Multitasking Intelligent Bearing Fault Diagnosis Scheme Based on Representation Learning Under Imbalanced Sample Condition
URI https://ieeexplore.ieee.org/document/10008204
https://www.ncbi.nlm.nih.gov/pubmed/37018605
https://www.proquest.com/docview/3050304281
https://www.proquest.com/docview/2797147042
Volume 35
WOSCitedRecordID wos000915824800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBdrGaMv6z66LltbPNjbSJs4jj8e267HDsox1g7uLSS2biu0yWju9jfsz55sJ6EvHezNOIpjIglJtvQTwEeyIsidFKksG5MKhyptypWikZAWlUYRcWYv1WKhl0vzdShWD7UwiBiSz_DYD8Ndvuvsxh-VneTRYokt2FJKxWKt6UAlI8dcBneX55KnvFDLsUgmMyfXi8XlFYWDnB8XPDTn2YFnhcpyLX3nugc2KTRZedzfDHZntvufO34BzwcHk51GiXgJT7B9Bbtj8wY26PJr-HPasvmIFeFYLMSte39yzuYTTueanZEq-LlZTRTsc8zMu-lpoZ94h-yMrKBjXcu-hZTaoZKpZQNu6w8WGiux-V3jcygt0V7VHpCYnXf-spxI9-D77OL6_Es6tGVILXlr69TUNkMlKQ4URjWyliV32lrlSq2UWxWGZnSmhUCZFVrSTxbCNkohEcucHMY3sN12Lb4FVlreCLPSqBshClcbbUvn7MoIZzQWPIF8ZExlB8xy3zrjtgqxS2aqwNfK87Ua-JrAp-mdXxGx45_Ue55rDygjwxI4GAWgGrS6rwoPnuODzDyBD9Nj0kd_yVK32G36iiujaF2iSmA_Cs60-Chv7x756HvYob2JmE95ANvr-w0ewlP7e33T3x-R0C_1URD6v2Ca-sU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQdAL5VEgUMBI3FDaxHH8OLaFVVcsEaKLtLcosb1QiSao2eU38LMZPxL1UiRuljNxrMyMZsae-QbgHVoRSw1nKS9blTJjRdqWa4EjxrUV0rKAM7sQVSVXK_UlFqv7WhhrrU8-s4du6O_yTa-37qjsKA8Wi92GOyVjNA_lWtORSoauOfcOL805TWkhVmOZTKaOllW1OMeAkNLDgvr2PLtwrxBZLrnrXXfNKvk2Kzd7nN7yzPb-c88P4UF0MclxkIlHcMt2j2FvbN9AojY_gT_HHZmPaBGGhFLcZnBn52Q-IXVuyAkqg5ubNUhBPoTcvIsBF_phLy05QTtoSN-Rrz6pNtYydSQit34nvrUSmV-2LotSI-154yCJyWnvrsuRdB--zT4uT8_S2Jgh1eivbVLV6MwKjpEgU6LlDS-pkVoLU0ohzLpQOCMzyZjlWSE5_mTGdCuERWKeo8v4FHa6vrPPgZSatkytpZUtY4VplNSlMXqtmFHSFjSBfGRMrSNquWue8bP20Uumas_X2vG1jnxN4P30zq-A2fFP6n3HtWuUgWEJHIwCUEe9HurCwee4MDNP4O30GDXSXbM0ne23Q02FErguUiXwLAjOtPgoby9u-OgbuH-2_LyoF_Pq00vYxX2ykF15ADubq619BXf1783FcPXai_5fpYv9JA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Integrated+Multitasking+Intelligent+Bearing+Fault+Diagnosis+Scheme+Based+on+Representation+Learning+Under+Imbalanced+Sample+Condition&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhang%2C+Jiusi&rft.au=Zhang%2C+Ke&rft.au=An%2C+Yiyao&rft.au=Luo%2C+Hao&rft.date=2024-05-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=35&rft.issue=5&rft.spage=6231&rft_id=info:doi/10.1109%2FTNNLS.2022.3232147&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon