Data-driven Analysis of Product State Propagation in Manufacturing Systems Using Visual Analytics and Machine Learning

The importance of quality and efficiency has increased in recent years. Moreover, the rise of computational power and the development of advanced analytics has enabled the industry to enhance the performance of manufacturing systems. Therefore, further transparency of intermediate product states is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Procedia CIRP Ročník 93; s. 449 - 454
Hlavní autoři: Filz, Marc-André, Gellrich, Sebastian, Herrmann, Christoph, Thiede, Sebastian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2020
Témata:
ISSN:2212-8271, 2212-8271
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The importance of quality and efficiency has increased in recent years. Moreover, the rise of computational power and the development of advanced analytics has enabled the industry to enhance the performance of manufacturing systems. Therefore, further transparency of intermediate product states is necessary to derive appropriate actions. The goal of this paper is to develop a framework to enable the data-driven analysis of product state propagation within manufacturing systems to improve the transparency of product quality related cause-effect relationships. Based on their intermediate product features, machine learning algorithms assign products to classes of similar characteristics. This approach is practically applied to a case study from the electronic production industry. By using visual analytics tools, the propagation of product states along the manufacturing process chain is exemplarily analyzed.
AbstractList The importance of quality and efficiency has increased in recent years. Moreover, the rise of computational power and the development of advanced analytics has enabled the industry to enhance the performance of manufacturing systems. Therefore, further transparency of intermediate product states is necessary to derive appropriate actions. The goal of this paper is to develop a framework to enable the data-driven analysis of product state propagation within manufacturing systems to improve the transparency of product quality related cause-effect relationships. Based on their intermediate product features, machine learning algorithms assign products to classes of similar characteristics. This approach is practically applied to a case study from the electronic production industry. By using visual analytics tools, the propagation of product states along the manufacturing process chain is exemplarily analyzed.
Author Gellrich, Sebastian
Filz, Marc-André
Herrmann, Christoph
Thiede, Sebastian
Author_xml – sequence: 1
  givenname: Marc-André
  surname: Filz
  fullname: Filz, Marc-André
  email: m.filz@tu-braunschweig.de
  organization: Institute of Machine Tools and Production Technology, Chair of Sustainable Manufacturing and Life Cycle Engineering, Technische Universität Braunschweig, Langer Kamp 19 b, 38106 Braunschweig, Germany
– sequence: 2
  givenname: Sebastian
  surname: Gellrich
  fullname: Gellrich, Sebastian
  organization: Institute of Machine Tools and Production Technology, Chair of Sustainable Manufacturing and Life Cycle Engineering, Technische Universität Braunschweig, Langer Kamp 19 b, 38106 Braunschweig, Germany
– sequence: 3
  givenname: Christoph
  surname: Herrmann
  fullname: Herrmann, Christoph
  organization: Institute of Machine Tools and Production Technology, Chair of Sustainable Manufacturing and Life Cycle Engineering, Technische Universität Braunschweig, Langer Kamp 19 b, 38106 Braunschweig, Germany
– sequence: 4
  givenname: Sebastian
  surname: Thiede
  fullname: Thiede, Sebastian
  organization: Institute of Machine Tools and Production Technology, Chair of Sustainable Manufacturing and Life Cycle Engineering, Technische Universität Braunschweig, Langer Kamp 19 b, 38106 Braunschweig, Germany
BookMark eNqFkMtKAzEUhoNUsNa-gYu8wIxJpnNzIZR6hYpCrdtwJjlTU6aZkmQKfXun1oW40LM4FzjfD_9_Tga2tUjIJWcxZzy7Wsdb1yrjYsEEi1kSsyw9IUMhuIgKkfPBj_2MjL1fs77yCUu4GJLdLQSItDM7tHRqodl742lb01fX6k4FuggQ8HBtYQXBtJYaS5_BdjWo0DljV3Sx9wE3ni794Xo3voPmqBWM8hSs7gH1YSzSOYKz_dcFOa2h8Tj-niOyvL97mz1G85eHp9l0HqkkFSEqC6ZyoRlgmidaqIppXqc6L0peFKUqa8zTFEXV90ozLSYlVhnXNYesUMggGZHro65yrfcOa6lM-LIRHJhGciYPIcq1PIYoDyFKlsg-xB6e_IK3zmzA7f_Dbo4Y9sZ2Bp30yqBVqI1DFaRuzd8Cn5-vkos
CitedBy_id crossref_primary_10_1016_j_ifacol_2024_09_225
crossref_primary_10_1007_s10845_023_02162_9
crossref_primary_10_2478_amns_2023_2_00560
crossref_primary_10_1016_j_measurement_2025_117950
crossref_primary_10_1016_j_procir_2021_11_185
crossref_primary_10_1016_j_jmsy_2023_10_012
crossref_primary_10_1016_j_procir_2021_11_153
crossref_primary_10_3390_jmmp4040106
crossref_primary_10_1016_j_procir_2021_11_151
crossref_primary_10_3390_electronics11233942
crossref_primary_10_1002_ente_202201083
crossref_primary_10_1016_j_ifacol_2022_04_205
Cites_doi 10.1016/j.procs.2011.12.035
10.1016/j.jbusres.2011.01.015
10.1016/j.procir.2017.11.124
10.1007/s10845-013-0761-y
10.1002/mawe.201100908
10.1007/978-3-642-40361-3_1
10.1109/MCG.2007.126
10.1016/0377-0427(87)90125-7
10.1016/j.proeng.2011.04.367
10.1109/TEPM.2010.2055873
10.1109/AIM.2008.4601660
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procir.2020.03.065
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2212-8271
EndPage 454
ExternalDocumentID 10_1016_j_procir_2020_03_065
S2212827120306740
GroupedDBID 0R~
0SF
4.4
457
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c352t-980c72d0ae573d2cb0d1f5d7891889c9fe755e2b755bd0d249eb61df1a68ce0a3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001491480300075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2212-8271
IngestDate Wed Nov 05 20:45:55 EST 2025
Tue Nov 18 22:17:37 EST 2025
Wed May 17 00:08:59 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Visual Analytics
Intermediate Product States
Product Propagation
Product State Classes
Machine Learning
Manufacturing Systems
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-980c72d0ae573d2cb0d1f5d7891889c9fe755e2b755bd0d249eb61df1a68ce0a3
OpenAccessLink https://dx.doi.org/10.1016/j.procir.2020.03.065
PageCount 6
ParticipantIDs crossref_citationtrail_10_1016_j_procir_2020_03_065
crossref_primary_10_1016_j_procir_2020_03_065
elsevier_sciencedirect_doi_10_1016_j_procir_2020_03_065
PublicationCentury 2000
PublicationDate 2020
2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle Procedia CIRP
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gebauer, Gustafsson, Witell (bib0001) 2011; 64
Thiede (bib0003) 2018; 69
Cleve, Lämmel (bib00015) 2016
Rousseeuw (bib00016) 1987; 20
Wu, H., Zhang, X., Kuang, Y., Lu, S., 2008. A real-time machine vision system for solder paste inspection, in: The 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. AIM 2008: July 2-5, 2008, Xi’an, China. 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Xian, China. 7/2/2008 - 7/5/2008. IEEE Xplore, [Piscataway, N.J.], pp. 205–210.
Wuest, Klein, Seifert, Thoben (bib0007) 2012; 43
Keim, Mansmann, Schneidewind, Thomas, Ziegler (bib00011) 2008
Thomas (bib0008) 2005
Wuest, Klein, Thoben (bib0004) 2011; 10
Wuest, T., Irgens, C., Thoben, K.-D., 2013. Analysis of Manufacturing Process Sequences, Using Machine Learning on Intermediate Product States (as Process Proxy Data), in: Advances in Production Management Systems. Competitive Manufacturing for Innovative Products and Services. IFIP WG 5. 7 International Conference, APMS 2012, Rhodes, Greece, September 24-26, 2012, Revised Selected Papers, Part II, Berlin, Heidelberg. 2013. Springer Berlin Heidelberg, Berlin/Heidelberg, pp. 1–8.
Kohlhammer, Keim, Pohl, Santucci, Andrienko (bib0009) 2011; 7
Cook, Earnshaw, Stasko (bib00010) 2007; 27
Kang, Lee, Choi, Kim, Park, Son, Kim, Noh (bib0002) 2016; 3
Kotu, Deshpande (bib00014) 2014
Huang (bib00012) 2010; 33
Wuest, Irgens, Thoben (bib0005) 2014; 25
Wuest (10.1016/j.procir.2020.03.065_bib0004) 2011; 10
Kohlhammer (10.1016/j.procir.2020.03.065_bib0009) 2011; 7
Kang (10.1016/j.procir.2020.03.065_bib0002) 2016; 3
10.1016/j.procir.2020.03.065_bib0006
Cook (10.1016/j.procir.2020.03.065_bib00010) 2007; 27
10.1016/j.procir.2020.03.065_bib00013
Rousseeuw (10.1016/j.procir.2020.03.065_bib00016) 1987; 20
Kotu (10.1016/j.procir.2020.03.065_bib00014) 2014
Thiede (10.1016/j.procir.2020.03.065_bib0003) 2018; 69
Cleve (10.1016/j.procir.2020.03.065_bib00015) 2016
Wuest (10.1016/j.procir.2020.03.065_bib0005) 2014; 25
Gebauer (10.1016/j.procir.2020.03.065_bib0001) 2011; 64
Wuest (10.1016/j.procir.2020.03.065_bib0007) 2012; 43
Thomas (10.1016/j.procir.2020.03.065_bib0008) 2005
Huang (10.1016/j.procir.2020.03.065_bib00012) 2010; 33
Keim (10.1016/j.procir.2020.03.065_bib00011) 2008
References_xml – volume: 10
  start-page: 2220
  year: 2011
  end-page: 2225
  ident: bib0004
  article-title: State of steel products in industrial production processes
  publication-title: Procedia Engineering
– start-page: 446
  year: 2014
  ident: bib00014
  publication-title: Predictive Analytics and Data Mining
– start-page: 328
  year: 2016
  ident: bib00015
  publication-title: Data Mining
– volume: 43
  start-page: 186
  year: 2012
  end-page: 191
  ident: bib0007
  article-title: Method to describe interdependencies of state characteristics related to distortion
  publication-title: Mat.-wiss. u. Werkstofftech.
– volume: 69
  start-page: 644
  year: 2018
  end-page: 649
  ident: bib0003
  article-title: Environmental Sustainability of Cyber Physical Production Systems
  publication-title: Procedia CIRP
– start-page: 186
  year: 2005
  ident: bib0008
  publication-title: Illuminating the path: The research and development agenda for visual analytics
– volume: 7
  start-page: 117
  year: 2011
  end-page: 120
  ident: bib0009
  article-title: Solving Problems with Visual Analytics
  publication-title: Procedia Computer Science
– volume: 33
  start-page: 265
  year: 2010
  end-page: 274
  ident: bib00012
  article-title: Reducing Solder Paste Inspection in Surface-Mount Assembly Through Mahalanobis–Taguchi Analysis
  publication-title: IEEE Trans. Electron. Packag. Manufact.
– volume: 25
  start-page: 1167
  year: 2014
  end-page: 1180
  ident: bib0005
  article-title: An approach to monitoring quality in manufacturing using supervised machine learning on product state data
  publication-title: J Intell Manuf
– reference: Wuest, T., Irgens, C., Thoben, K.-D., 2013. Analysis of Manufacturing Process Sequences, Using Machine Learning on Intermediate Product States (as Process Proxy Data), in: Advances in Production Management Systems. Competitive Manufacturing for Innovative Products and Services. IFIP WG 5. 7 International Conference, APMS 2012, Rhodes, Greece, September 24-26, 2012, Revised Selected Papers, Part II, Berlin, Heidelberg. 2013. Springer Berlin Heidelberg, Berlin/Heidelberg, pp. 1–8.
– volume: 3
  start-page: 111
  year: 2016
  end-page: 128
  ident: bib0002
  article-title: Smart manufacturing: Past research
  publication-title: Present findings, and future directions. Int. J. of Precis. Eng. and Manuf.-Green Tech.
– volume: 27
  start-page: 15
  year: 2007
  end-page: 19
  ident: bib00010
  article-title: Discovering the unexpected
  publication-title: IEEE computer graphics and applications
– start-page: 76
  year: 2008
  end-page: 90
  ident: bib00011
  article-title: Visual Analytics: Scope and Challenges
  publication-title: Visual data mining. Theory, techniques and tools for visual analytics, vol. 4404
– volume: 64
  start-page: 1270
  year: 2011
  end-page: 1280
  ident: bib0001
  article-title: Competitive advantage through service differentiation by manufacturing companies
  publication-title: Journal of Business Research
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: bib00016
  article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
  publication-title: Journal of Computational and Applied Mathematics
– reference: Wu, H., Zhang, X., Kuang, Y., Lu, S., 2008. A real-time machine vision system for solder paste inspection, in: The 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. AIM 2008: July 2-5, 2008, Xi’an, China. 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Xian, China. 7/2/2008 - 7/5/2008. IEEE Xplore, [Piscataway, N.J.], pp. 205–210.
– volume: 7
  start-page: 117
  year: 2011
  ident: 10.1016/j.procir.2020.03.065_bib0009
  article-title: Solving Problems with Visual Analytics
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2011.12.035
– volume: 3
  start-page: 111
  issue: 1
  year: 2016
  ident: 10.1016/j.procir.2020.03.065_bib0002
  article-title: Smart manufacturing: Past research
  publication-title: Present findings, and future directions. Int. J. of Precis. Eng. and Manuf.-Green Tech.
– volume: 64
  start-page: 1270
  issue: 12
  year: 2011
  ident: 10.1016/j.procir.2020.03.065_bib0001
  article-title: Competitive advantage through service differentiation by manufacturing companies
  publication-title: Journal of Business Research
  doi: 10.1016/j.jbusres.2011.01.015
– start-page: 446
  year: 2014
  ident: 10.1016/j.procir.2020.03.065_bib00014
– volume: 69
  start-page: 644
  year: 2018
  ident: 10.1016/j.procir.2020.03.065_bib0003
  article-title: Environmental Sustainability of Cyber Physical Production Systems
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2017.11.124
– start-page: 328
  year: 2016
  ident: 10.1016/j.procir.2020.03.065_bib00015
– start-page: 186
  year: 2005
  ident: 10.1016/j.procir.2020.03.065_bib0008
– volume: 25
  start-page: 1167
  issue: 5
  year: 2014
  ident: 10.1016/j.procir.2020.03.065_bib0005
  article-title: An approach to monitoring quality in manufacturing using supervised machine learning on product state data
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-013-0761-y
– volume: 43
  start-page: 186
  issue: 1-2
  year: 2012
  ident: 10.1016/j.procir.2020.03.065_bib0007
  article-title: Method to describe interdependencies of state characteristics related to distortion
  publication-title: Mat.-wiss. u. Werkstofftech.
  doi: 10.1002/mawe.201100908
– ident: 10.1016/j.procir.2020.03.065_bib0006
  doi: 10.1007/978-3-642-40361-3_1
– volume: 27
  start-page: 15
  issue: 5
  year: 2007
  ident: 10.1016/j.procir.2020.03.065_bib00010
  article-title: Discovering the unexpected
  publication-title: IEEE computer graphics and applications
  doi: 10.1109/MCG.2007.126
– start-page: 76
  year: 2008
  ident: 10.1016/j.procir.2020.03.065_bib00011
  article-title: Visual Analytics: Scope and Challenges
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.procir.2020.03.065_bib00016
  article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/0377-0427(87)90125-7
– volume: 10
  start-page: 2220
  year: 2011
  ident: 10.1016/j.procir.2020.03.065_bib0004
  article-title: State of steel products in industrial production processes
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2011.04.367
– volume: 33
  start-page: 265
  issue: 4
  year: 2010
  ident: 10.1016/j.procir.2020.03.065_bib00012
  article-title: Reducing Solder Paste Inspection in Surface-Mount Assembly Through Mahalanobis–Taguchi Analysis
  publication-title: IEEE Trans. Electron. Packag. Manufact.
  doi: 10.1109/TEPM.2010.2055873
– ident: 10.1016/j.procir.2020.03.065_bib00013
  doi: 10.1109/AIM.2008.4601660
SSID ssj0000740312
Score 2.1854625
Snippet The importance of quality and efficiency has increased in recent years. Moreover, the rise of computational power and the development of advanced analytics has...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 449
SubjectTerms Intermediate Product States
Machine Learning
Manufacturing Systems
Product Propagation
Product State Classes
Visual Analytics
Title Data-driven Analysis of Product State Propagation in Manufacturing Systems Using Visual Analytics and Machine Learning
URI https://dx.doi.org/10.1016/j.procir.2020.03.065
Volume 93
WOSCitedRecordID wos001491480300075&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2212-8271
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000740312
  issn: 2212-8271
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FwgEOFU_RFtAeuFVG9trO7h5RoSoSrSooqDdrX0auLLdK3ajqoX-sf47Zl-OQqtADl1W8itdJ5svMeDzftwi9J3IKWbSok6J0Q8HgP1eTxJSSTWtBTEEdUfgrPThgx8f8cDK5iVyYeUu7jl1e8rP_amqYA2Nb6uw9zD0sChPwGowOI5gdxn8y_CfRi0TPrBdbkhw59NquPr20R-BKRGx13BfdheU4eNJikDHf9v0EP5tzyzFxaw2izvuuCdNEfdZf4yTXkQ8Ad9s7X74N9LHdpr0K5CCV2DZK_4h-6P8xbQsu2RV5vhuIrf0It3tmZrkN3ZIawqKlBbJos3peKGWQdOHrCETQhBG_G8sHc8tccNY8H3nbwqudhsBdeDXqlZjgyxMnNiKpxkrAktTp2vo9KpYluP8IjUPDYuyFO6n8KpVdpUrzClZ5gB4SCvdltm_0elHgg9wMHKZ9ijV8kUjddP2Fqx_n9tRolO4cPUXr4T4Ff_T4eoYmpnuOnozUK1-g-QhpOCINn9Y4IA07pOER0nDT4SWk4YA07JCGPdLwgDQMSMMBaTgi7SX6sfv5aGcvCdt4JAqy-z7hLFWU6FSYkuaaKJnqrC41ZTxjjCteG1qWhkgYpU41KbiR00zXmZgyZVKRv0Jr3WlnXiNsuGREZHVGCC-UtpUdqhThUlIjMlpvoDz-gpUKGvd2q5W2usuAGygZzjrzGi9_eT-NxqlCnurzzwogd-eZm_e80hZ6bI98ye8NWutnF-YteqTmfXM-e-fw9huMnro7
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+Analysis+of+Product+State+Propagation+in+Manufacturing+Systems+Using+Visual+Analytics+and+Machine+Learning&rft.jtitle=Procedia+CIRP&rft.au=Filz%2C+Marc-Andr%C3%A9&rft.au=Gellrich%2C+Sebastian&rft.au=Herrmann%2C+Christoph&rft.au=Thiede%2C+Sebastian&rft.date=2020&rft.issn=2212-8271&rft.eissn=2212-8271&rft.volume=93&rft.spage=449&rft.epage=454&rft_id=info:doi/10.1016%2Fj.procir.2020.03.065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procir_2020_03_065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8271&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8271&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8271&client=summon