Enhanced Model for Gestational Diabetes Mellitus Prediction Using a Fusion Technique of Multiple Algorithms with Explainability
High glucose levels during pregnancy cause Gestational Diabetes Mellitus (GDM). The risks include cesarean deliveries, long-term type 2 diabetes, fetal macrosomia, and infant respiratory distress syndrome. These risks highlight the need for accurate GDM prediction. This research proposes a novel fus...
Gespeichert in:
| Veröffentlicht in: | International journal of computational intelligence systems Jg. 18; H. 1; S. 1 - 33 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
04.03.2025
Springer |
| Schlagworte: | |
| ISSN: | 1875-6883, 1875-6883 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | High glucose levels during pregnancy cause Gestational Diabetes Mellitus (GDM). The risks include cesarean deliveries, long-term type 2 diabetes, fetal macrosomia, and infant respiratory distress syndrome. These risks highlight the need for accurate GDM prediction. This research proposes a novel fusion model for early GDM prediction. It uses conventional Machine Learning (ML) and advanced Deep Learning (DL) algorithms. Subsequently, it combines the strengths of both ML and DL algorithms using various ensemble techniques. It incorporates a meta-classifier that further reinforces its robust prediction performance. The dataset is split into training and testing sets in a 70/30 ratio. The initial steps involve exploratory analysis and data preprocessing techniques such as iterative imputation and feature engineering. Subsequently, oversampling is applied to the training set to address class imbalance which ensures the model learns effectively. The testing set remains imbalanced to maintain the credibility of the model’s performance evaluation. The fusion model achieves an accuracy of 98.21%, precision of 97.72%, specificity of 98.64%, recall of 97.47%, F1 score of 97.59%, and an Accuracy Under the Curve (AUC) of 99.91%. The model exhibits efficiency with an average processing time of 0.06 s to predict GDM. These results outperform the previous studies using the same GDM prediction dataset and demonstrate the model's superior performance. Additionally, Explainable Artificial Intelligence (XAI) techniques are utilized to interpret the model’s decisions. They highlight the most influential features in GDM prediction and ensures transparency. The proposed fusion model can facilitate proactive GDM prediction to elevate GDM management and maternal–fetal health outcomes. |
|---|---|
| AbstractList | High glucose levels during pregnancy cause Gestational Diabetes Mellitus (GDM). The risks include cesarean deliveries, long-term type 2 diabetes, fetal macrosomia, and infant respiratory distress syndrome. These risks highlight the need for accurate GDM prediction. This research proposes a novel fusion model for early GDM prediction. It uses conventional Machine Learning (ML) and advanced Deep Learning (DL) algorithms. Subsequently, it combines the strengths of both ML and DL algorithms using various ensemble techniques. It incorporates a meta-classifier that further reinforces its robust prediction performance. The dataset is split into training and testing sets in a 70/30 ratio. The initial steps involve exploratory analysis and data preprocessing techniques such as iterative imputation and feature engineering. Subsequently, oversampling is applied to the training set to address class imbalance which ensures the model learns effectively. The testing set remains imbalanced to maintain the credibility of the model’s performance evaluation. The fusion model achieves an accuracy of 98.21%, precision of 97.72%, specificity of 98.64%, recall of 97.47%, F1 score of 97.59%, and an Accuracy Under the Curve (AUC) of 99.91%. The model exhibits efficiency with an average processing time of 0.06 s to predict GDM. These results outperform the previous studies using the same GDM prediction dataset and demonstrate the model's superior performance. Additionally, Explainable Artificial Intelligence (XAI) techniques are utilized to interpret the model’s decisions. They highlight the most influential features in GDM prediction and ensures transparency. The proposed fusion model can facilitate proactive GDM prediction to elevate GDM management and maternal–fetal health outcomes. Abstract High glucose levels during pregnancy cause Gestational Diabetes Mellitus (GDM). The risks include cesarean deliveries, long-term type 2 diabetes, fetal macrosomia, and infant respiratory distress syndrome. These risks highlight the need for accurate GDM prediction. This research proposes a novel fusion model for early GDM prediction. It uses conventional Machine Learning (ML) and advanced Deep Learning (DL) algorithms. Subsequently, it combines the strengths of both ML and DL algorithms using various ensemble techniques. It incorporates a meta-classifier that further reinforces its robust prediction performance. The dataset is split into training and testing sets in a 70/30 ratio. The initial steps involve exploratory analysis and data preprocessing techniques such as iterative imputation and feature engineering. Subsequently, oversampling is applied to the training set to address class imbalance which ensures the model learns effectively. The testing set remains imbalanced to maintain the credibility of the model’s performance evaluation. The fusion model achieves an accuracy of 98.21%, precision of 97.72%, specificity of 98.64%, recall of 97.47%, F1 score of 97.59%, and an Accuracy Under the Curve (AUC) of 99.91%. The model exhibits efficiency with an average processing time of 0.06 s to predict GDM. These results outperform the previous studies using the same GDM prediction dataset and demonstrate the model's superior performance. Additionally, Explainable Artificial Intelligence (XAI) techniques are utilized to interpret the model’s decisions. They highlight the most influential features in GDM prediction and ensures transparency. The proposed fusion model can facilitate proactive GDM prediction to elevate GDM management and maternal–fetal health outcomes. |
| ArticleNumber | 47 |
| Author | Ayyub, Kashif Ramzan, Naeem Hassan, Ahmad Iqbal, Tassawar Munir, Ehsan Ullah Ahmad, Saima Gulzar |
| Author_xml | – sequence: 1 givenname: Ahmad orcidid: 0000-0001-6515-712X surname: Hassan fullname: Hassan, Ahmad organization: Department of Computer Science, COMSATS University Islamabad – sequence: 2 givenname: Saima Gulzar orcidid: 0000-0002-8820-0570 surname: Ahmad fullname: Ahmad, Saima Gulzar organization: Department of Computer Science, COMSATS University Islamabad – sequence: 3 givenname: Tassawar orcidid: 0000-0002-4615-4887 surname: Iqbal fullname: Iqbal, Tassawar organization: Department of Computer Science, COMSATS University Islamabad – sequence: 4 givenname: Ehsan Ullah orcidid: 0000-0001-7838-0291 surname: Munir fullname: Munir, Ehsan Ullah organization: Department of Computer Science, COMSATS University Islamabad – sequence: 5 givenname: Kashif orcidid: 0000-0001-6896-9318 surname: Ayyub fullname: Ayyub, Kashif organization: Department of Computer Science, COMSATS University Islamabad – sequence: 6 givenname: Naeem orcidid: 0000-0002-5088-1462 surname: Ramzan fullname: Ramzan, Naeem email: naeem.ramzan@uws.ac.uk organization: School of Computing, Engineering and Physical Sciences, University of the West of Scotland |
| BookMark | eNp9kc1u3CAUhVGUSk3TvEBXvIBbwGDwMkonP1JG7SJZo2t8mWFEzARstVnl1cNkqqqrru7v-RbnfCKnU5qQkC-cfeWM6W9FSt53DROqqWPHGnlCzrjRqumMaU__6T-Si1J2jDHBJWNSnpHX1bSFyeFI12nESH3K9AbLDHNIE0T6PcCAMxa6xhjDvBT6M-MY3OFMH0uYNhTo9VIO4wO67RSeF6TJ0_US57CPSC_jJuUwb58K_VULXf3eRwgTDKHyXj6TDx5iwYs_9Zw8Xq8erm6b-x83d1eX941rlZibXnbIht70HRuROQZmYMPAjddCe9cieBidVIM23PVdL1rejgyUMkqBwbZrz8ndkTsm2Nl9Dk-QX2yCYN8XKW8s5Dm4iJYDctW3I4BAqQcBToOoDhrvlXZOV5Y4slxOpWT0f3mc2UMi9piIrYnY90SsrKL2KCr1edpgtru05Gpx-Z_qDbDUkmU |
| Cites_doi | 10.1109/FIT57066.2022.00029 10.1109/ICCIT60459.2023.10441112 10.7860/JCDR/2016/17588.7689 10.3390/diagnostics13172754 10.15167/2421-4248/jpmh2021.62.4.1788 10.31661/gmj.v9i0.1642 10.1002/eng2.12864 10.2196/26634 10.1001/jamanetworkopen.2020.2605 10.1007/s00521-022-06958-3 10.1038/s41598-024-61665-4 10.1007/s11042-024-18631-z 10.3390/s22197661 10.3390/jcm9113451 10.32604/cmc.2021.017612 10.52661/j_ict.v5i2.218 10.3390/jcm11174953 10.1016/j.eclinm.2022.101294 10.1007/s40618-023-02249-3 10.1186/s12884-020-2759-8 10.1002/hsr2.2004 10.1186/s12884-024-06519-7 10.1007/s41019-024-00257-8 10.3389/fcdhc.2020.546256 10.7717/peerj-cs.619 10.3390/ijerph17249270 10.21203/rs.3.rs-2559790/v1 10.1136/bmj-2021-067946 10.1111/aogs.14861 10.1289/EHP9752 10.1016/j.aei.2023.102024 10.1038/s41598-024-56790-z 10.3390/ijms21145003 10.1007/s41019-018-0073-5 10.3390/ijms19113342 10.1007/s00404-023-07131-4 10.1186/s12884-024-06290-9 10.1097/MD.0000000000034619 10.1111/aogs.13811 10.1016/j.jag.2022.102932 10.3389/fgwh.2023.1006041 10.1016/j.tcm.2019.05.003 10.1111/aogs.14659 10.1007/s41019-023-00217-8 10.34740/kaggle/dsv/3245285 10.1186/s13643-023-02343-w 10.20535/2523-4455.mea.228845 10.53070/bbd.1350356 10.1186/s12877-022-02937-4 10.1177/20552076231207589 10.32604/csse.2022.017484 10.1186/s12884-022-05219-4 10.1093/ije/dyaa243 10.3389/fendo.2022.840331 10.1210/clinem/dgaa899 10.1186/s40814-022-01021-3 10.1155/2022/9749579 10.1007/s41019-018-0064-6 10.1186/s12884-023-05829-6 10.1038/s43856-023-00427-1 10.1007/s41019-021-00165-1 10.4069/kjwhn.2020.10.28 10.4084/MJHID.2021.051 10.1007/s41019-021-00167-z 10.1016/j.biopha.2021.112183 10.5152/tjg.2023.211042 10.18260/1-2-020-36266 10.3892/etm.2022.11646 10.1038/s41598-023-39680-8 10.3390/genes15040482 10.1007/s42835-022-01161-9 10.5888/pcd9.110249 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 |
| Copyright_xml | – notice: The Author(s) 2025 |
| DBID | C6C AAYXX CITATION DOA |
| DOI | 10.1007/s44196-025-00760-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1875-6883 |
| EndPage | 33 |
| ExternalDocumentID | oai_doaj_org_article_1ae1593daa2e47b2ac7a28758ff57cc7 10_1007_s44196_025_00760_4 |
| GrantInformation_xml | – fundername: Erasmus+ grantid: ERASMUS+ CBHE-619483 EPP-1-2020-1-UK-EPPKA2-CBHE; ERASMUS+ CBHE-619483 EPP-1-2020-1-UK-EPPKA2-CBHE; ERASMUS+ CBHE-619483 EPP-1-2020-1-UK-EPPKA2-CBHE; ERASMUS+ CBHE-619483 EPP-1-2020-1-UK-EPPKA2-CBHE; ERASMUS+ CBHE-619483 EPP-1-2020-1-UK-EPPKA2-CBHE; ERASMUS+ CBHE-619483 EPP-1-2020-1-UK-EPPKA2-CBHE funderid: http://dx.doi.org/10.13039/501100010790 |
| GroupedDBID | 0R~ 4.4 5GY AAFWJ AAJSJ AAKKN ABEEZ ABFIM ACACY ACGFS ACULB ADBBV ADCVX AENEX AFGXO AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS AVBZW BCNDV C24 C6C CS3 DU5 EBLON EBS EJD GROUPED_DOAJ GTTXZ HZ~ J~4 O9- OK1 SOJ TFW TR2 AASML AAYXX AFFHD AFKRA ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c352t-946e0b98960de0c0a8b0bb18f727fc3eafadc45b781c9692313d0a55855a8e363 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001439700300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1875-6883 |
| IngestDate | Fri Oct 03 12:53:25 EDT 2025 Sat Nov 29 08:12:33 EST 2025 Wed Mar 05 01:43:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Diabetes mellitus Gestational diabetes prediction Machine learning Explainable artificial intelligence Predictive modelling Healthcare analytics High glucose |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-946e0b98960de0c0a8b0bb18f727fc3eafadc45b781c9692313d0a55855a8e363 |
| ORCID | 0000-0002-4615-4887 0000-0001-6515-712X 0000-0001-6896-9318 0000-0002-8820-0570 0000-0002-5088-1462 0000-0001-7838-0291 |
| OpenAccessLink | https://link.springer.com/10.1007/s44196-025-00760-4 |
| PageCount | 33 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1ae1593daa2e47b2ac7a28758ff57cc7 crossref_primary_10_1007_s44196_025_00760_4 springer_journals_10_1007_s44196_025_00760_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-04 |
| PublicationDateYYYYMMDD | 2025-03-04 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | International journal of computational intelligence systems |
| PublicationTitleAbbrev | Int J Comput Intell Syst |
| PublicationYear | 2025 |
| Publisher | Springer Netherlands Springer |
| Publisher_xml | – name: Springer Netherlands – name: Springer |
| References | SY Kim (760_CR20) 2012 H-N Huang (760_CR53) 2023 R Sarki (760_CR70) 2021; 6 MdJ Hossain (760_CR8) 2024 PT Yeh (760_CR21) 2023 SJ Park (760_CR29) 2020; 26 R Jader (760_CR31) 2022 H-P Kek (760_CR11) 2023 Y-T Wu (760_CR30) 2021; 106 JM Flack (760_CR58) 2020; 30 760_CR62 R Mahajan (760_CR71) 2021; 6 E Bakiris (760_CR48) 2024 J Lee (760_CR72) 2018; 3 F Aziz (760_CR45) 2024; 14 S Aghayeva (760_CR57) 2023; 34 W Yu (760_CR67) 2022; 130 Z Zhang (760_CR19) 2022 JF Plows (760_CR6) 2018 OF Quotah (760_CR47) 2022 W Ye (760_CR17) 2022 A Hassan (760_CR52) 2023; 8 MM Agarwal (760_CR10) 2020 LJE Meertens (760_CR23) 2020; 99 LP Corona (760_CR60) 2022 Y Wei (760_CR32) 2022 A Tomar (760_CR55) 2019; 2 A Hassan (760_CR64) 2024 PED Love (760_CR73) 2023; 57 Y Cao (760_CR16) 2023 J Yao (760_CR68) 2022; 112 E Oktavia (760_CR42) 2023; 5 KM Fouad (760_CR49) 2021 A Sumathi (760_CR39) 2021; 69 A Sumathi (760_CR44) 2022 760_CR50 SE Awan (760_CR51) 2022; 34 Y-G Lee (760_CR74) 2023; 18 AA Muche (760_CR14) 2020 A Sumathi (760_CR40) 2022; 40 S Chatterjee (760_CR65) 2022; 22 B Basil (760_CR35) 2024 MM Mulwa (760_CR75) 2024 BS Kang (760_CR33) 2023 G Ben Abdennour (760_CR61) 2024 JE Chavarro (760_CR12) 2020 K Akyol (760_CR66) 2024 Z-R Niu (760_CR27) 2024; 47 Y Li (760_CR25) 2024; 309 Y Lin (760_CR34) 2023 760_CR43 M Etminan-Bakhsh (760_CR9) 2020 M Arnoriaga-Rodríguez (760_CR36) 2024 E Sheiner (760_CR4) 2020 M Darbandi (760_CR18) 2021; 62 L-J Li (760_CR7) 2022 E Hanson (760_CR46) 2022 760_CR37 MR Basarab (760_CR38) 2021 EU Alejandro (760_CR5) 2020 Z Yuan (760_CR63) 2023; 8 D Bogdanet (760_CR24) 2020 VD Sanctis (760_CR59) 2021 AA Choudhury (760_CR1) 2021 M Alotaibi (760_CR41) 2023; 101 I Dongo (760_CR69) 2018; 3 PR Rani (760_CR3) 2016; 10 Z Semnani-Azad (760_CR26) 2024; 4 M Adnan (760_CR28) 2024 GM Maher (760_CR54) 2023; 102 S-W Yi (760_CR56) 2021; 50 BS Fiskå (760_CR13) 2023 M Shamshuzzoha (760_CR22) 2023 J Fu (760_CR2) 2022 EG Bernea (760_CR15) 2022; 24 |
| References_xml | – ident: 760_CR62 doi: 10.1109/FIT57066.2022.00029 – ident: 760_CR43 doi: 10.1109/ICCIT60459.2023.10441112 – volume: 10 start-page: 01 year: 2016 ident: 760_CR3 publication-title: J. Clin. Diagn. Res. doi: 10.7860/JCDR/2016/17588.7689 – year: 2023 ident: 760_CR22 publication-title: Diagnostics. doi: 10.3390/diagnostics13172754 – volume: 62 start-page: E885 year: 2021 ident: 760_CR18 publication-title: J. Prevent. Med. Hygiene. doi: 10.15167/2421-4248/jpmh2021.62.4.1788 – year: 2020 ident: 760_CR9 publication-title: Galen Med. J. doi: 10.31661/gmj.v9i0.1642 – year: 2024 ident: 760_CR75 publication-title: Eng. Reports. doi: 10.1002/eng2.12864 – year: 2022 ident: 760_CR19 publication-title: J. Med. Internet Res. doi: 10.2196/26634 – volume: 2 start-page: 106 year: 2019 ident: 760_CR55 publication-title: Pan Asian J. Obst. Gynecol. – year: 2020 ident: 760_CR12 publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2020.2605 – volume: 34 start-page: 9701 year: 2022 ident: 760_CR51 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-06958-3 – year: 2024 ident: 760_CR64 publication-title: Sci. Reports. doi: 10.1038/s41598-024-61665-4 – year: 2024 ident: 760_CR66 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-024-18631-z – volume: 22 start-page: 7661 year: 2022 ident: 760_CR65 publication-title: Sensors. doi: 10.3390/s22197661 – year: 2020 ident: 760_CR24 publication-title: J. Clin. Med. doi: 10.3390/jcm9113451 – volume: 69 start-page: 3109 year: 2021 ident: 760_CR39 publication-title: Comput. Mater. Continua. doi: 10.32604/cmc.2021.017612 – volume: 5 start-page: 117 year: 2023 ident: 760_CR42 publication-title: J. Inform. Commun. Technol. doi: 10.52661/j_ict.v5i2.218 – year: 2022 ident: 760_CR46 publication-title: J. Clin. Med. doi: 10.3390/jcm11174953 – year: 2022 ident: 760_CR2 publication-title: eClinicalMedicine. doi: 10.1016/j.eclinm.2022.101294 – volume: 47 start-page: 1281 year: 2024 ident: 760_CR27 publication-title: J. Endocrinol. Invest. doi: 10.1007/s40618-023-02249-3 – year: 2020 ident: 760_CR14 publication-title: BMC Pregnancy Childbirth doi: 10.1186/s12884-020-2759-8 – year: 2024 ident: 760_CR8 publication-title: Health Sci. Reports. doi: 10.1002/hsr2.2004 – year: 2024 ident: 760_CR35 publication-title: BMC Pregnancy Childbirth doi: 10.1186/s12884-024-06519-7 – year: 2024 ident: 760_CR61 publication-title: Data Sci. Eng. doi: 10.1007/s41019-024-00257-8 – year: 2020 ident: 760_CR4 publication-title: Front. Clin. Diabet. Healthcare. doi: 10.3389/fcdhc.2020.546256 – year: 2021 ident: 760_CR49 publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.619 – year: 2020 ident: 760_CR10 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph17249270 – year: 2023 ident: 760_CR34 publication-title: Res. Square. doi: 10.21203/rs.3.rs-2559790/v1 – year: 2022 ident: 760_CR17 publication-title: BMJ doi: 10.1136/bmj-2021-067946 – year: 2024 ident: 760_CR48 publication-title: Acta Obstet. Gynecol. Scand. doi: 10.1111/aogs.14861 – volume: 130 year: 2022 ident: 760_CR67 publication-title: Environ. Health Perspect. doi: 10.1289/EHP9752 – volume: 57 year: 2023 ident: 760_CR73 publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2023.102024 – volume: 14 start-page: 6182 year: 2024 ident: 760_CR45 publication-title: Sci. Rep. doi: 10.1038/s41598-024-56790-z – year: 2020 ident: 760_CR5 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21145003 – volume: 3 start-page: 277 year: 2018 ident: 760_CR72 publication-title: Data Sci. Eng. doi: 10.1007/s41019-018-0073-5 – year: 2018 ident: 760_CR6 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19113342 – volume: 309 start-page: 2557 year: 2024 ident: 760_CR25 publication-title: Arch. Gynecol. Obstet. doi: 10.1007/s00404-023-07131-4 – year: 2024 ident: 760_CR28 publication-title: BMC Pregnancy Childbirth doi: 10.1186/s12884-024-06290-9 – year: 2023 ident: 760_CR16 publication-title: Medicine doi: 10.1097/MD.0000000000034619 – volume: 99 start-page: 891 year: 2020 ident: 760_CR23 publication-title: Acta Obstet. Gynecol. Scand. doi: 10.1111/aogs.13811 – volume: 112 year: 2022 ident: 760_CR68 publication-title: Int. J. Appl. Earth Observ. Geoinf. doi: 10.1016/j.jag.2022.102932 – year: 2023 ident: 760_CR21 publication-title: Front. Global Women’s Health. doi: 10.3389/fgwh.2023.1006041 – volume: 30 start-page: 160 year: 2020 ident: 760_CR58 publication-title: Trends Cardiovasc. Med. doi: 10.1016/j.tcm.2019.05.003 – volume: 102 start-page: 1459 year: 2023 ident: 760_CR54 publication-title: Acta Obstet. Gynecol. Scand. doi: 10.1111/aogs.14659 – volume: 8 start-page: 344 year: 2023 ident: 760_CR63 publication-title: Data Sci. Eng. doi: 10.1007/s41019-023-00217-8 – year: 2022 ident: 760_CR44 publication-title: Kaggle. doi: 10.34740/kaggle/dsv/3245285 – year: 2023 ident: 760_CR13 publication-title: Syst. Rev. doi: 10.1186/s13643-023-02343-w – year: 2021 ident: 760_CR38 publication-title: Microsyst. Electron. Acoustics. doi: 10.20535/2523-4455.mea.228845 – volume: 8 start-page: 66 year: 2023 ident: 760_CR52 publication-title: Comput. Sci. doi: 10.53070/bbd.1350356 – year: 2022 ident: 760_CR60 publication-title: BMC Geriatr. doi: 10.1186/s12877-022-02937-4 – year: 2023 ident: 760_CR53 publication-title: Digit. Health. doi: 10.1177/20552076231207589 – volume: 40 start-page: 313 year: 2022 ident: 760_CR40 publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2022.017484 – year: 2022 ident: 760_CR32 publication-title: BMC Pregnancy Childbirth doi: 10.1186/s12884-022-05219-4 – volume: 50 start-page: 902 year: 2021 ident: 760_CR56 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyaa243 – year: 2022 ident: 760_CR7 publication-title: Front. Endocrinol. doi: 10.3389/fendo.2022.840331 – volume: 106 start-page: e1191 year: 2021 ident: 760_CR30 publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/clinem/dgaa899 – year: 2022 ident: 760_CR47 publication-title: Pilot Feasibil. Stud. doi: 10.1186/s40814-022-01021-3 – year: 2022 ident: 760_CR31 publication-title: Appl. Comput. Intell. Soft Comput. doi: 10.1155/2022/9749579 – ident: 760_CR50 – volume: 3 start-page: 115 year: 2018 ident: 760_CR69 publication-title: Data Sci. Eng. doi: 10.1007/s41019-018-0064-6 – year: 2023 ident: 760_CR11 publication-title: BMC Pregnancy Childbirth doi: 10.1186/s12884-023-05829-6 – volume: 4 start-page: 1 year: 2024 ident: 760_CR26 publication-title: Commun. Med. doi: 10.1038/s43856-023-00427-1 – volume: 6 start-page: 402 year: 2021 ident: 760_CR71 publication-title: Data Sci. Eng. doi: 10.1007/s41019-021-00165-1 – volume: 26 start-page: 274 year: 2020 ident: 760_CR29 publication-title: Korean J. Women Health Nurs. doi: 10.4069/kjwhn.2020.10.28 – year: 2021 ident: 760_CR59 publication-title: Mediterranean J. Hematol. Infect. Dis. doi: 10.4084/MJHID.2021.051 – volume: 6 start-page: 455 year: 2021 ident: 760_CR70 publication-title: Data Sci. Eng. doi: 10.1007/s41019-021-00167-z – year: 2021 ident: 760_CR1 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2021.112183 – volume: 34 start-page: 1134 year: 2023 ident: 760_CR57 publication-title: Turkish J. Gastroenterol. doi: 10.5152/tjg.2023.211042 – ident: 760_CR37 doi: 10.18260/1-2-020-36266 – volume: 24 start-page: 1 year: 2022 ident: 760_CR15 publication-title: Exp. Ther. Med. doi: 10.3892/etm.2022.11646 – volume: 101 start-page: 6810 year: 2023 ident: 760_CR41 publication-title: J. Theor. Appl. Inf. Technol. – year: 2023 ident: 760_CR33 publication-title: Sci. Reports. doi: 10.1038/s41598-023-39680-8 – year: 2024 ident: 760_CR36 publication-title: Genes doi: 10.3390/genes15040482 – volume: 18 start-page: 579 year: 2023 ident: 760_CR74 publication-title: J. Electric. Eng. Technol. doi: 10.1007/s42835-022-01161-9 – year: 2012 ident: 760_CR20 publication-title: Prevent. Chronic Dis. doi: 10.5888/pcd9.110249 |
| SSID | ssj0002140044 |
| Score | 2.363474 |
| Snippet | High glucose levels during pregnancy cause Gestational Diabetes Mellitus (GDM). The risks include cesarean deliveries, long-term type 2 diabetes, fetal... Abstract High glucose levels during pregnancy cause Gestational Diabetes Mellitus (GDM). The risks include cesarean deliveries, long-term type 2 diabetes,... |
| SourceID | doaj crossref springer |
| SourceType | Open Website Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial Intelligence Computational Intelligence Control Diabetes mellitus Engineering Gestational diabetes prediction Healthcare analytics High glucose Machine learning Mathematical Logic and Foundations Mechatronics Predictive modelling Research Article Robotics |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmDhjSgv3cAGEUlsx8lYUAsDrToUqVt0cWxaqbSoSZGY-OvYrlsVIcHCmocc3SP32Xf3HSFXBgEnGEfUIDfjbkyVMkDNMUioTkqKUcal0_ST6HbTwSDrrY36sjVhC3rgheBuI1Qm4tISMVZMFDFKgQbl81RrLqR0feShyNY2U_YfHEfWNpnvknG9cibuu3pbHrhsVMC-RSJH2P8jG-qCTHuP7Hh0CM3FV-2TDTU5ILvLyQvgHfGQfLYmQ5e6BzvLbAwGecKDqmp_sge-zqWCjuXbrOcV9GY2I2Nvg6sSAIT23J6UQX_J4gpTDR1fXwjN8ct0NqqHrxXYo1qwtXqu0crW0n4cked2q3__GPhRCoE0CKsOMpaosMhSs18pVShDTIuwKKJUG_iiJVWosZSMFyKNZJZY0EfLELnZS3BMFU3oMdmcTCfqhIARrDIoBUVk3ijjAhkvhdAWykikKTbI9VKs-duCMSNfcSM7JeRGCblTQs4a5M5KfvWkZbt2F4wN5N4G8r9soEFulnrLvQtWv6x5-h9rnpHt2BkTDUJ2Tjbr2VxdkC35Xo-q2aWzxi-IQuRA priority: 102 providerName: Directory of Open Access Journals |
| Title | Enhanced Model for Gestational Diabetes Mellitus Prediction Using a Fusion Technique of Multiple Algorithms with Explainability |
| URI | https://link.springer.com/article/10.1007/s44196-025-00760-4 https://doaj.org/article/1ae1593daa2e47b2ac7a28758ff57cc7 |
| Volume | 18 |
| WOSCitedRecordID | wos001439700300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140044 issn: 1875-6883 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140044 issn: 1875-6883 databaseCode: K7- dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140044 issn: 1875-6883 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1875-6883 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140044 issn: 1875-6883 databaseCode: C24 dateStart: 20211201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT90wDLY2tsM4jI0N8TaGfOC2RWqbpEmPDPE2aQNxYBK3yk0TQIL3UNuHxIm_ThLSJxBo0nbpoU3UKrabz_ZnB2DHI-CSipx75ObNTdjWMHKSWMld2XLKK2mipH-rw0N9clIdpaKwfmS7jynJ-KdeFrv5jTsSZiWL6SQmXsIrmWsVXK69VOMQ_r9FHvRSpAqZ56c-2oVis_4nmdC4wUzX_u_T3sHbBChx914D3sMLO1uHtfGwBky2uw6rDzoPfoDb_dlZzP1jOAztAj10xR-2H1JoEBNRpseD0LBzWPR41IWUTniMkWaAhNNFCLXh8dgGFucODxJBEXcvTufd-XB22WOI9WIg-8VKrUDGvfkIf6b7x3s_WTqLgRkP0QZWidJmTaW9w9PazGSkm6xpcu08_nGGW3LUGiEbpXNTlQE18jYj6Z0RSdrykm_Aymw-s5uAXjrWwxxSuZ_RFg0J2SrlAhYyxDVN4Osom_rqvuVGvWyuHFe69itdx5WuxQS-B_EtR4Z22fHGvDutk_XVOVkP23hLVFihmoKMIu8qSu2cVMaoCXwbBVsnG-7_8s5P_zb8M7wpom5wloktWBm6hf0Cr831cN5321F5t2MswF9_KXYHh8vtKw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB1Bi0Q5UCitWEphDtwgUhLbcXIsVZcidlc9bKXerIljt5Xa3SrJInHi17FdZ9UKhATXxFYiz4z9xjPzBuCDQ8AF5RlzyM2ZGzeNTsgKSgpmi4ZRVgkdJD2Rs1l5fl6dxqKwbsh2H0KSYadeF7u5gzskzIokhJMS_hg2udNI73IdxRoHv__mmddLHitk_jz1wSkUyPp_i4SGA2a8_X-_9gKeR0CJh3ca8BIemcUObA_NGjDa7g48u8c8-Ap-Hi8uQ-wffTO0a3TQFb-Yro9XgxgTZTqcesLOftXhaetDOv41hjQDJByv_FUbzgcaWFxanMYERTy8vli2V_3lTYf-rhd9sl-o1PLJuD924Wx8PD86SWIvhkQ7iNYnFS9MWlelc3gak-qUyjqt66y0Dv9YzQxZajQXtSwzXRUeNbImJeGcEUGlYQXbg43FcmFeAzrpGAdzSGZuRpPXxEUjpfVYSBMraQQfB9mo2zvKDbUmVw4rrdxKq7DSio_gsxffeqSnyw4Plu2FitanMjIOtrGGKDdc1jlpSc5VFKW1QmotR_BpEKyKNtz95Ztv_m34e3h6Mp9O1OTr7Ns-bOVBT1iS8rew0bcrcwBP9Pf-qmvfBUX-BYte7ks |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQQgOFNqiLp9z4EajJrEdJ8cCXUC0qz0UqTdr4thtpTZbJdlKnPjr2F5nVQRCQlwTW4k8M_az580zwFuHgAvKM-aQmws3bhqdkBWUFMwWDaOsEjpY-kjOZuXpaTW_VcUf2O5jSnJV0-BVmtph_7qx--vCN7eIB_KsSEJqKeF34R73SSWfro31Dn4uzjPvozxWy_y56y8rUhDu_y0rGhab6eb__-YTeByBJh6sPOMp3DHtFmyOlzhgjOkteHRLkXAbfhy254ETgP6StEt0kBY_mX6IR4YYCTQ9Hnshz2HZ47zzqR7_GgP9AAmnS38EhyejPCwuLB5H4iIeXJ4tuovh_KpHfwaMngQYKrg8Sff7DnybHp58-JzEOxoS7aDbkFS8MGldlW4j1JhUp1TWaV1npXW4yGpmyFKjuahlmemq8GiSNSkJt0kRVBpWsGew0S5aswvoLGUc_CGZuR5NXhMXjZTWYyRNrKQJvBvtpK5XUhxqLbocRlq5kVZhpBWfwHtvynVLL6MdHiy6MxWjUmVkHJxjDVFuuKxz0pLcFlKU1gqptZzA3mhkFWO7_8s3n_9b8zfwYP5xqo6-zL6-gId5cBOWpPwlbAzd0ryC-_pmuOi718GnfwIvLfcv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Model+for+Gestational+Diabetes+Mellitus+Prediction+Using+a+Fusion+Technique+of+Multiple+Algorithms+with+Explainability&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Hassan%2C+Ahmad&rft.au=Ahmad%2C+Saima+Gulzar&rft.au=Iqbal%2C+Tassawar&rft.au=Munir%2C+Ehsan+Ullah&rft.date=2025-03-04&rft.pub=Springer+Netherlands&rft.eissn=1875-6883&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1007%2Fs44196-025-00760-4&rft.externalDocID=10_1007_s44196_025_00760_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon |