Enhanced Model for Gestational Diabetes Mellitus Prediction Using a Fusion Technique of Multiple Algorithms with Explainability

High glucose levels during pregnancy cause Gestational Diabetes Mellitus (GDM). The risks include cesarean deliveries, long-term type 2 diabetes, fetal macrosomia, and infant respiratory distress syndrome. These risks highlight the need for accurate GDM prediction. This research proposes a novel fus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computational intelligence systems Jg. 18; H. 1; S. 1 - 33
Hauptverfasser: Hassan, Ahmad, Ahmad, Saima Gulzar, Iqbal, Tassawar, Munir, Ehsan Ullah, Ayyub, Kashif, Ramzan, Naeem
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 04.03.2025
Springer
Schlagworte:
ISSN:1875-6883, 1875-6883
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract High glucose levels during pregnancy cause Gestational Diabetes Mellitus (GDM). The risks include cesarean deliveries, long-term type 2 diabetes, fetal macrosomia, and infant respiratory distress syndrome. These risks highlight the need for accurate GDM prediction. This research proposes a novel fusion model for early GDM prediction. It uses conventional Machine Learning (ML) and advanced Deep Learning (DL) algorithms. Subsequently, it combines the strengths of both ML and DL algorithms using various ensemble techniques. It incorporates a meta-classifier that further reinforces its robust prediction performance. The dataset is split into training and testing sets in a 70/30 ratio. The initial steps involve exploratory analysis and data preprocessing techniques such as iterative imputation and feature engineering. Subsequently, oversampling is applied to the training set to address class imbalance which ensures the model learns effectively. The testing set remains imbalanced to maintain the credibility of the model’s performance evaluation. The fusion model achieves an accuracy of 98.21%, precision of 97.72%, specificity of 98.64%, recall of 97.47%, F1 score of 97.59%, and an Accuracy Under the Curve (AUC) of 99.91%. The model exhibits efficiency with an average processing time of 0.06 s to predict GDM. These results outperform the previous studies using the same GDM prediction dataset and demonstrate the model's superior performance. Additionally, Explainable Artificial Intelligence (XAI) techniques are utilized to interpret the model’s decisions. They highlight the most influential features in GDM prediction and ensures transparency. The proposed fusion model can facilitate proactive GDM prediction to elevate GDM management and maternal–fetal health outcomes.
AbstractList High glucose levels during pregnancy cause Gestational Diabetes Mellitus (GDM). The risks include cesarean deliveries, long-term type 2 diabetes, fetal macrosomia, and infant respiratory distress syndrome. These risks highlight the need for accurate GDM prediction. This research proposes a novel fusion model for early GDM prediction. It uses conventional Machine Learning (ML) and advanced Deep Learning (DL) algorithms. Subsequently, it combines the strengths of both ML and DL algorithms using various ensemble techniques. It incorporates a meta-classifier that further reinforces its robust prediction performance. The dataset is split into training and testing sets in a 70/30 ratio. The initial steps involve exploratory analysis and data preprocessing techniques such as iterative imputation and feature engineering. Subsequently, oversampling is applied to the training set to address class imbalance which ensures the model learns effectively. The testing set remains imbalanced to maintain the credibility of the model’s performance evaluation. The fusion model achieves an accuracy of 98.21%, precision of 97.72%, specificity of 98.64%, recall of 97.47%, F1 score of 97.59%, and an Accuracy Under the Curve (AUC) of 99.91%. The model exhibits efficiency with an average processing time of 0.06 s to predict GDM. These results outperform the previous studies using the same GDM prediction dataset and demonstrate the model's superior performance. Additionally, Explainable Artificial Intelligence (XAI) techniques are utilized to interpret the model’s decisions. They highlight the most influential features in GDM prediction and ensures transparency. The proposed fusion model can facilitate proactive GDM prediction to elevate GDM management and maternal–fetal health outcomes.
Abstract High glucose levels during pregnancy cause Gestational Diabetes Mellitus (GDM). The risks include cesarean deliveries, long-term type 2 diabetes, fetal macrosomia, and infant respiratory distress syndrome. These risks highlight the need for accurate GDM prediction. This research proposes a novel fusion model for early GDM prediction. It uses conventional Machine Learning (ML) and advanced Deep Learning (DL) algorithms. Subsequently, it combines the strengths of both ML and DL algorithms using various ensemble techniques. It incorporates a meta-classifier that further reinforces its robust prediction performance. The dataset is split into training and testing sets in a 70/30 ratio. The initial steps involve exploratory analysis and data preprocessing techniques such as iterative imputation and feature engineering. Subsequently, oversampling is applied to the training set to address class imbalance which ensures the model learns effectively. The testing set remains imbalanced to maintain the credibility of the model’s performance evaluation. The fusion model achieves an accuracy of 98.21%, precision of 97.72%, specificity of 98.64%, recall of 97.47%, F1 score of 97.59%, and an Accuracy Under the Curve (AUC) of 99.91%. The model exhibits efficiency with an average processing time of 0.06 s to predict GDM. These results outperform the previous studies using the same GDM prediction dataset and demonstrate the model's superior performance. Additionally, Explainable Artificial Intelligence (XAI) techniques are utilized to interpret the model’s decisions. They highlight the most influential features in GDM prediction and ensures transparency. The proposed fusion model can facilitate proactive GDM prediction to elevate GDM management and maternal–fetal health outcomes.
ArticleNumber 47
Author Ayyub, Kashif
Ramzan, Naeem
Hassan, Ahmad
Iqbal, Tassawar
Munir, Ehsan Ullah
Ahmad, Saima Gulzar
Author_xml – sequence: 1
  givenname: Ahmad
  orcidid: 0000-0001-6515-712X
  surname: Hassan
  fullname: Hassan, Ahmad
  organization: Department of Computer Science, COMSATS University Islamabad
– sequence: 2
  givenname: Saima Gulzar
  orcidid: 0000-0002-8820-0570
  surname: Ahmad
  fullname: Ahmad, Saima Gulzar
  organization: Department of Computer Science, COMSATS University Islamabad
– sequence: 3
  givenname: Tassawar
  orcidid: 0000-0002-4615-4887
  surname: Iqbal
  fullname: Iqbal, Tassawar
  organization: Department of Computer Science, COMSATS University Islamabad
– sequence: 4
  givenname: Ehsan Ullah
  orcidid: 0000-0001-7838-0291
  surname: Munir
  fullname: Munir, Ehsan Ullah
  organization: Department of Computer Science, COMSATS University Islamabad
– sequence: 5
  givenname: Kashif
  orcidid: 0000-0001-6896-9318
  surname: Ayyub
  fullname: Ayyub, Kashif
  organization: Department of Computer Science, COMSATS University Islamabad
– sequence: 6
  givenname: Naeem
  orcidid: 0000-0002-5088-1462
  surname: Ramzan
  fullname: Ramzan, Naeem
  email: naeem.ramzan@uws.ac.uk
  organization: School of Computing, Engineering and Physical Sciences, University of the West of Scotland
BookMark eNp9kc1u3CAUhVGUSk3TvEBXvIBbwGDwMkonP1JG7SJZo2t8mWFEzARstVnl1cNkqqqrru7v-RbnfCKnU5qQkC-cfeWM6W9FSt53DROqqWPHGnlCzrjRqumMaU__6T-Si1J2jDHBJWNSnpHX1bSFyeFI12nESH3K9AbLDHNIE0T6PcCAMxa6xhjDvBT6M-MY3OFMH0uYNhTo9VIO4wO67RSeF6TJ0_US57CPSC_jJuUwb58K_VULXf3eRwgTDKHyXj6TDx5iwYs_9Zw8Xq8erm6b-x83d1eX941rlZibXnbIht70HRuROQZmYMPAjddCe9cieBidVIM23PVdL1rejgyUMkqBwbZrz8ndkTsm2Nl9Dk-QX2yCYN8XKW8s5Dm4iJYDctW3I4BAqQcBToOoDhrvlXZOV5Y4slxOpWT0f3mc2UMi9piIrYnY90SsrKL2KCr1edpgtru05Gpx-Z_qDbDUkmU
Cites_doi 10.1109/FIT57066.2022.00029
10.1109/ICCIT60459.2023.10441112
10.7860/JCDR/2016/17588.7689
10.3390/diagnostics13172754
10.15167/2421-4248/jpmh2021.62.4.1788
10.31661/gmj.v9i0.1642
10.1002/eng2.12864
10.2196/26634
10.1001/jamanetworkopen.2020.2605
10.1007/s00521-022-06958-3
10.1038/s41598-024-61665-4
10.1007/s11042-024-18631-z
10.3390/s22197661
10.3390/jcm9113451
10.32604/cmc.2021.017612
10.52661/j_ict.v5i2.218
10.3390/jcm11174953
10.1016/j.eclinm.2022.101294
10.1007/s40618-023-02249-3
10.1186/s12884-020-2759-8
10.1002/hsr2.2004
10.1186/s12884-024-06519-7
10.1007/s41019-024-00257-8
10.3389/fcdhc.2020.546256
10.7717/peerj-cs.619
10.3390/ijerph17249270
10.21203/rs.3.rs-2559790/v1
10.1136/bmj-2021-067946
10.1111/aogs.14861
10.1289/EHP9752
10.1016/j.aei.2023.102024
10.1038/s41598-024-56790-z
10.3390/ijms21145003
10.1007/s41019-018-0073-5
10.3390/ijms19113342
10.1007/s00404-023-07131-4
10.1186/s12884-024-06290-9
10.1097/MD.0000000000034619
10.1111/aogs.13811
10.1016/j.jag.2022.102932
10.3389/fgwh.2023.1006041
10.1016/j.tcm.2019.05.003
10.1111/aogs.14659
10.1007/s41019-023-00217-8
10.34740/kaggle/dsv/3245285
10.1186/s13643-023-02343-w
10.20535/2523-4455.mea.228845
10.53070/bbd.1350356
10.1186/s12877-022-02937-4
10.1177/20552076231207589
10.32604/csse.2022.017484
10.1186/s12884-022-05219-4
10.1093/ije/dyaa243
10.3389/fendo.2022.840331
10.1210/clinem/dgaa899
10.1186/s40814-022-01021-3
10.1155/2022/9749579
10.1007/s41019-018-0064-6
10.1186/s12884-023-05829-6
10.1038/s43856-023-00427-1
10.1007/s41019-021-00165-1
10.4069/kjwhn.2020.10.28
10.4084/MJHID.2021.051
10.1007/s41019-021-00167-z
10.1016/j.biopha.2021.112183
10.5152/tjg.2023.211042
10.18260/1-2-020-36266
10.3892/etm.2022.11646
10.1038/s41598-023-39680-8
10.3390/genes15040482
10.1007/s42835-022-01161-9
10.5888/pcd9.110249
ContentType Journal Article
Copyright The Author(s) 2025
Copyright_xml – notice: The Author(s) 2025
DBID C6C
AAYXX
CITATION
DOA
DOI 10.1007/s44196-025-00760-4
DatabaseName Springer Nature OA Free Journals
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1875-6883
EndPage 33
ExternalDocumentID oai_doaj_org_article_1ae1593daa2e47b2ac7a28758ff57cc7
10_1007_s44196_025_00760_4
GrantInformation_xml – fundername: Erasmus+
  grantid: ERASMUS+ CBHE-619483 EPP-1-2020-1-UK-EPPKA2-CBHE; ERASMUS+ CBHE-619483 EPP-1-2020-1-UK-EPPKA2-CBHE; ERASMUS+ CBHE-619483 EPP-1-2020-1-UK-EPPKA2-CBHE; ERASMUS+ CBHE-619483 EPP-1-2020-1-UK-EPPKA2-CBHE; ERASMUS+ CBHE-619483 EPP-1-2020-1-UK-EPPKA2-CBHE; ERASMUS+ CBHE-619483 EPP-1-2020-1-UK-EPPKA2-CBHE
  funderid: http://dx.doi.org/10.13039/501100010790
GroupedDBID 0R~
4.4
5GY
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABFIM
ACACY
ACGFS
ACULB
ADBBV
ADCVX
AENEX
AFGXO
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVBZW
BCNDV
C24
C6C
CS3
DU5
EBLON
EBS
EJD
GROUPED_DOAJ
GTTXZ
HZ~
J~4
O9-
OK1
SOJ
TFW
TR2
AASML
AAYXX
AFFHD
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c352t-946e0b98960de0c0a8b0bb18f727fc3eafadc45b781c9692313d0a55855a8e363
IEDL.DBID C24
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001439700300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1875-6883
IngestDate Fri Oct 03 12:53:25 EDT 2025
Sat Nov 29 08:12:33 EST 2025
Wed Mar 05 01:43:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Diabetes mellitus
Gestational diabetes prediction
Machine learning
Explainable artificial intelligence
Predictive modelling
Healthcare analytics
High glucose
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-946e0b98960de0c0a8b0bb18f727fc3eafadc45b781c9692313d0a55855a8e363
ORCID 0000-0002-4615-4887
0000-0001-6515-712X
0000-0001-6896-9318
0000-0002-8820-0570
0000-0002-5088-1462
0000-0001-7838-0291
OpenAccessLink https://link.springer.com/10.1007/s44196-025-00760-4
PageCount 33
ParticipantIDs doaj_primary_oai_doaj_org_article_1ae1593daa2e47b2ac7a28758ff57cc7
crossref_primary_10_1007_s44196_025_00760_4
springer_journals_10_1007_s44196_025_00760_4
PublicationCentury 2000
PublicationDate 2025-03-04
PublicationDateYYYYMMDD 2025-03-04
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-04
  day: 04
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle International journal of computational intelligence systems
PublicationTitleAbbrev Int J Comput Intell Syst
PublicationYear 2025
Publisher Springer Netherlands
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer
References SY Kim (760_CR20) 2012
H-N Huang (760_CR53) 2023
R Sarki (760_CR70) 2021; 6
MdJ Hossain (760_CR8) 2024
PT Yeh (760_CR21) 2023
SJ Park (760_CR29) 2020; 26
R Jader (760_CR31) 2022
H-P Kek (760_CR11) 2023
Y-T Wu (760_CR30) 2021; 106
JM Flack (760_CR58) 2020; 30
760_CR62
R Mahajan (760_CR71) 2021; 6
E Bakiris (760_CR48) 2024
J Lee (760_CR72) 2018; 3
F Aziz (760_CR45) 2024; 14
S Aghayeva (760_CR57) 2023; 34
W Yu (760_CR67) 2022; 130
Z Zhang (760_CR19) 2022
JF Plows (760_CR6) 2018
OF Quotah (760_CR47) 2022
W Ye (760_CR17) 2022
A Hassan (760_CR52) 2023; 8
MM Agarwal (760_CR10) 2020
LJE Meertens (760_CR23) 2020; 99
LP Corona (760_CR60) 2022
Y Wei (760_CR32) 2022
A Tomar (760_CR55) 2019; 2
A Hassan (760_CR64) 2024
PED Love (760_CR73) 2023; 57
Y Cao (760_CR16) 2023
J Yao (760_CR68) 2022; 112
E Oktavia (760_CR42) 2023; 5
KM Fouad (760_CR49) 2021
A Sumathi (760_CR39) 2021; 69
A Sumathi (760_CR44) 2022
760_CR50
SE Awan (760_CR51) 2022; 34
Y-G Lee (760_CR74) 2023; 18
AA Muche (760_CR14) 2020
A Sumathi (760_CR40) 2022; 40
S Chatterjee (760_CR65) 2022; 22
B Basil (760_CR35) 2024
MM Mulwa (760_CR75) 2024
BS Kang (760_CR33) 2023
G Ben Abdennour (760_CR61) 2024
JE Chavarro (760_CR12) 2020
K Akyol (760_CR66) 2024
Z-R Niu (760_CR27) 2024; 47
Y Li (760_CR25) 2024; 309
Y Lin (760_CR34) 2023
760_CR43
M Etminan-Bakhsh (760_CR9) 2020
M Arnoriaga-Rodríguez (760_CR36) 2024
E Sheiner (760_CR4) 2020
M Darbandi (760_CR18) 2021; 62
L-J Li (760_CR7) 2022
E Hanson (760_CR46) 2022
760_CR37
MR Basarab (760_CR38) 2021
EU Alejandro (760_CR5) 2020
Z Yuan (760_CR63) 2023; 8
D Bogdanet (760_CR24) 2020
VD Sanctis (760_CR59) 2021
AA Choudhury (760_CR1) 2021
M Alotaibi (760_CR41) 2023; 101
I Dongo (760_CR69) 2018; 3
PR Rani (760_CR3) 2016; 10
Z Semnani-Azad (760_CR26) 2024; 4
M Adnan (760_CR28) 2024
GM Maher (760_CR54) 2023; 102
S-W Yi (760_CR56) 2021; 50
BS Fiskå (760_CR13) 2023
M Shamshuzzoha (760_CR22) 2023
J Fu (760_CR2) 2022
EG Bernea (760_CR15) 2022; 24
References_xml – ident: 760_CR62
  doi: 10.1109/FIT57066.2022.00029
– ident: 760_CR43
  doi: 10.1109/ICCIT60459.2023.10441112
– volume: 10
  start-page: 01
  year: 2016
  ident: 760_CR3
  publication-title: J. Clin. Diagn. Res.
  doi: 10.7860/JCDR/2016/17588.7689
– year: 2023
  ident: 760_CR22
  publication-title: Diagnostics.
  doi: 10.3390/diagnostics13172754
– volume: 62
  start-page: E885
  year: 2021
  ident: 760_CR18
  publication-title: J. Prevent. Med. Hygiene.
  doi: 10.15167/2421-4248/jpmh2021.62.4.1788
– year: 2020
  ident: 760_CR9
  publication-title: Galen Med. J.
  doi: 10.31661/gmj.v9i0.1642
– year: 2024
  ident: 760_CR75
  publication-title: Eng. Reports.
  doi: 10.1002/eng2.12864
– year: 2022
  ident: 760_CR19
  publication-title: J. Med. Internet Res.
  doi: 10.2196/26634
– volume: 2
  start-page: 106
  year: 2019
  ident: 760_CR55
  publication-title: Pan Asian J. Obst. Gynecol.
– year: 2020
  ident: 760_CR12
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2020.2605
– volume: 34
  start-page: 9701
  year: 2022
  ident: 760_CR51
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-06958-3
– year: 2024
  ident: 760_CR64
  publication-title: Sci. Reports.
  doi: 10.1038/s41598-024-61665-4
– year: 2024
  ident: 760_CR66
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-024-18631-z
– volume: 22
  start-page: 7661
  year: 2022
  ident: 760_CR65
  publication-title: Sensors.
  doi: 10.3390/s22197661
– year: 2020
  ident: 760_CR24
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm9113451
– volume: 69
  start-page: 3109
  year: 2021
  ident: 760_CR39
  publication-title: Comput. Mater. Continua.
  doi: 10.32604/cmc.2021.017612
– volume: 5
  start-page: 117
  year: 2023
  ident: 760_CR42
  publication-title: J. Inform. Commun. Technol.
  doi: 10.52661/j_ict.v5i2.218
– year: 2022
  ident: 760_CR46
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm11174953
– year: 2022
  ident: 760_CR2
  publication-title: eClinicalMedicine.
  doi: 10.1016/j.eclinm.2022.101294
– volume: 47
  start-page: 1281
  year: 2024
  ident: 760_CR27
  publication-title: J. Endocrinol. Invest.
  doi: 10.1007/s40618-023-02249-3
– year: 2020
  ident: 760_CR14
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-020-2759-8
– year: 2024
  ident: 760_CR8
  publication-title: Health Sci. Reports.
  doi: 10.1002/hsr2.2004
– year: 2024
  ident: 760_CR35
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-024-06519-7
– year: 2024
  ident: 760_CR61
  publication-title: Data Sci. Eng.
  doi: 10.1007/s41019-024-00257-8
– year: 2020
  ident: 760_CR4
  publication-title: Front. Clin. Diabet. Healthcare.
  doi: 10.3389/fcdhc.2020.546256
– year: 2021
  ident: 760_CR49
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.619
– year: 2020
  ident: 760_CR10
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17249270
– year: 2023
  ident: 760_CR34
  publication-title: Res. Square.
  doi: 10.21203/rs.3.rs-2559790/v1
– year: 2022
  ident: 760_CR17
  publication-title: BMJ
  doi: 10.1136/bmj-2021-067946
– year: 2024
  ident: 760_CR48
  publication-title: Acta Obstet. Gynecol. Scand.
  doi: 10.1111/aogs.14861
– volume: 130
  year: 2022
  ident: 760_CR67
  publication-title: Environ. Health Perspect.
  doi: 10.1289/EHP9752
– volume: 57
  year: 2023
  ident: 760_CR73
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2023.102024
– volume: 14
  start-page: 6182
  year: 2024
  ident: 760_CR45
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-56790-z
– year: 2020
  ident: 760_CR5
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21145003
– volume: 3
  start-page: 277
  year: 2018
  ident: 760_CR72
  publication-title: Data Sci. Eng.
  doi: 10.1007/s41019-018-0073-5
– year: 2018
  ident: 760_CR6
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19113342
– volume: 309
  start-page: 2557
  year: 2024
  ident: 760_CR25
  publication-title: Arch. Gynecol. Obstet.
  doi: 10.1007/s00404-023-07131-4
– year: 2024
  ident: 760_CR28
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-024-06290-9
– year: 2023
  ident: 760_CR16
  publication-title: Medicine
  doi: 10.1097/MD.0000000000034619
– volume: 99
  start-page: 891
  year: 2020
  ident: 760_CR23
  publication-title: Acta Obstet. Gynecol. Scand.
  doi: 10.1111/aogs.13811
– volume: 112
  year: 2022
  ident: 760_CR68
  publication-title: Int. J. Appl. Earth Observ. Geoinf.
  doi: 10.1016/j.jag.2022.102932
– year: 2023
  ident: 760_CR21
  publication-title: Front. Global Women’s Health.
  doi: 10.3389/fgwh.2023.1006041
– volume: 30
  start-page: 160
  year: 2020
  ident: 760_CR58
  publication-title: Trends Cardiovasc. Med.
  doi: 10.1016/j.tcm.2019.05.003
– volume: 102
  start-page: 1459
  year: 2023
  ident: 760_CR54
  publication-title: Acta Obstet. Gynecol. Scand.
  doi: 10.1111/aogs.14659
– volume: 8
  start-page: 344
  year: 2023
  ident: 760_CR63
  publication-title: Data Sci. Eng.
  doi: 10.1007/s41019-023-00217-8
– year: 2022
  ident: 760_CR44
  publication-title: Kaggle.
  doi: 10.34740/kaggle/dsv/3245285
– year: 2023
  ident: 760_CR13
  publication-title: Syst. Rev.
  doi: 10.1186/s13643-023-02343-w
– year: 2021
  ident: 760_CR38
  publication-title: Microsyst. Electron. Acoustics.
  doi: 10.20535/2523-4455.mea.228845
– volume: 8
  start-page: 66
  year: 2023
  ident: 760_CR52
  publication-title: Comput. Sci.
  doi: 10.53070/bbd.1350356
– year: 2022
  ident: 760_CR60
  publication-title: BMC Geriatr.
  doi: 10.1186/s12877-022-02937-4
– year: 2023
  ident: 760_CR53
  publication-title: Digit. Health.
  doi: 10.1177/20552076231207589
– volume: 40
  start-page: 313
  year: 2022
  ident: 760_CR40
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2022.017484
– year: 2022
  ident: 760_CR32
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-022-05219-4
– volume: 50
  start-page: 902
  year: 2021
  ident: 760_CR56
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyaa243
– year: 2022
  ident: 760_CR7
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2022.840331
– volume: 106
  start-page: e1191
  year: 2021
  ident: 760_CR30
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/clinem/dgaa899
– year: 2022
  ident: 760_CR47
  publication-title: Pilot Feasibil. Stud.
  doi: 10.1186/s40814-022-01021-3
– year: 2022
  ident: 760_CR31
  publication-title: Appl. Comput. Intell. Soft Comput.
  doi: 10.1155/2022/9749579
– ident: 760_CR50
– volume: 3
  start-page: 115
  year: 2018
  ident: 760_CR69
  publication-title: Data Sci. Eng.
  doi: 10.1007/s41019-018-0064-6
– year: 2023
  ident: 760_CR11
  publication-title: BMC Pregnancy Childbirth
  doi: 10.1186/s12884-023-05829-6
– volume: 4
  start-page: 1
  year: 2024
  ident: 760_CR26
  publication-title: Commun. Med.
  doi: 10.1038/s43856-023-00427-1
– volume: 6
  start-page: 402
  year: 2021
  ident: 760_CR71
  publication-title: Data Sci. Eng.
  doi: 10.1007/s41019-021-00165-1
– volume: 26
  start-page: 274
  year: 2020
  ident: 760_CR29
  publication-title: Korean J. Women Health Nurs.
  doi: 10.4069/kjwhn.2020.10.28
– year: 2021
  ident: 760_CR59
  publication-title: Mediterranean J. Hematol. Infect. Dis.
  doi: 10.4084/MJHID.2021.051
– volume: 6
  start-page: 455
  year: 2021
  ident: 760_CR70
  publication-title: Data Sci. Eng.
  doi: 10.1007/s41019-021-00167-z
– year: 2021
  ident: 760_CR1
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2021.112183
– volume: 34
  start-page: 1134
  year: 2023
  ident: 760_CR57
  publication-title: Turkish J. Gastroenterol.
  doi: 10.5152/tjg.2023.211042
– ident: 760_CR37
  doi: 10.18260/1-2-020-36266
– volume: 24
  start-page: 1
  year: 2022
  ident: 760_CR15
  publication-title: Exp. Ther. Med.
  doi: 10.3892/etm.2022.11646
– volume: 101
  start-page: 6810
  year: 2023
  ident: 760_CR41
  publication-title: J. Theor. Appl. Inf. Technol.
– year: 2023
  ident: 760_CR33
  publication-title: Sci. Reports.
  doi: 10.1038/s41598-023-39680-8
– year: 2024
  ident: 760_CR36
  publication-title: Genes
  doi: 10.3390/genes15040482
– volume: 18
  start-page: 579
  year: 2023
  ident: 760_CR74
  publication-title: J. Electric. Eng. Technol.
  doi: 10.1007/s42835-022-01161-9
– year: 2012
  ident: 760_CR20
  publication-title: Prevent. Chronic Dis.
  doi: 10.5888/pcd9.110249
SSID ssj0002140044
Score 2.363474
Snippet High glucose levels during pregnancy cause Gestational Diabetes Mellitus (GDM). The risks include cesarean deliveries, long-term type 2 diabetes, fetal...
Abstract High glucose levels during pregnancy cause Gestational Diabetes Mellitus (GDM). The risks include cesarean deliveries, long-term type 2 diabetes,...
SourceID doaj
crossref
springer
SourceType Open Website
Index Database
Publisher
StartPage 1
SubjectTerms Artificial Intelligence
Computational Intelligence
Control
Diabetes mellitus
Engineering
Gestational diabetes prediction
Healthcare analytics
High glucose
Machine learning
Mathematical Logic and Foundations
Mechatronics
Predictive modelling
Research Article
Robotics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmDhjSgv3cAGEUlsx8lYUAsDrToUqVt0cWxaqbSoSZGY-OvYrlsVIcHCmocc3SP32Xf3HSFXBgEnGEfUIDfjbkyVMkDNMUioTkqKUcal0_ST6HbTwSDrrY36sjVhC3rgheBuI1Qm4tISMVZMFDFKgQbl81RrLqR0feShyNY2U_YfHEfWNpnvknG9cibuu3pbHrhsVMC-RSJH2P8jG-qCTHuP7Hh0CM3FV-2TDTU5ILvLyQvgHfGQfLYmQ5e6BzvLbAwGecKDqmp_sge-zqWCjuXbrOcV9GY2I2Nvg6sSAIT23J6UQX_J4gpTDR1fXwjN8ct0NqqHrxXYo1qwtXqu0crW0n4cked2q3__GPhRCoE0CKsOMpaosMhSs18pVShDTIuwKKJUG_iiJVWosZSMFyKNZJZY0EfLELnZS3BMFU3oMdmcTCfqhIARrDIoBUVk3ijjAhkvhdAWykikKTbI9VKs-duCMSNfcSM7JeRGCblTQs4a5M5KfvWkZbt2F4wN5N4G8r9soEFulnrLvQtWv6x5-h9rnpHt2BkTDUJ2Tjbr2VxdkC35Xo-q2aWzxi-IQuRA
  priority: 102
  providerName: Directory of Open Access Journals
Title Enhanced Model for Gestational Diabetes Mellitus Prediction Using a Fusion Technique of Multiple Algorithms with Explainability
URI https://link.springer.com/article/10.1007/s44196-025-00760-4
https://doaj.org/article/1ae1593daa2e47b2ac7a28758ff57cc7
Volume 18
WOSCitedRecordID wos001439700300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: K7-
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1875-6883
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140044
  issn: 1875-6883
  databaseCode: C24
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT90wDLY2tsM4jI0N8TaGfOC2RWqbpEmPDPE2aQNxYBK3yk0TQIL3UNuHxIm_ThLSJxBo0nbpoU3UKrabz_ZnB2DHI-CSipx75ObNTdjWMHKSWMld2XLKK2mipH-rw0N9clIdpaKwfmS7jynJ-KdeFrv5jTsSZiWL6SQmXsIrmWsVXK69VOMQ_r9FHvRSpAqZ56c-2oVis_4nmdC4wUzX_u_T3sHbBChx914D3sMLO1uHtfGwBky2uw6rDzoPfoDb_dlZzP1jOAztAj10xR-2H1JoEBNRpseD0LBzWPR41IWUTniMkWaAhNNFCLXh8dgGFucODxJBEXcvTufd-XB22WOI9WIg-8VKrUDGvfkIf6b7x3s_WTqLgRkP0QZWidJmTaW9w9PazGSkm6xpcu08_nGGW3LUGiEbpXNTlQE18jYj6Z0RSdrykm_Aymw-s5uAXjrWwxxSuZ_RFg0J2SrlAhYyxDVN4Osom_rqvuVGvWyuHFe69itdx5WuxQS-B_EtR4Z22fHGvDutk_XVOVkP23hLVFihmoKMIu8qSu2cVMaoCXwbBVsnG-7_8s5P_zb8M7wpom5wloktWBm6hf0Cr831cN5321F5t2MswF9_KXYHh8vtKw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB1Bi0Q5UCitWEphDtwgUhLbcXIsVZcidlc9bKXerIljt5Xa3SrJInHi17FdZ9UKhATXxFYiz4z9xjPzBuCDQ8AF5RlzyM2ZGzeNTsgKSgpmi4ZRVgkdJD2Rs1l5fl6dxqKwbsh2H0KSYadeF7u5gzskzIokhJMS_hg2udNI73IdxRoHv__mmddLHitk_jz1wSkUyPp_i4SGA2a8_X-_9gKeR0CJh3ca8BIemcUObA_NGjDa7g48u8c8-Ap-Hi8uQ-wffTO0a3TQFb-Yro9XgxgTZTqcesLOftXhaetDOv41hjQDJByv_FUbzgcaWFxanMYERTy8vli2V_3lTYf-rhd9sl-o1PLJuD924Wx8PD86SWIvhkQ7iNYnFS9MWlelc3gak-qUyjqt66y0Dv9YzQxZajQXtSwzXRUeNbImJeGcEUGlYQXbg43FcmFeAzrpGAdzSGZuRpPXxEUjpfVYSBMraQQfB9mo2zvKDbUmVw4rrdxKq7DSio_gsxffeqSnyw4Plu2FitanMjIOtrGGKDdc1jlpSc5VFKW1QmotR_BpEKyKNtz95Ztv_m34e3h6Mp9O1OTr7Ns-bOVBT1iS8rew0bcrcwBP9Pf-qmvfBUX-BYte7ks
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQQgOFNqiLp9z4EajJrEdJ8cCXUC0qz0UqTdr4thtpTZbJdlKnPjr2F5nVQRCQlwTW4k8M_az580zwFuHgAvKM-aQmws3bhqdkBWUFMwWDaOsEjpY-kjOZuXpaTW_VcUf2O5jSnJV0-BVmtph_7qx--vCN7eIB_KsSEJqKeF34R73SSWfro31Dn4uzjPvozxWy_y56y8rUhDu_y0rGhab6eb__-YTeByBJh6sPOMp3DHtFmyOlzhgjOkteHRLkXAbfhy254ETgP6StEt0kBY_mX6IR4YYCTQ9Hnshz2HZ47zzqR7_GgP9AAmnS38EhyejPCwuLB5H4iIeXJ4tuovh_KpHfwaMngQYKrg8Sff7DnybHp58-JzEOxoS7aDbkFS8MGldlW4j1JhUp1TWaV1npXW4yGpmyFKjuahlmemq8GiSNSkJt0kRVBpWsGew0S5aswvoLGUc_CGZuR5NXhMXjZTWYyRNrKQJvBvtpK5XUhxqLbocRlq5kVZhpBWfwHtvynVLL6MdHiy6MxWjUmVkHJxjDVFuuKxz0pLcFlKU1gqptZzA3mhkFWO7_8s3n_9b8zfwYP5xqo6-zL6-gId5cBOWpPwlbAzd0ryC-_pmuOi718GnfwIvLfcv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Model+for+Gestational+Diabetes+Mellitus+Prediction+Using+a+Fusion+Technique+of+Multiple+Algorithms+with+Explainability&rft.jtitle=International+journal+of+computational+intelligence+systems&rft.au=Hassan%2C+Ahmad&rft.au=Ahmad%2C+Saima+Gulzar&rft.au=Iqbal%2C+Tassawar&rft.au=Munir%2C+Ehsan+Ullah&rft.date=2025-03-04&rft.pub=Springer+Netherlands&rft.eissn=1875-6883&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1007%2Fs44196-025-00760-4&rft.externalDocID=10_1007_s44196_025_00760_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1875-6883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1875-6883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1875-6883&client=summon