A continuous flow reactor setup as a tool for rapid synthesis of micron sized NaA zeolite

Slow crystallization kinetics and a limited thermodynamical stability of the target crystal phase are characteristic to zeolite formation, representing some of the key obstructions for fast zeolite synthesis. In this paper, the possibility of accelerating NaA zeolite synthesis in a continuous flow r...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Microporous and mesoporous materials Ročník 226; s. 133 - 139
Hlavní autori: Vandermeersch, Tobias, Van Assche, Tom R.C., Denayer, Joeri F.M., De Malsche, Wim
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 15.05.2016
Predmet:
ISSN:1387-1811, 1873-3093
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Slow crystallization kinetics and a limited thermodynamical stability of the target crystal phase are characteristic to zeolite formation, representing some of the key obstructions for fast zeolite synthesis. In this paper, the possibility of accelerating NaA zeolite synthesis in a continuous flow reactor (CFR) is studied. The CFR reduces the thermal lag by increasing surface to volume ratio, expediting heat transfer and mass transfer. The properties of the CFR and the reference batch synthesized particles were similar as confirmed by X-ray diffraction, scanning electron microscopy, particle size measurement using laser scattering and water adsorption equilibria. The reduced residence time and reduction in thermal lag provided an ideal synthesis environment for NaA zeolite, without side products, yielding 160 g/h per liter reactor volume of dry NaA crystals synthesized in 16 min and 2–3 μm particles for a single CFR. In comparison, the batch process produces 33 g/h per liter reactor volume The effects of diluting with NaOH-solution and temperature were studied in the CFR, allowing to determine the optimal conditions. With the enhanced reaction kinetics gained from the increased temperature and molar composition, NaA synthesis is performed 10 times faster than in the optimal batch synthesis. The optimal conditions for the synthesis of NaA in the CFR were determined as: a gel composition of Na2O:4.75 – SiO2:1.93 – Al2O3:1.0 – H2O:192, at a synthesis temperature of 150 °C during 16 min without, aging of the gel mixture. This paper shows that the bottlenecks in NaA zeolite synthesis can be widened resulting in faster synthesis in a CFR, making it a feasible pathway for more controllable zeolite synthesis at higher mass production rates (160 g/(h l-reactor)) while reducing the risk of blockage in a continuous flow reactor. [Display omitted] •A continuous flow reactor setup for controlled and rapid synthesis of meta stable products is proposed.•The setup was validated for 4A synthesis and illustrates the need for rapid temperature transfer rather than rapid heating.•Synthesis of micron sized 4A zeolite was achieved in 16 minutes.
AbstractList Slow crystallization kinetics and a limited thermodynamical stability of the target crystal phase are characteristic to zeolite formation, representing some of the key obstructions for fast zeolite synthesis. In this paper, the possibility of accelerating NaA zeolite synthesis in a continuous flow reactor (CFR) is studied. The CFR reduces the thermal lag by increasing surface to volume ratio, expediting heat transfer and mass transfer. The properties of the CFR and the reference batch synthesized particles were similar as confirmed by X-ray diffraction, scanning electron microscopy, particle size measurement using laser scattering and water adsorption equilibria. The reduced residence time and reduction in thermal lag provided an ideal synthesis environment for NaA zeolite, without side products, yielding 160 g/h per liter reactor volume of dry NaA crystals synthesized in 16 min and 2–3 μm particles for a single CFR. In comparison, the batch process produces 33 g/h per liter reactor volume The effects of diluting with NaOH-solution and temperature were studied in the CFR, allowing to determine the optimal conditions. With the enhanced reaction kinetics gained from the increased temperature and molar composition, NaA synthesis is performed 10 times faster than in the optimal batch synthesis. The optimal conditions for the synthesis of NaA in the CFR were determined as: a gel composition of Na2O:4.75 – SiO2:1.93 – Al2O3:1.0 – H2O:192, at a synthesis temperature of 150 °C during 16 min without, aging of the gel mixture. This paper shows that the bottlenecks in NaA zeolite synthesis can be widened resulting in faster synthesis in a CFR, making it a feasible pathway for more controllable zeolite synthesis at higher mass production rates (160 g/(h l-reactor)) while reducing the risk of blockage in a continuous flow reactor. [Display omitted] •A continuous flow reactor setup for controlled and rapid synthesis of meta stable products is proposed.•The setup was validated for 4A synthesis and illustrates the need for rapid temperature transfer rather than rapid heating.•Synthesis of micron sized 4A zeolite was achieved in 16 minutes.
Author Vandermeersch, Tobias
De Malsche, Wim
Van Assche, Tom R.C.
Denayer, Joeri F.M.
Author_xml – sequence: 1
  givenname: Tobias
  surname: Vandermeersch
  fullname: Vandermeersch, Tobias
– sequence: 2
  givenname: Tom R.C.
  surname: Van Assche
  fullname: Van Assche, Tom R.C.
– sequence: 3
  givenname: Joeri F.M.
  surname: Denayer
  fullname: Denayer, Joeri F.M.
– sequence: 4
  givenname: Wim
  surname: De Malsche
  fullname: De Malsche, Wim
  email: wdemalsc@vub.ac.be
BookMark eNqNkM1OwzAQhC1UJNrCM-AXSPDa-T1wiCr-pAoucOBkOc5auErjynZB7dOTUsSBC5x2tdI3szMzMhncgIRcAkuBQXG1StdWe7fG4FLOIE-Bp0zUJ2QKVSkSwWoxGXdRlQlUAGdkFsKKMSiBw5S8NlS7Idph67aBmt59UI9KR-dpwLjdUBWootG5nprx5tXGdjTshviGwQbqDP1yH2iwe-zoo2roHl1vI56TU6P6gBffc05ebm-eF_fJ8unuYdEsEy1yHpMKS9F2KLjoirbLGDNcY6tbM2YouDJVp9o2Ezkaw3PUWQ2FYi2v2qoCA1kt5uT6qDu-EYJHI7WNKtoxlVe2l8DkoSe5kj89yUNPErgcPUa-_MVvvF0rv_sH2RxJHOO9W_QyaIuDxs561FF2zv6p8QkUp4ya
CitedBy_id crossref_primary_10_1002_adma_202002780
crossref_primary_10_1016_j_cep_2024_109728
crossref_primary_10_1016_j_cej_2020_128031
crossref_primary_10_1016_j_ces_2024_121056
crossref_primary_10_1016_j_mtcomm_2024_109047
crossref_primary_10_1016_j_cclet_2019_09_054
crossref_primary_10_1016_j_cej_2019_03_057
crossref_primary_10_1016_j_nxmate_2024_100466
crossref_primary_10_1556_1846_2016_33333
crossref_primary_10_1007_s11814_019_0329_4
Cites_doi 10.1039/b102818a
10.1016/j.cej.2011.07.060
10.1016/j.micromeso.2009.11.025
10.15446/ing.investig.v33n3.41039
10.1016/j.powtec.2013.03.048
10.1016/j.cej.2013.01.009
10.1021/ie401924x
10.1016/j.cej.2005.11.006
10.1016/j.cej.2015.04.150
10.1021/ie8017912
10.1021/ie000748q
10.1016/S0955-2219(02)00287-X
10.1016/j.cej.2011.11.014
10.1016/j.cep.2011.05.016
10.1002/anie.201501160
10.1007/BF02707285
10.1016/0022-0248(82)90056-2
10.1016/j.jcis.2011.01.085
10.1016/j.micromeso.2005.02.016
10.1021/la0499012
10.1016/S0009-2509(96)00430-7
10.1016/j.powtec.2012.10.046
10.1021/ie0492350
10.1246/bcsj.20150143
10.1016/S1387-1811(98)80014-0
10.1002/cphc.200500449
10.1016/j.seppur.2011.08.027
10.1016/j.ces.2014.07.029
10.1016/j.micromeso.2013.08.014
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright_xml – notice: 2016 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.micromeso.2015.12.039
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3093
EndPage 139
ExternalDocumentID 10_1016_j_micromeso_2015_12_039
S1387181115007040
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
ZMT
~02
~G-
29M
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FGOYB
HZ~
R2-
SEW
~HD
ID FETCH-LOGICAL-c352t-8e73bde323d6bd400f2cebcbf03962af8dabb435eff25ec4916a0b28b881f1493
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373419400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1387-1811
IngestDate Sat Nov 29 03:21:39 EST 2025
Tue Nov 18 22:41:41 EST 2025
Fri Feb 23 02:23:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High throughput screening
Multiphase flow
Zeolite synthesis
LTA
Continuous flow reactor
Pilot scale
CFR
NaA
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-8e73bde323d6bd400f2cebcbf03962af8dabb435eff25ec4916a0b28b881f1493
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_micromeso_2015_12_039
crossref_primary_10_1016_j_micromeso_2015_12_039
elsevier_sciencedirect_doi_10_1016_j_micromeso_2015_12_039
PublicationCentury 2000
PublicationDate 2016-05-15
PublicationDateYYYYMMDD 2016-05-15
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-15
  day: 15
PublicationDecade 2010
PublicationTitle Microporous and mesoporous materials
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ju, Zeng, Zhang, Xu (bib16) Feb 2006; 116
Kashid, Kiwi-Minsker (bib26) 2009; 48
Thompson, Huber (bib35) 1982; 56
Sathupunya, Gulari, Wongkasemjit (bib11) 2003; 23
Khan, Arafat, Reza, Abdur Razzaque, Alam (bib13) 2010; 17
Zaarour, Dong, Naydenova, Retoux, Mintova (bib12) 2014; 189
Levenspiel (bib25) 1972
Liu, Wang, Cui, He, Mao (bib7) 2013; 243
Vandermeersch, Goovaerts, Luyten, Denayer, De Malsche (bib21) 2015; 279
Holvey, Roberge, Gottsponer, Kockmann, Macchi (bib23) 2011; 50
Cundy, Cox (bib1) 2005; 82
Badyga, Bourne, Hearn (bib24) Feb 1997; 52
Ojha, Pradhan, Samanta (bib10) 2004; 27
Commenge, Saber, Falk (bib19) Sep 2011; 173
Biswas, Das, Ray, Basu (bib33) Jul 2014; 122
Kockmann (bib32) 2008; vol. 4
Yu, Pan, Wang, Zhang (bib15) 2013; 219
Ding, Yang, Rahimi, Omotoso, Friesen, Fairbridge, Shi, Ng (bib5) 2010; 130
Tompsett, Conner, Yngvesson (bib34) Feb 2006; 7
Petrov, Michalev (bib4) 2012; vol. 2
Su, Lautenschleger, Chen, Kenig (bib28) Jan 2014; 53
Nguyen (bib31) 2011
Brar, France, Smirniotis (bib2) 2001; 40
Lechert (bib9) 1998; 22
Liu, Wakihara, Oshima, Nishioka, Hotta, Elangovan, Yanaba, Yoshikawa, Chaikittisilp, Matsuo, Takewaki, Okubo (bib29) May 2015; vol. 54
Zhang, Tang, Zhang, Yang (bib6) 2013; 235
Garcia-Soto, Rodriguez-Nino, Trujillo (bib8) 2013; 33
Malgras, Ji, Kamachi, Mori, Shieh, Wu, Ariga, Yamauchi (bib14) 2015; 88
Capretto, Carugo, Cheng, Hill, Zhang (bib22) May 2011; 357
Tonomura, Nagahara, Kano, Hasebe (bib27) Jan 2008
Cejka, Bekkum van, Corma, Schuth (bib3) 2009; vol. 1
Burns, Ramshaw (bib17) 2001; 1
Kreutzer, Bakker, Kapteijn, Moulijn, Verheijen (bib18) Jul 2005; 44
Al-Rawashdeh, Cantu-Perez, Ziegenbalg, Löb, Gavriilidis, Hessel, Schönfeld (bib20) Jan 2012; 179
Khan, Günther, Schmidt, Jensen (bib30) Sep 2004; 20
Badyga (10.1016/j.micromeso.2015.12.039_bib24) 1997; 52
Tompsett (10.1016/j.micromeso.2015.12.039_bib34) 2006; 7
Vandermeersch (10.1016/j.micromeso.2015.12.039_bib21) 2015; 279
Thompson (10.1016/j.micromeso.2015.12.039_bib35) 1982; 56
Ojha (10.1016/j.micromeso.2015.12.039_bib10) 2004; 27
Kreutzer (10.1016/j.micromeso.2015.12.039_bib18) 2005; 44
Biswas (10.1016/j.micromeso.2015.12.039_bib33) 2014; 122
Nguyen (10.1016/j.micromeso.2015.12.039_bib31) 2011
Liu (10.1016/j.micromeso.2015.12.039_bib7) 2013; 243
Su (10.1016/j.micromeso.2015.12.039_bib28) 2014; 53
Levenspiel (10.1016/j.micromeso.2015.12.039_bib25) 1972
Garcia-Soto (10.1016/j.micromeso.2015.12.039_bib8) 2013; 33
Zaarour (10.1016/j.micromeso.2015.12.039_bib12) 2014; 189
Ju (10.1016/j.micromeso.2015.12.039_bib16) 2006; 116
Petrov (10.1016/j.micromeso.2015.12.039_bib4) 2012; vol. 2
Zhang (10.1016/j.micromeso.2015.12.039_bib6) 2013; 235
Khan (10.1016/j.micromeso.2015.12.039_bib30) 2004; 20
Burns (10.1016/j.micromeso.2015.12.039_bib17) 2001; 1
Sathupunya (10.1016/j.micromeso.2015.12.039_bib11) 2003; 23
Al-Rawashdeh (10.1016/j.micromeso.2015.12.039_bib20) 2012; 179
Kockmann (10.1016/j.micromeso.2015.12.039_bib32) 2008; vol. 4
Cundy (10.1016/j.micromeso.2015.12.039_bib1) 2005; 82
Capretto (10.1016/j.micromeso.2015.12.039_bib22) 2011; 357
Ding (10.1016/j.micromeso.2015.12.039_bib5) 2010; 130
Kashid (10.1016/j.micromeso.2015.12.039_bib26) 2009; 48
Liu (10.1016/j.micromeso.2015.12.039_bib29) 2015; vol. 54
Holvey (10.1016/j.micromeso.2015.12.039_bib23) 2011; 50
Khan (10.1016/j.micromeso.2015.12.039_bib13) 2010; 17
Cejka (10.1016/j.micromeso.2015.12.039_bib3) 2009; vol. 1
Lechert (10.1016/j.micromeso.2015.12.039_bib9) 1998; 22
Brar (10.1016/j.micromeso.2015.12.039_bib2) 2001; 40
Tonomura (10.1016/j.micromeso.2015.12.039_bib27) 2008
Commenge (10.1016/j.micromeso.2015.12.039_bib19) 2011; 173
Malgras (10.1016/j.micromeso.2015.12.039_bib14) 2015; 88
Yu (10.1016/j.micromeso.2015.12.039_bib15) 2013; 219
Van Assche (10.1016/j.micromeso.2015.12.039_bib36) 2011
References_xml – volume: 22
  start-page: 519
  year: 1998
  end-page: 523
  ident: bib9
  publication-title: Microporous Mesoporous Mater.
– volume: 23
  start-page: 1293
  year: 2003
  end-page: 1303
  ident: bib11
  publication-title: J. Eur. Ceram. Soc.
– volume: 1
  start-page: 10
  year: 2001
  end-page: 15
  ident: bib17
  publication-title: Lab A Chip
– volume: 357
  start-page: 243
  year: May 2011
  end-page: 251
  ident: bib22
  publication-title: J. Colloid Interface Sci.
– volume: vol. 54
  start-page: 5683
  year: May 2015
  end-page: 5687
  ident: bib29
  publication-title: Angew. Chemie Int. Ed.
– volume: 82
  start-page: 1
  year: 2005
  end-page: 78
  ident: bib1
  publication-title: Microporous Mesoporous Mater.
– volume: 88
  start-page: 1171
  year: 2015
  end-page: 1200
  ident: bib14
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 279
  start-page: 9
  year: 2015
  end-page: 17
  ident: bib21
  publication-title: Chem. Eng. J.
– volume: 50
  start-page: 1069
  year: 2011
  end-page: 1075
  ident: bib23
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 44
  start-page: 4898
  year: Jul 2005
  end-page: 4913
  ident: bib18
  publication-title: Ind. Eng. Chem. Res.
– volume: 179
  start-page: 318
  year: Jan 2012
  end-page: 329
  ident: bib20
  publication-title: Chem. Eng. J.
– year: 2011
  ident: bib31
  article-title: Micromixers Fundamentals, Design and Fabrication
– volume: 56
  start-page: 711
  year: 1982
  end-page: 722
  ident: bib35
  publication-title: J. Cryst. Growth
– volume: 53
  start-page: 390
  year: Jan 2014
  end-page: 401
  ident: bib28
  publication-title: Ind Eng. Chem. Res.
– volume: 33
  start-page: 22
  year: 2013
  end-page: 27
  ident: bib8
  publication-title: Ing. Investig.
– volume: 189
  start-page: 11
  year: 2014
  end-page: 21
  ident: bib12
  publication-title: Microporous Mesoporous Mater.
– volume: 20
  start-page: 8604
  year: Sep 2004
  end-page: 8611
  ident: bib30
  publication-title: Langmuir
– volume: 122
  start-page: 652
  year: Jul 2014
  end-page: 661
  ident: bib33
  publication-title: Chem. Eng. Sci.
– volume: 130
  start-page: 303
  year: 2010
  end-page: 308
  ident: bib5
  publication-title: Microporous Mesoporous Mater.
– volume: 52
  start-page: 457
  year: Feb 1997
  end-page: 466
  ident: bib24
  publication-title: Chem. Eng. Sci.
– year: Jan 2008
  ident: bib27
  article-title: Fluid distribution and blockage diagnosis in parallel MicroChannel configurations
  publication-title: 10th International Conference on Microreaction Technology
– volume: vol. 4
  year: 2008
  ident: bib32
  publication-title: Transport Phenomena in Micro Process Engineering
– volume: 235
  start-page: 322
  year: 2013
  end-page: 328
  ident: bib6
  publication-title: Powder Technol.
– volume: 48
  start-page: 6465
  year: 2009
  end-page: 6485
  ident: bib26
  publication-title: Ind Eng. Chem. Res.
– volume: 7
  start-page: 296
  year: Feb 2006
  end-page: 319
  ident: bib34
  publication-title: ChemPhysChem
– volume: 17
  start-page: 303
  year: 2010
  end-page: 308
  ident: bib13
  publication-title: Indian J. Chem. Technol.
– year: 1972
  ident: bib25
  article-title: Chemical Reaction Engineering
– volume: 27
  start-page: 555
  year: 2004
  end-page: 564
  ident: bib10
  publication-title: Bull. Mater. Sci.
– volume: vol. 1
  year: 2009
  ident: bib3
  publication-title: Introduction to Zeolite Science and Practice
– volume: 219
  start-page: 78
  year: 2013
  end-page: 85
  ident: bib15
  publication-title: Chem. Eng. J.
– volume: vol. 2
  start-page: 30
  year: 2012
  end-page: 35
  ident: bib4
  publication-title: Synthesis of Zeolite A : A Review
– volume: 40
  start-page: 1133
  year: 2001
  end-page: 1139
  ident: bib2
  publication-title: Ind Eng. Chem. Res.
– volume: 243
  start-page: 184
  year: 2013
  end-page: 193
  ident: bib7
  publication-title: Powder Technol.
– volume: 173
  start-page: 334
  year: Sep 2011
  end-page: 340
  ident: bib19
  publication-title: Chem. Eng. J.
– volume: 116
  start-page: 115
  year: Feb 2006
  end-page: 121
  ident: bib16
  publication-title: Chem. Eng. J.
– volume: vol. 2
  start-page: 30
  year: 2012
  ident: 10.1016/j.micromeso.2015.12.039_bib4
– volume: 1
  start-page: 10
  issue: 1
  year: 2001
  ident: 10.1016/j.micromeso.2015.12.039_bib17
  publication-title: Lab A Chip
  doi: 10.1039/b102818a
– volume: 173
  start-page: 334
  year: 2011
  ident: 10.1016/j.micromeso.2015.12.039_bib19
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.07.060
– year: 1972
  ident: 10.1016/j.micromeso.2015.12.039_bib25
– volume: 130
  start-page: 303
  issue: 1–3
  year: 2010
  ident: 10.1016/j.micromeso.2015.12.039_bib5
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2009.11.025
– volume: 33
  start-page: 22
  issue: 3
  year: 2013
  ident: 10.1016/j.micromeso.2015.12.039_bib8
  publication-title: Ing. Investig.
  doi: 10.15446/ing.investig.v33n3.41039
– volume: 243
  start-page: 184
  year: 2013
  ident: 10.1016/j.micromeso.2015.12.039_bib7
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2013.03.048
– volume: 219
  start-page: 78
  year: 2013
  ident: 10.1016/j.micromeso.2015.12.039_bib15
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.01.009
– volume: 53
  start-page: 390
  year: 2014
  ident: 10.1016/j.micromeso.2015.12.039_bib28
  publication-title: Ind Eng. Chem. Res.
  doi: 10.1021/ie401924x
– volume: 116
  start-page: 115
  year: 2006
  ident: 10.1016/j.micromeso.2015.12.039_bib16
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2005.11.006
– volume: 279
  start-page: 9
  year: 2015
  ident: 10.1016/j.micromeso.2015.12.039_bib21
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.04.150
– volume: 48
  start-page: 6465
  issue: 14
  year: 2009
  ident: 10.1016/j.micromeso.2015.12.039_bib26
  publication-title: Ind Eng. Chem. Res.
  doi: 10.1021/ie8017912
– volume: 40
  start-page: 1133
  issue: 4
  year: 2001
  ident: 10.1016/j.micromeso.2015.12.039_bib2
  publication-title: Ind Eng. Chem. Res.
  doi: 10.1021/ie000748q
– volume: 23
  start-page: 1293
  issue: 8
  year: 2003
  ident: 10.1016/j.micromeso.2015.12.039_bib11
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/S0955-2219(02)00287-X
– volume: 179
  start-page: 318
  year: 2012
  ident: 10.1016/j.micromeso.2015.12.039_bib20
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.11.014
– year: 2011
  ident: 10.1016/j.micromeso.2015.12.039_bib31
– volume: 50
  start-page: 1069
  issue: 10
  year: 2011
  ident: 10.1016/j.micromeso.2015.12.039_bib23
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2011.05.016
– volume: vol. 1
  year: 2009
  ident: 10.1016/j.micromeso.2015.12.039_bib3
– volume: vol. 54
  start-page: 5683
  year: 2015
  ident: 10.1016/j.micromeso.2015.12.039_bib29
  publication-title: Angew. Chemie Int. Ed.
  doi: 10.1002/anie.201501160
– volume: 17
  start-page: 303
  issue: 4
  year: 2010
  ident: 10.1016/j.micromeso.2015.12.039_bib13
  publication-title: Indian J. Chem. Technol.
– volume: 27
  start-page: 555
  issue: 6
  year: 2004
  ident: 10.1016/j.micromeso.2015.12.039_bib10
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/BF02707285
– volume: 56
  start-page: 711
  issue: 3
  year: 1982
  ident: 10.1016/j.micromeso.2015.12.039_bib35
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(82)90056-2
– volume: 357
  start-page: 243
  year: 2011
  ident: 10.1016/j.micromeso.2015.12.039_bib22
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.01.085
– volume: 82
  start-page: 1
  issue: 1–2
  year: 2005
  ident: 10.1016/j.micromeso.2015.12.039_bib1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2005.02.016
– volume: 20
  start-page: 8604
  year: 2004
  ident: 10.1016/j.micromeso.2015.12.039_bib30
  publication-title: Langmuir
  doi: 10.1021/la0499012
– volume: 52
  start-page: 457
  year: 1997
  ident: 10.1016/j.micromeso.2015.12.039_bib24
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(96)00430-7
– volume: 235
  start-page: 322
  year: 2013
  ident: 10.1016/j.micromeso.2015.12.039_bib6
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2012.10.046
– volume: 44
  start-page: 4898
  year: 2005
  ident: 10.1016/j.micromeso.2015.12.039_bib18
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0492350
– volume: 88
  start-page: 1171
  issue: 9
  year: 2015
  ident: 10.1016/j.micromeso.2015.12.039_bib14
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.20150143
– volume: vol. 4
  year: 2008
  ident: 10.1016/j.micromeso.2015.12.039_bib32
– year: 2008
  ident: 10.1016/j.micromeso.2015.12.039_bib27
  article-title: Fluid distribution and blockage diagnosis in parallel MicroChannel configurations
– volume: 22
  start-page: 519
  issue: 4–6
  year: 1998
  ident: 10.1016/j.micromeso.2015.12.039_bib9
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/S1387-1811(98)80014-0
– volume: 7
  start-page: 296
  year: 2006
  ident: 10.1016/j.micromeso.2015.12.039_bib34
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200500449
– year: 2011
  ident: 10.1016/j.micromeso.2015.12.039_bib36
  article-title: “Adsorptive separation of liquid water/acetonitrile mixtures,”
  publication-title: Separation and Purification Technology
  doi: 10.1016/j.seppur.2011.08.027
– volume: 122
  start-page: 652
  year: 2014
  ident: 10.1016/j.micromeso.2015.12.039_bib33
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.07.029
– volume: 189
  start-page: 11
  year: 2014
  ident: 10.1016/j.micromeso.2015.12.039_bib12
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2013.08.014
SSID ssj0017121
Score 2.2441127
Snippet Slow crystallization kinetics and a limited thermodynamical stability of the target crystal phase are characteristic to zeolite formation, representing some of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 133
SubjectTerms CFR
Continuous flow reactor
High throughput screening
LTA
Multiphase flow
NaA
Pilot scale
Zeolite synthesis
Title A continuous flow reactor setup as a tool for rapid synthesis of micron sized NaA zeolite
URI https://dx.doi.org/10.1016/j.micromeso.2015.12.039
Volume 226
WOSCitedRecordID wos000373419400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3093
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017121
  issn: 1387-1811
  databaseCode: AIEXJ
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIf2UHRF0g089CbI0GJtuQlBgjaojaJwU_ckkCIJKLAkw0uS5p_6j50RKUVuA7g59CLIojgUNc_DR2pmSMgHGBSFG0TKFizxYYIiApv7jrRZwnxfJi5zmm06zz9Hk0k8myVfBoNfbSzM5Tyqqvj6Oln8V1XDNVA2hs7eQ92dULgA56B0OILa4fhPik8b9_Oi2qBzq5rXVxbwQlyat1ZyvVngxjIMGGfdBC5aS7YoBOYtACJocpOU6KNXWaviBsjohKXWjUQnuS2foTHeA9Qd28Cl91Ku2p9AgXU3W12eNwE0pQSiqfedmta8YP1iBAmAR5eV1tfh8bAj2LJiPzWszmqQa50Ox71CawwNmarfi7K_huGG-PldR3Eas4sZfoFruH277Hl9y-rqfBlmkHZ1BqS_7L9eirgYNm8Ku47Oe0Gz4KtrbGfc_mMk7PwTW9e3i6wTlKGgzPUyEPSA7HtRkIAR3U8_nczOus9WkWsC_Ux3thwK73ymu-lQj-JMn5InZm5CU42pZ2Qgq-fkcS9j5QvyI6W36KKILmrQRRt0UbaijCK6KKCLNuiiHbporahGF23QRQFd1KDrJfl2ejI9_mib3TnsHEj72o5l5HMhfc8XIRcwFCgvlzznCnoVekzFgnEOZFwq5QUyH8E8hDnci3kcuwrm5f4rslfVlTwglEd-JHIWj0TujDhzYiXRSIQw2oSucpJDErYvKctN6nrcQWWe7VDUIXG6igudvWV3laNWC5khoZpcZoCxXZVf37-9N-TR7T_iLdlbLzfyHXmYX66L1fK9AdhvoEexfQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+continuous+flow+reactor+setup+as+a+tool+for+rapid+synthesis+of+micron+sized+NaA+zeolite&rft.jtitle=Microporous+and+mesoporous+materials&rft.au=Vandermeersch%2C+Tobias&rft.au=Van+Assche%2C+Tom+R.C.&rft.au=Denayer%2C+Joeri+F.M.&rft.au=De+Malsche%2C+Wim&rft.date=2016-05-15&rft.issn=1387-1811&rft.volume=226&rft.spage=133&rft.epage=139&rft_id=info:doi/10.1016%2Fj.micromeso.2015.12.039&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_micromeso_2015_12_039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-1811&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-1811&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-1811&client=summon