Algorithm selection and combining multiple learners for residential energy prediction
Balancing supply and demand management in energy grids requires knowing energy consumption in advance. Therefore, forecasting residential energy consumption accurately plays a key role for future energy systems. For this purpose, in the literature a number of prediction algorithms have been used. Th...
Gespeichert in:
| Veröffentlicht in: | Future generation computer systems Jg. 99; S. 391 - 400 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.10.2019
|
| Schlagworte: | |
| ISSN: | 0167-739X, 1872-7115 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Balancing supply and demand management in energy grids requires knowing energy consumption in advance. Therefore, forecasting residential energy consumption accurately plays a key role for future energy systems. For this purpose, in the literature a number of prediction algorithms have been used. This work aims to increase the accuracy of those predictions as much as possible. Accordingly, we first introduce an algorithm selection approach, which identifies the best prediction algorithm for the given residence with respect to its characteristics such as number of people living, appliances and so on. In addition to this, we also study combining multiple learners to increase the accuracy of the predictions. In our experimental setup, we evaluate the aforementioned approaches. Empirical results show that adopting an algorithm selection approach performs better than any single prediction algorithm. Furthermore, combining multiple learners increases the accuracy of the energy consumption prediction significantly.
•Energy prediction is important for utilities to balance supply and demand.•A single prediction algorithm might not perform well for a variety of households.•In our data set, we see that TESLA outperforms other time series prediction methods.•Algorithm selection performs better than a single prediction algorithm.•Random Forest as our algorithm selection method gives the minimum prediction error.•Combining multiple learners further increases energy prediction accuracy. |
|---|---|
| AbstractList | Balancing supply and demand management in energy grids requires knowing energy consumption in advance. Therefore, forecasting residential energy consumption accurately plays a key role for future energy systems. For this purpose, in the literature a number of prediction algorithms have been used. This work aims to increase the accuracy of those predictions as much as possible. Accordingly, we first introduce an algorithm selection approach, which identifies the best prediction algorithm for the given residence with respect to its characteristics such as number of people living, appliances and so on. In addition to this, we also study combining multiple learners to increase the accuracy of the predictions. In our experimental setup, we evaluate the aforementioned approaches. Empirical results show that adopting an algorithm selection approach performs better than any single prediction algorithm. Furthermore, combining multiple learners increases the accuracy of the energy consumption prediction significantly.
•Energy prediction is important for utilities to balance supply and demand.•A single prediction algorithm might not perform well for a variety of households.•In our data set, we see that TESLA outperforms other time series prediction methods.•Algorithm selection performs better than a single prediction algorithm.•Random Forest as our algorithm selection method gives the minimum prediction error.•Combining multiple learners further increases energy prediction accuracy. |
| Author | Akşanlı, Barış Güngör, Onat Aydoğan, Reyhan |
| Author_xml | – sequence: 1 givenname: Onat surname: Güngör fullname: Güngör, Onat organization: Computer Science and Engineering Department, Özyeğin University, Turkey – sequence: 2 givenname: Barış surname: Akşanlı fullname: Akşanlı, Barış organization: Electrical and Computer Engineering Department, San Diego State University, United States – sequence: 3 givenname: Reyhan surname: Aydoğan fullname: Aydoğan, Reyhan email: reyhan.aydogan@ozyegin.edu.tr organization: Computer Science and Engineering Department, Özyeğin University, Turkey |
| BookMark | eNqFkMtKAzEUhoNUsFXfwEVeYMZkkszFhVCKNyi4seAuJJmTmpJmSpIKfXun1pULXR04nO_n_N8MTcIQAKEbSkpKaH27Ke0-7yOUFaFdSXhJaHuGprRtqqKhVEzQdDxrioZ17xdoltKGEEIbRqdoNffrIbr8scUJPJjshoBV6LEZttoFF9Z4u_fZ7TxgDyoGiAnbIeIIyfUQslMew7hdH_AuQu--E67QuVU-wfXPvESrx4e3xXOxfH16WcyXhWGiykXba92DIB1o3ShGNTeWawGshk61tbU9MMYF1ZS1FbVC8Z6CrW3TcCE4IewS8VOuiUNKEazcRbdV8SApkUc1ciNPauRRjSRcjmpG7O4XZlxWx8dzVM7_B9-fYBiLfTqIMhkHwYzd4-hP9oP7O-ALDuaHfg |
| CitedBy_id | crossref_primary_10_1016_j_compind_2022_103660 crossref_primary_10_1016_j_asoc_2021_107745 crossref_primary_10_1016_j_egyr_2022_09_068 crossref_primary_10_1016_j_engappai_2022_105287 crossref_primary_10_1016_j_jclepro_2020_123866 crossref_primary_10_3390_en13236226 crossref_primary_10_3390_aerospace7120171 crossref_primary_10_1109_ACCESS_2021_3128749 crossref_primary_10_1016_j_watres_2023_120733 crossref_primary_10_1080_02533839_2023_2238777 crossref_primary_10_3390_en17051227 crossref_primary_10_1016_j_future_2020_07_055 crossref_primary_10_1016_j_enbuild_2024_114585 crossref_primary_10_1016_j_energy_2022_125467 crossref_primary_10_1016_j_eswa_2022_117854 crossref_primary_10_1109_ACCESS_2024_3498107 crossref_primary_10_3390_a13110274 crossref_primary_10_1109_JIOT_2021_3097269 crossref_primary_10_1007_s40998_025_00892_5 crossref_primary_10_1016_j_solener_2022_12_031 crossref_primary_10_3390_jsan10020037 |
| Cites_doi | 10.1109/TSMC.1985.6313426 10.1016/S0925-2312(01)00702-0 10.1016/j.apenergy.2010.05.018 10.1093/ijlct/1.3.201 10.1016/j.energy.2006.11.010 10.1115/1.4042451 10.1016/S0378-7796(04)00125-7 10.1016/j.ins.2017.09.050 10.21437/Interspeech.2012-65 10.1016/j.rser.2008.09.033 10.1080/01621459.1970.10481180 10.1023/A:1021251113462 10.1109/TSG.2013.2268581 10.1111/j.1467-8640.2012.00463.x 10.1007/BF01891203 10.1016/j.eswa.2009.07.064 10.1186/cc1820 10.1093/mind/XXVII.3.345 10.1007/s10458-015-9302-8 10.1016/j.apenergy.2006.09.012 10.1016/j.epsr.2008.04.002 10.1016/j.rser.2012.02.049 10.3390/en11061605 10.1016/j.comcom.2013.06.009 10.1587/transinf.2018EDP7056 10.1016/S0004-3702(00)00081-3 10.1016/j.enbuild.2004.09.009 10.1016/S1532-0464(03)00034-0 10.1109/MCOM.2013.6400446 10.1007/s11518-018-5369-5 10.1016/j.buildenv.2012.06.017 10.1016/j.energy.2018.09.144 10.1016/S0378-7788(97)00035-2 10.1016/j.enpol.2011.11.015 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.future.2019.04.018 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7115 |
| EndPage | 400 |
| ExternalDocumentID | 10_1016_j_future_2019_04_018 S0167739X19305795 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c352t-8dbbde509ebb7a31b4cf4b5e36e9a86ffde33451b13821f5a4d1ef6f774554003 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502894300032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-739X |
| IngestDate | Tue Nov 18 22:03:01 EST 2025 Sat Nov 29 07:29:02 EST 2025 Fri Feb 23 02:30:14 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Electricity consumption prediction Algorithm selection Time series prediction Combining multiple learners |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c352t-8dbbde509ebb7a31b4cf4b5e36e9a86ffde33451b13821f5a4d1ef6f774554003 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/abs/pii/S0167739X19305795 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1016_j_future_2019_04_018 crossref_citationtrail_10_1016_j_future_2019_04_018 elsevier_sciencedirect_doi_10_1016_j_future_2019_04_018 |
| PublicationCentury | 2000 |
| PublicationDate | October 2019 2019-10-00 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Aydinalp-Koksal, Ugursal (b29) 2008; 85 Akyurek, Akyurek, Kleissl, Rosing (b19) 2014 Ilany, Gal (b41) 2016; 30 Albadi, El-Saadany (b7) 2008; 78 Tso, Yau (b33) 2007; 32 M. Sundermeyer, R. Schlüter, H. Ney, LSTM neural networks for language modeling, in: Thirteenth Annual Conference of the International Speech Communication Association, 2012. Aksanli, Rosing (b6) 2013 Khairalla, Ning, AL-Jallad, El-Faroug (b39) 2018; 11 Bauer, Scartezzini (b26) 1998; 27 Lucas, Silva, Neto (b10) 2012; 41 Aksanli (b14) 2018 Box, Pierce (b15) 1970; 65 Chatfield (b17) 1978; 27 Clarke (b25) 2007 Kalogirou (b30) 2006; 1 Aydoğan, Fujita, Baarslag, Jonker, Ito (b45) 2019 Yang, Guo, Liu, Steck (b52) 2014; 41 Rice (b40) 1976 Guo, Pan, Fang, Khargonekar (b2) 2013; 4 Gers, Schmidhuber, Cummins (b18) 1999 Kimbara, Kurosu, Endo, Kamimura, Matsuba, Yamada (b27) 1995 SDGE (b11) 2019 xiang Zhao, Magouls (b24) 2012; 16 Alpaydin (b59) 1998 Royston (b62) 1992; 2 Gu, Purdom, Franco, Wah (b49) 1996 Zhang (b16) 2003; 50 Chou, Tran (b38) 2018; 165 Pisello, Taylor, Xu, Cotana (b3) 2012; 58 Aydoğan, Marsa-Maestre, Klein, Jonker (b43) 2018; 27 Keller, Gray, Givens (b56) 1985 Hernández, Baladron, Aguiar, Carro, Sanchez-Esguevillas, Lloret, Chinarro, Gomez-Sanz, Cook (b9) 2013; 51 C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al. A practical guide to support vector classification. Brazdil, Carrier, Soares, Vilalta (b51) 2008 Kayacan, Ulutas, Kaynak (b32) 2010; 37 Lu, Dong, Li (b8) 2005; 73 Thorburn (b61) 1918; 27 Gomes, Selman (b47) 2001; 126 Julong (b23) 1989; 1 Ho, Pepyne (b21) 2002; 115 Venkatesh, Aksanli, Junqua, Morin, Rosing (b4) 2013 Venkatesh, Aksanli, Rosing (b5) 2013 United States Energy Information Administration (b1) 2017 Güneş, Arditi, Aydoğan (b44) 2017 Dreiseitl, Ohno-Machado (b54) 2002; 35 Xu, Hutter, Hoos, Leyton-Brown (b48) 2009; 4 Newsham, Birt (b28) 2010 Swan, Ugursal (b34) 2009; 13 Liaw, Wiener (b57) 2002; 2 Cunha, Soares, de Carvalho (b50) 2018; 423 Pecan Street Incorporation (b20) 2015 Lin, Kraus, Baarslag, Tykhonov, Hindriks, Jonker (b42) 2014; 30 Whitley, Ball (b63) 2002; 6 Rajkumar, Agarwal (b55) 2012 Alimoglu, Alpaydin (b60) 1997 Gensler, Henze, Sick, Raabe (b36) 2016 Sokolova, Aksanli (b13) 2019; 141 Matsune, Fujita (b46) 2018; 101 Bianco, Manca, Nardini, Minea (b22) 2010; 87 P. Chujai, N. Kerdprasop, K. Kerdprasop, Time series analysis of household electric consumption with ARIMA and ARMA models, in: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1, pp. 295–300. Haykin, Network (b37) 2004; 2 Aksanli, Rosing (b12) 2017 Dong, Cao, Lee (b31) 2005; 37 Matsune (10.1016/j.future.2019.04.018_b46) 2018; 101 Yang (10.1016/j.future.2019.04.018_b52) 2014; 41 Güneş (10.1016/j.future.2019.04.018_b44) 2017 Chatfield (10.1016/j.future.2019.04.018_b17) 1978; 27 Aksanli (10.1016/j.future.2019.04.018_b12) 2017 Haykin (10.1016/j.future.2019.04.018_b37) 2004; 2 Hernández (10.1016/j.future.2019.04.018_b9) 2013; 51 Tso (10.1016/j.future.2019.04.018_b33) 2007; 32 Ilany (10.1016/j.future.2019.04.018_b41) 2016; 30 Box (10.1016/j.future.2019.04.018_b15) 1970; 65 Rice (10.1016/j.future.2019.04.018_b40) 1976 Bianco (10.1016/j.future.2019.04.018_b22) 2010; 87 Aydinalp-Koksal (10.1016/j.future.2019.04.018_b29) 2008; 85 Pisello (10.1016/j.future.2019.04.018_b3) 2012; 58 Gensler (10.1016/j.future.2019.04.018_b36) 2016 Liaw (10.1016/j.future.2019.04.018_b57) 2002; 2 Alpaydin (10.1016/j.future.2019.04.018_b59) 1998 Newsham (10.1016/j.future.2019.04.018_b28) 2010 Chou (10.1016/j.future.2019.04.018_b38) 2018; 165 10.1016/j.future.2019.04.018_b58 Khairalla (10.1016/j.future.2019.04.018_b39) 2018; 11 Zhang (10.1016/j.future.2019.04.018_b16) 2003; 50 Aydoğan (10.1016/j.future.2019.04.018_b45) 2019 Clarke (10.1016/j.future.2019.04.018_b25) 2007 10.1016/j.future.2019.04.018_b53 Dong (10.1016/j.future.2019.04.018_b31) 2005; 37 Venkatesh (10.1016/j.future.2019.04.018_b5) 2013 Swan (10.1016/j.future.2019.04.018_b34) 2009; 13 Ho (10.1016/j.future.2019.04.018_b21) 2002; 115 Albadi (10.1016/j.future.2019.04.018_b7) 2008; 78 Aydoğan (10.1016/j.future.2019.04.018_b43) 2018; 27 Bauer (10.1016/j.future.2019.04.018_b26) 1998; 27 Sokolova (10.1016/j.future.2019.04.018_b13) 2019; 141 Aksanli (10.1016/j.future.2019.04.018_b14) 2018 Gers (10.1016/j.future.2019.04.018_b18) 1999 xiang Zhao (10.1016/j.future.2019.04.018_b24) 2012; 16 Venkatesh (10.1016/j.future.2019.04.018_b4) 2013 Cunha (10.1016/j.future.2019.04.018_b50) 2018; 423 Royston (10.1016/j.future.2019.04.018_b62) 1992; 2 Brazdil (10.1016/j.future.2019.04.018_b51) 2008 Lu (10.1016/j.future.2019.04.018_b8) 2005; 73 Kimbara (10.1016/j.future.2019.04.018_b27) 1995 Pecan Street Incorporation (10.1016/j.future.2019.04.018_b20) 2015 Thorburn (10.1016/j.future.2019.04.018_b61) 1918; 27 United States Energy Information Administration (10.1016/j.future.2019.04.018_b1) 2017 Whitley (10.1016/j.future.2019.04.018_b63) 2002; 6 Kalogirou (10.1016/j.future.2019.04.018_b30) 2006; 1 Rajkumar (10.1016/j.future.2019.04.018_b55) 2012 Lin (10.1016/j.future.2019.04.018_b42) 2014; 30 Gu (10.1016/j.future.2019.04.018_b49) 1996 Keller (10.1016/j.future.2019.04.018_b56) 1985 Alimoglu (10.1016/j.future.2019.04.018_b60) 1997 Guo (10.1016/j.future.2019.04.018_b2) 2013; 4 Aksanli (10.1016/j.future.2019.04.018_b6) 2013 Lucas (10.1016/j.future.2019.04.018_b10) 2012; 41 Akyurek (10.1016/j.future.2019.04.018_b19) 2014 10.1016/j.future.2019.04.018_b35 Julong (10.1016/j.future.2019.04.018_b23) 1989; 1 Dreiseitl (10.1016/j.future.2019.04.018_b54) 2002; 35 Kayacan (10.1016/j.future.2019.04.018_b32) 2010; 37 Xu (10.1016/j.future.2019.04.018_b48) 2009; 4 SDGE (10.1016/j.future.2019.04.018_b11) 2019 Gomes (10.1016/j.future.2019.04.018_b47) 2001; 126 |
| References_xml | – volume: 32 start-page: 1761 year: 2007 end-page: 1768 ident: b33 article-title: Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks publication-title: Energy – start-page: 157 year: 2013 end-page: 162 ident: b6 article-title: Optimal battery configuration in a residential home with time-of-use pricing publication-title: 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm) – start-page: 1 year: 2013 end-page: 8 ident: b4 article-title: Homesim: comprehensive, smart, residential electrical energy simulation and scheduling publication-title: 2013 International Green Computing Conference Proceedings – volume: 30 start-page: 697 year: 2016 end-page: 723 ident: b41 article-title: Algorithm selection in bilateral negotiation publication-title: Auton. Agent. Multi-Ag. Syst. – volume: 41 start-page: 1 year: 2014 end-page: 10 ident: b52 article-title: A survey of collaborative filtering based social recommender systems publication-title: Comput. Commun. – volume: 85 start-page: 271 year: 2008 end-page: 296 ident: b29 article-title: Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector publication-title: Appl. Energy – volume: 51 start-page: 106 year: 2013 end-page: 113 ident: b9 article-title: A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants publication-title: IEEE Commun. Mag. – volume: 41 start-page: 537 year: 2012 end-page: 547 ident: b10 article-title: Life cycle analysis of energy supply infrastructure for conventional and electric vehicles publication-title: Energy Policy – volume: 65 start-page: 1509 year: 1970 end-page: 1526 ident: b15 article-title: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models publication-title: J. Am. Stat. Assoc. – volume: 27 start-page: 134 year: 2018 end-page: 155 ident: b43 article-title: A machine learning approach for mechanism selection in complex negotiations publication-title: J. Syst. Sci. Syst. Eng. – volume: 27 start-page: 264 year: 1978 end-page: 279 ident: b17 article-title: The holt-winters forecasting procedure publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat. – year: 1998 ident: b59 article-title: Techniques for combining multiple learners publication-title: Proceedings of Engineering of Intelligent Systems – reference: C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al. A practical guide to support vector classification. – volume: 4 start-page: 53 year: 2009 end-page: 55 ident: b48 article-title: Satzilla2009: an automatic algorithm portfolio for sat publication-title: SAT – start-page: 933 year: 2012 end-page: 941 ident: b55 article-title: A differentially private stochastic gradient descent algorithm for multiparty classification publication-title: Artificial Intelligence and Statistics – volume: 27 start-page: 147 year: 1998 end-page: 154 ident: b26 article-title: A simplified correlation method accounting for heating and cooling loads in energy-efficient buildings publication-title: Energy Build. – year: 1996 ident: b49 article-title: Algorithms for the satisfiability (sat) problem: a survey – year: 2018 ident: b14 article-title: Accurate and data-limited prediction for smart home energy management publication-title: ASME 2018 12th International Conference on Energy Sustainability collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum – start-page: 65 year: 1976 end-page: 118 ident: b40 article-title: The algorithm selection problem publication-title: Advances in Computers, vol. 15 – volume: 101 start-page: 2474 year: 2018 end-page: 2484 ident: b46 article-title: Weighting estimation methods for opponents’ utility functions using boosting in multi-time negotiations publication-title: IEICE Trans. Inf. Syst. – volume: 35 start-page: 352 year: 2002 end-page: 359 ident: b54 article-title: Logistic regression and artificial neural network classification models: a methodology review publication-title: J. Biomed. Inform. – start-page: 000161 year: 2013 end-page: 000166 ident: b5 article-title: Residential energy simulation and scheduling: a case study approach publication-title: 2013 IEEE Symposium on Computers and Communications (ISCC) – year: 2007 ident: b25 article-title: Energy simulation in building design – start-page: 127 year: 2014 end-page: 132 ident: b19 article-title: Tesla: taylor expanded solar analog forecasting publication-title: 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm) – volume: 87 start-page: 3584 year: 2010 end-page: 3590 ident: b22 article-title: Analysis and forecasting of nonresidential electricity consumption in romania publication-title: Appl. Energy – volume: 37 start-page: 1784 year: 2010 end-page: 1789 ident: b32 article-title: Grey system theory-based models in time series prediction publication-title: Expert Syst. Appl. – year: 2019 ident: b11 article-title: Reduce your use rewards – volume: 126 start-page: 43 year: 2001 end-page: 62 ident: b47 article-title: Algorithm portfolios publication-title: Artificial Intelligence – volume: 30 start-page: 48 year: 2014 end-page: 70 ident: b42 article-title: Genius: an integrated environment for supporting the design of generic automated negotiators publication-title: Comput. Intell. – volume: 16 start-page: 3586 year: 2012 end-page: 3592 ident: b24 article-title: A review on the prediction of building energy consumption publication-title: Renew. Sustain. Energy Rev. – volume: 11 start-page: 1605 year: 2018 ident: b39 article-title: Short-term forecasting for energy consumption through stacking heterogeneous ensemble learning model publication-title: Energies – year: 2017 ident: b12 article-title: Human behavior aware energy management in residential cyber-physical systems publication-title: IEEE Trans. Emerg. Top. Comput. – volume: 13 start-page: 1819 year: 2009 end-page: 1835 ident: b34 article-title: Modeling of end-use energy consumption in the residential sector: a review of modeling techniques publication-title: Renew. Sust. Energ. Rev. – reference: P. Chujai, N. Kerdprasop, K. Kerdprasop, Time series analysis of household electric consumption with ARIMA and ARMA models, in: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1, pp. 295–300. – volume: 27 start-page: 345 year: 1918 end-page: 353 ident: b61 article-title: The myth of occam’s razor publication-title: Mind – volume: 423 start-page: 128 year: 2018 end-page: 144 ident: b50 article-title: Metalearning and recommender systems: a literature review and empirical study on the algorithm selection problem for collaborative filtering publication-title: Inform. Sci. – volume: 58 start-page: 37 year: 2012 end-page: 45 ident: b3 article-title: Inter-building effect: simulating the impact of a network of buildings on the accuracy of building energy performance predictions publication-title: Build. Environ. – volume: 141 start-page: 062003 year: 2019 ident: b13 article-title: Demographical energy usage analysis of residential buildings publication-title: J. Energ. Resour. Technol. – year: 2015 ident: b20 article-title: Dataport – volume: 50 start-page: 159 year: 2003 end-page: 175 ident: b16 article-title: Time series forecasting using a hybrid arima and neural network model publication-title: Neurocomputing – start-page: 580 year: 1985 end-page: 585 ident: b56 article-title: A fuzzy k-nearest neighbor algorithm publication-title: IEEE Trans. Syst. Man Cybern. – volume: 78 start-page: 1989 year: 2008 end-page: 1996 ident: b7 article-title: A summary of demand response in electricity markets publication-title: Electr. Pow. Syst. Res. – start-page: 450 year: 2017 end-page: 458 ident: b44 article-title: Collective voice of experts in multilateral negotiation publication-title: International Conference on Principles and Practice of Multi-Agent Systems – volume: 2 start-page: 117 year: 1992 end-page: 119 ident: b62 article-title: Approximating the shapiro-wilk w-test for non-normality publication-title: Stat. Comput. – volume: 6 start-page: 509 year: 2002 ident: b63 article-title: Statistics review 6: Nonparametric methods publication-title: Crit. Care – start-page: 13 year: 2010 end-page: 18 ident: b28 article-title: Building-level occupancy data to improve arima-based electricity use forecasts publication-title: Proceedings of the 2nd ACM workshop on embedded sensing systems for energy-efficiency in building – volume: 165 start-page: 709 year: 2018 end-page: 726 ident: b38 article-title: Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders publication-title: Energy – volume: 37 start-page: 545 year: 2005 end-page: 553 ident: b31 article-title: Applying support vector machines to predict building energy consumption in tropical region publication-title: Energy Build. – volume: 1 start-page: 1 year: 1989 end-page: 24 ident: b23 article-title: Introduction to grey system theory publication-title: J. Grey Syst. – year: 2019 ident: b45 article-title: Anac 2017: repeated multilateral negotiation league publication-title: Advances in Automated Negotiations – year: 1995 ident: b27 article-title: On-line prediction for load profile of an air-conditioning system – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: b57 article-title: Classification and regression by randomforest publication-title: R news – year: 1999 ident: b18 article-title: Learning to forget: Continual prediction with LSTM – volume: 73 start-page: 19 year: 2005 end-page: 29 ident: b8 article-title: Electricity market price spike forecast with data mining techniques publication-title: Electr. Pow. Syst. Res. – volume: 1 start-page: 201 year: 2006 end-page: 216 ident: b30 article-title: Artificial neural networks in energy applications in buildings publication-title: Int. J. Low-Carbon Technol. – volume: 115 start-page: 549 year: 2002 end-page: 570 ident: b21 article-title: Simple explanation of the no-free-lunch theorem and its implications publication-title: J. Optim. Theory Appl. – start-page: 002858 year: 2016 end-page: 002865 ident: b36 article-title: Deep learning for solar power forecasting an approach using autoencoder and lstm neural networks publication-title: 2016 IEEE international conference on systems, man, and cybernetics (SMC) – volume: 4 start-page: 1341 year: 2013 end-page: 1350 ident: b2 article-title: Decentralized coordination of energy utilization for residential households in the smart grid publication-title: IEEE Trans. Smart Grid – volume: 2 start-page: 41 year: 2004 ident: b37 article-title: A comprehensive foundation publication-title: Neural Netw. – reference: M. Sundermeyer, R. Schlüter, H. Ney, LSTM neural networks for language modeling, in: Thirteenth Annual Conference of the International Speech Communication Association, 2012. – start-page: 637 year: 1997 end-page: 640 ident: b60 article-title: Combining multiple representations and classifiers for pen-based handwritten digit recognition publication-title: Proceedings of the Fourth International Conference on Document Analysis and Recognition, vol. 2 – year: 2017 ident: b1 article-title: How much energy is consumed in US residential and commercial buildings? – year: 2008 ident: b51 article-title: Metalearning: Applications to Data Mining – year: 2007 ident: 10.1016/j.future.2019.04.018_b25 – year: 2018 ident: 10.1016/j.future.2019.04.018_b14 article-title: Accurate and data-limited prediction for smart home energy management – year: 2015 ident: 10.1016/j.future.2019.04.018_b20 – start-page: 580 issue: 4 year: 1985 ident: 10.1016/j.future.2019.04.018_b56 article-title: A fuzzy k-nearest neighbor algorithm publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1985.6313426 – volume: 50 start-page: 159 year: 2003 ident: 10.1016/j.future.2019.04.018_b16 article-title: Time series forecasting using a hybrid arima and neural network model publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00702-0 – volume: 87 start-page: 3584 issue: 11 year: 2010 ident: 10.1016/j.future.2019.04.018_b22 article-title: Analysis and forecasting of nonresidential electricity consumption in romania publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.05.018 – year: 2008 ident: 10.1016/j.future.2019.04.018_b51 – start-page: 157 year: 2013 ident: 10.1016/j.future.2019.04.018_b6 article-title: Optimal battery configuration in a residential home with time-of-use pricing – volume: 1 start-page: 201 issue: 3 year: 2006 ident: 10.1016/j.future.2019.04.018_b30 article-title: Artificial neural networks in energy applications in buildings publication-title: Int. J. Low-Carbon Technol. doi: 10.1093/ijlct/1.3.201 – volume: 32 start-page: 1761 issn: 0360-5442 issue: 9 year: 2007 ident: 10.1016/j.future.2019.04.018_b33 article-title: Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks publication-title: Energy doi: 10.1016/j.energy.2006.11.010 – start-page: 1 year: 2013 ident: 10.1016/j.future.2019.04.018_b4 article-title: Homesim: comprehensive, smart, residential electrical energy simulation and scheduling – volume: 141 start-page: 062003 issue: 6 year: 2019 ident: 10.1016/j.future.2019.04.018_b13 article-title: Demographical energy usage analysis of residential buildings publication-title: J. Energ. Resour. Technol. doi: 10.1115/1.4042451 – volume: 73 start-page: 19 issue: 1 year: 2005 ident: 10.1016/j.future.2019.04.018_b8 article-title: Electricity market price spike forecast with data mining techniques publication-title: Electr. Pow. Syst. Res. doi: 10.1016/S0378-7796(04)00125-7 – year: 1995 ident: 10.1016/j.future.2019.04.018_b27 – year: 2019 ident: 10.1016/j.future.2019.04.018_b11 – start-page: 450 year: 2017 ident: 10.1016/j.future.2019.04.018_b44 article-title: Collective voice of experts in multilateral negotiation – volume: 423 start-page: 128 year: 2018 ident: 10.1016/j.future.2019.04.018_b50 article-title: Metalearning and recommender systems: a literature review and empirical study on the algorithm selection problem for collaborative filtering publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.09.050 – ident: 10.1016/j.future.2019.04.018_b53 doi: 10.21437/Interspeech.2012-65 – volume: 13 start-page: 1819 issue: 8 year: 2009 ident: 10.1016/j.future.2019.04.018_b34 article-title: Modeling of end-use energy consumption in the residential sector: a review of modeling techniques publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2008.09.033 – volume: 65 start-page: 1509 issue: 332 year: 1970 ident: 10.1016/j.future.2019.04.018_b15 article-title: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1970.10481180 – start-page: 13 year: 2010 ident: 10.1016/j.future.2019.04.018_b28 article-title: Building-level occupancy data to improve arima-based electricity use forecasts – volume: 115 start-page: 549 issue: 3 year: 2002 ident: 10.1016/j.future.2019.04.018_b21 article-title: Simple explanation of the no-free-lunch theorem and its implications publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1021251113462 – volume: 4 start-page: 1341 issue: 3 year: 2013 ident: 10.1016/j.future.2019.04.018_b2 article-title: Decentralized coordination of energy utilization for residential households in the smart grid publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2013.2268581 – issue: 1 year: 2017 ident: 10.1016/j.future.2019.04.018_b12 article-title: Human behavior aware energy management in residential cyber-physical systems publication-title: IEEE Trans. Emerg. Top. Comput. – volume: 30 start-page: 48 issue: 1 year: 2014 ident: 10.1016/j.future.2019.04.018_b42 article-title: Genius: an integrated environment for supporting the design of generic automated negotiators publication-title: Comput. Intell. doi: 10.1111/j.1467-8640.2012.00463.x – volume: 4 start-page: 53 year: 2009 ident: 10.1016/j.future.2019.04.018_b48 article-title: Satzilla2009: an automatic algorithm portfolio for sat publication-title: SAT – year: 1998 ident: 10.1016/j.future.2019.04.018_b59 article-title: Techniques for combining multiple learners – year: 2019 ident: 10.1016/j.future.2019.04.018_b45 article-title: Anac 2017: repeated multilateral negotiation league – volume: 2 start-page: 117 issue: 3 year: 1992 ident: 10.1016/j.future.2019.04.018_b62 article-title: Approximating the shapiro-wilk w-test for non-normality publication-title: Stat. Comput. doi: 10.1007/BF01891203 – start-page: 637 year: 1997 ident: 10.1016/j.future.2019.04.018_b60 article-title: Combining multiple representations and classifiers for pen-based handwritten digit recognition – start-page: 65 year: 1976 ident: 10.1016/j.future.2019.04.018_b40 article-title: The algorithm selection problem – volume: 37 start-page: 1784 issue: 2 year: 2010 ident: 10.1016/j.future.2019.04.018_b32 article-title: Grey system theory-based models in time series prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.07.064 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.future.2019.04.018_b57 article-title: Classification and regression by randomforest publication-title: R news – volume: 6 start-page: 509 issue: 6 year: 2002 ident: 10.1016/j.future.2019.04.018_b63 article-title: Statistics review 6: Nonparametric methods publication-title: Crit. Care doi: 10.1186/cc1820 – start-page: 127 year: 2014 ident: 10.1016/j.future.2019.04.018_b19 article-title: Tesla: taylor expanded solar analog forecasting – volume: 27 start-page: 345 issue: 107 year: 1918 ident: 10.1016/j.future.2019.04.018_b61 article-title: The myth of occam’s razor publication-title: Mind doi: 10.1093/mind/XXVII.3.345 – year: 2017 ident: 10.1016/j.future.2019.04.018_b1 – volume: 30 start-page: 697 issue: 4 year: 2016 ident: 10.1016/j.future.2019.04.018_b41 article-title: Algorithm selection in bilateral negotiation publication-title: Auton. Agent. Multi-Ag. Syst. doi: 10.1007/s10458-015-9302-8 – volume: 85 start-page: 271 issue: 4 year: 2008 ident: 10.1016/j.future.2019.04.018_b29 article-title: Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector publication-title: Appl. Energy doi: 10.1016/j.apenergy.2006.09.012 – volume: 78 start-page: 1989 issue: 11 year: 2008 ident: 10.1016/j.future.2019.04.018_b7 article-title: A summary of demand response in electricity markets publication-title: Electr. Pow. Syst. Res. doi: 10.1016/j.epsr.2008.04.002 – volume: 16 start-page: 3586 issn: 1364-0321 issue: 6 year: 2012 ident: 10.1016/j.future.2019.04.018_b24 article-title: A review on the prediction of building energy consumption publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.02.049 – volume: 2 start-page: 41 issue: 2004 year: 2004 ident: 10.1016/j.future.2019.04.018_b37 article-title: A comprehensive foundation publication-title: Neural Netw. – volume: 11 start-page: 1605 issue: 6 year: 2018 ident: 10.1016/j.future.2019.04.018_b39 article-title: Short-term forecasting for energy consumption through stacking heterogeneous ensemble learning model publication-title: Energies doi: 10.3390/en11061605 – volume: 27 start-page: 264 issue: 3 year: 1978 ident: 10.1016/j.future.2019.04.018_b17 article-title: The holt-winters forecasting procedure publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat. – ident: 10.1016/j.future.2019.04.018_b35 – volume: 41 start-page: 1 year: 2014 ident: 10.1016/j.future.2019.04.018_b52 article-title: A survey of collaborative filtering based social recommender systems publication-title: Comput. Commun. doi: 10.1016/j.comcom.2013.06.009 – ident: 10.1016/j.future.2019.04.018_b58 – volume: 101 start-page: 2474 issue: 10 year: 2018 ident: 10.1016/j.future.2019.04.018_b46 article-title: Weighting estimation methods for opponents’ utility functions using boosting in multi-time negotiations publication-title: IEICE Trans. Inf. Syst. doi: 10.1587/transinf.2018EDP7056 – volume: 126 start-page: 43 issn: 0004-3702 issue: 1 year: 2001 ident: 10.1016/j.future.2019.04.018_b47 article-title: Algorithm portfolios publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(00)00081-3 – year: 1999 ident: 10.1016/j.future.2019.04.018_b18 – volume: 37 start-page: 545 issue: 5 year: 2005 ident: 10.1016/j.future.2019.04.018_b31 article-title: Applying support vector machines to predict building energy consumption in tropical region publication-title: Energy Build. doi: 10.1016/j.enbuild.2004.09.009 – start-page: 933 year: 2012 ident: 10.1016/j.future.2019.04.018_b55 article-title: A differentially private stochastic gradient descent algorithm for multiparty classification – volume: 35 start-page: 352 issue: 5–6 year: 2002 ident: 10.1016/j.future.2019.04.018_b54 article-title: Logistic regression and artificial neural network classification models: a methodology review publication-title: J. Biomed. Inform. doi: 10.1016/S1532-0464(03)00034-0 – volume: 51 start-page: 106 issue: 1 year: 2013 ident: 10.1016/j.future.2019.04.018_b9 article-title: A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2013.6400446 – volume: 1 start-page: 1 issue: 1 year: 1989 ident: 10.1016/j.future.2019.04.018_b23 article-title: Introduction to grey system theory publication-title: J. Grey Syst. – volume: 27 start-page: 134 issue: 2 year: 2018 ident: 10.1016/j.future.2019.04.018_b43 article-title: A machine learning approach for mechanism selection in complex negotiations publication-title: J. Syst. Sci. Syst. Eng. doi: 10.1007/s11518-018-5369-5 – volume: 58 start-page: 37 year: 2012 ident: 10.1016/j.future.2019.04.018_b3 article-title: Inter-building effect: simulating the impact of a network of buildings on the accuracy of building energy performance predictions publication-title: Build. Environ. doi: 10.1016/j.buildenv.2012.06.017 – start-page: 000161 year: 2013 ident: 10.1016/j.future.2019.04.018_b5 article-title: Residential energy simulation and scheduling: a case study approach – volume: 165 start-page: 709 year: 2018 ident: 10.1016/j.future.2019.04.018_b38 article-title: Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders publication-title: Energy doi: 10.1016/j.energy.2018.09.144 – start-page: 002858 year: 2016 ident: 10.1016/j.future.2019.04.018_b36 article-title: Deep learning for solar power forecasting an approach using autoencoder and lstm neural networks – volume: 27 start-page: 147 issue: 2 year: 1998 ident: 10.1016/j.future.2019.04.018_b26 article-title: A simplified correlation method accounting for heating and cooling loads in energy-efficient buildings publication-title: Energy Build. doi: 10.1016/S0378-7788(97)00035-2 – volume: 41 start-page: 537 year: 2012 ident: 10.1016/j.future.2019.04.018_b10 article-title: Life cycle analysis of energy supply infrastructure for conventional and electric vehicles publication-title: Energy Policy doi: 10.1016/j.enpol.2011.11.015 – year: 1996 ident: 10.1016/j.future.2019.04.018_b49 |
| SSID | ssj0001731 |
| Score | 2.4135022 |
| Snippet | Balancing supply and demand management in energy grids requires knowing energy consumption in advance. Therefore, forecasting residential energy consumption... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 391 |
| SubjectTerms | Algorithm selection Combining multiple learners Electricity consumption prediction Time series prediction |
| Title | Algorithm selection and combining multiple learners for residential energy prediction |
| URI | https://dx.doi.org/10.1016/j.future.2019.04.018 |
| Volume | 99 |
| WOSCitedRecordID | wos000502894300032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELbS0EMvUPpQ6Us-lFO1Vbb2PnwMEbRUiPYAUm4rv7ZAwyYKKYJf0r_L2B47tCBaDr3sJo7Xu8l8mRnbM_MR8k7lWg8qVWfcGpZx3Q6y2iqeGVaC-ajtoDW-zuxetb9fj8fiW6_3K-bCnE-qrqsvLsTsv4oa2kDYLnX2HuJOg0IDvAahwxHEDsd_Evxw8n0KM_6j0_dnnuMmxhvDvZRng1gGEXrKCJfB62INYd597LN2QWg2ZATO5m4bJ4kusnn6MiSOe9kifDRSQ2Bd6OSmf3Lb8FsjUCfuXHpwfO1kirQZ_tgcFZtiR3bexd3KcQcE3_jPUt9LM3XtrnfAxeURIhsXLXKRwt_SOibo54p5Ft2kiANTEmpSFki80ChzX870pr4PSw8nH0IBFhepJ3zlWtTpv5XX_sPspWDEGOd20oRRGjdKM-ANjPKArHysClH3ycpwd3v8JRn5vEKqS_weMSvThw7efJrbvZ5rnszBY7KKUxA6DNBZJz3bPSFrkd6DorZ_Sg4TkmhCEgUk0YQkGpFEI5IoIIleQxINSKJLJD0jhzvbB6PPGbJwZBqc80VWG6WMBb_SKlVJliv4Q3NVWFZaIeuybY1ljBe5ctUs87aQ3OS2LVuYV4CrCkbjOel3086-cGF04LAboWGSwLkG0yGNFMLIVmoNbrHaICz-So3GEvWOKWXS3CWjDZKlq2ahRMtf-ldRAA26mcF9bABVd1758p53ekUeLcH_mvQX85_2DXmozxfHZ_O3CKkrrUaiAA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithm+selection+and+combining+multiple+learners+for+residential+energy+prediction&rft.jtitle=Future+generation+computer+systems&rft.au=G%C3%BCng%C3%B6r%2C+Onat&rft.au=Ak%C5%9Fanl%C4%B1%2C+Bar%C4%B1%C5%9F&rft.au=Aydo%C4%9Fan%2C+Reyhan&rft.date=2019-10-01&rft.issn=0167-739X&rft.volume=99&rft.spage=391&rft.epage=400&rft_id=info:doi/10.1016%2Fj.future.2019.04.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2019_04_018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |