Algorithm selection and combining multiple learners for residential energy prediction

Balancing supply and demand management in energy grids requires knowing energy consumption in advance. Therefore, forecasting residential energy consumption accurately plays a key role for future energy systems. For this purpose, in the literature a number of prediction algorithms have been used. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future generation computer systems Jg. 99; S. 391 - 400
Hauptverfasser: Güngör, Onat, Akşanlı, Barış, Aydoğan, Reyhan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.10.2019
Schlagworte:
ISSN:0167-739X, 1872-7115
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Balancing supply and demand management in energy grids requires knowing energy consumption in advance. Therefore, forecasting residential energy consumption accurately plays a key role for future energy systems. For this purpose, in the literature a number of prediction algorithms have been used. This work aims to increase the accuracy of those predictions as much as possible. Accordingly, we first introduce an algorithm selection approach, which identifies the best prediction algorithm for the given residence with respect to its characteristics such as number of people living, appliances and so on. In addition to this, we also study combining multiple learners to increase the accuracy of the predictions. In our experimental setup, we evaluate the aforementioned approaches. Empirical results show that adopting an algorithm selection approach performs better than any single prediction algorithm. Furthermore, combining multiple learners increases the accuracy of the energy consumption prediction significantly. •Energy prediction is important for utilities to balance supply and demand.•A single prediction algorithm might not perform well for a variety of households.•In our data set, we see that TESLA outperforms other time series prediction methods.•Algorithm selection performs better than a single prediction algorithm.•Random Forest as our algorithm selection method gives the minimum prediction error.•Combining multiple learners further increases energy prediction accuracy.
AbstractList Balancing supply and demand management in energy grids requires knowing energy consumption in advance. Therefore, forecasting residential energy consumption accurately plays a key role for future energy systems. For this purpose, in the literature a number of prediction algorithms have been used. This work aims to increase the accuracy of those predictions as much as possible. Accordingly, we first introduce an algorithm selection approach, which identifies the best prediction algorithm for the given residence with respect to its characteristics such as number of people living, appliances and so on. In addition to this, we also study combining multiple learners to increase the accuracy of the predictions. In our experimental setup, we evaluate the aforementioned approaches. Empirical results show that adopting an algorithm selection approach performs better than any single prediction algorithm. Furthermore, combining multiple learners increases the accuracy of the energy consumption prediction significantly. •Energy prediction is important for utilities to balance supply and demand.•A single prediction algorithm might not perform well for a variety of households.•In our data set, we see that TESLA outperforms other time series prediction methods.•Algorithm selection performs better than a single prediction algorithm.•Random Forest as our algorithm selection method gives the minimum prediction error.•Combining multiple learners further increases energy prediction accuracy.
Author Akşanlı, Barış
Güngör, Onat
Aydoğan, Reyhan
Author_xml – sequence: 1
  givenname: Onat
  surname: Güngör
  fullname: Güngör, Onat
  organization: Computer Science and Engineering Department, Özyeğin University, Turkey
– sequence: 2
  givenname: Barış
  surname: Akşanlı
  fullname: Akşanlı, Barış
  organization: Electrical and Computer Engineering Department, San Diego State University, United States
– sequence: 3
  givenname: Reyhan
  surname: Aydoğan
  fullname: Aydoğan, Reyhan
  email: reyhan.aydogan@ozyegin.edu.tr
  organization: Computer Science and Engineering Department, Özyeğin University, Turkey
BookMark eNqFkMtKAzEUhoNUsFXfwEVeYMZkkszFhVCKNyi4seAuJJmTmpJmSpIKfXun1pULXR04nO_n_N8MTcIQAKEbSkpKaH27Ke0-7yOUFaFdSXhJaHuGprRtqqKhVEzQdDxrioZ17xdoltKGEEIbRqdoNffrIbr8scUJPJjshoBV6LEZttoFF9Z4u_fZ7TxgDyoGiAnbIeIIyfUQslMew7hdH_AuQu--E67QuVU-wfXPvESrx4e3xXOxfH16WcyXhWGiykXba92DIB1o3ShGNTeWawGshk61tbU9MMYF1ZS1FbVC8Z6CrW3TcCE4IewS8VOuiUNKEazcRbdV8SApkUc1ciNPauRRjSRcjmpG7O4XZlxWx8dzVM7_B9-fYBiLfTqIMhkHwYzd4-hP9oP7O-ALDuaHfg
CitedBy_id crossref_primary_10_1016_j_compind_2022_103660
crossref_primary_10_1016_j_asoc_2021_107745
crossref_primary_10_1016_j_egyr_2022_09_068
crossref_primary_10_1016_j_engappai_2022_105287
crossref_primary_10_1016_j_jclepro_2020_123866
crossref_primary_10_3390_en13236226
crossref_primary_10_3390_aerospace7120171
crossref_primary_10_1109_ACCESS_2021_3128749
crossref_primary_10_1016_j_watres_2023_120733
crossref_primary_10_1080_02533839_2023_2238777
crossref_primary_10_3390_en17051227
crossref_primary_10_1016_j_future_2020_07_055
crossref_primary_10_1016_j_enbuild_2024_114585
crossref_primary_10_1016_j_energy_2022_125467
crossref_primary_10_1016_j_eswa_2022_117854
crossref_primary_10_1109_ACCESS_2024_3498107
crossref_primary_10_3390_a13110274
crossref_primary_10_1109_JIOT_2021_3097269
crossref_primary_10_1007_s40998_025_00892_5
crossref_primary_10_1016_j_solener_2022_12_031
crossref_primary_10_3390_jsan10020037
Cites_doi 10.1109/TSMC.1985.6313426
10.1016/S0925-2312(01)00702-0
10.1016/j.apenergy.2010.05.018
10.1093/ijlct/1.3.201
10.1016/j.energy.2006.11.010
10.1115/1.4042451
10.1016/S0378-7796(04)00125-7
10.1016/j.ins.2017.09.050
10.21437/Interspeech.2012-65
10.1016/j.rser.2008.09.033
10.1080/01621459.1970.10481180
10.1023/A:1021251113462
10.1109/TSG.2013.2268581
10.1111/j.1467-8640.2012.00463.x
10.1007/BF01891203
10.1016/j.eswa.2009.07.064
10.1186/cc1820
10.1093/mind/XXVII.3.345
10.1007/s10458-015-9302-8
10.1016/j.apenergy.2006.09.012
10.1016/j.epsr.2008.04.002
10.1016/j.rser.2012.02.049
10.3390/en11061605
10.1016/j.comcom.2013.06.009
10.1587/transinf.2018EDP7056
10.1016/S0004-3702(00)00081-3
10.1016/j.enbuild.2004.09.009
10.1016/S1532-0464(03)00034-0
10.1109/MCOM.2013.6400446
10.1007/s11518-018-5369-5
10.1016/j.buildenv.2012.06.017
10.1016/j.energy.2018.09.144
10.1016/S0378-7788(97)00035-2
10.1016/j.enpol.2011.11.015
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2019.04.018
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 400
ExternalDocumentID 10_1016_j_future_2019_04_018
S0167739X19305795
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c352t-8dbbde509ebb7a31b4cf4b5e36e9a86ffde33451b13821f5a4d1ef6f774554003
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502894300032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Tue Nov 18 22:03:01 EST 2025
Sat Nov 29 07:29:02 EST 2025
Fri Feb 23 02:30:14 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Electricity consumption prediction
Algorithm selection
Time series prediction
Combining multiple learners
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-8dbbde509ebb7a31b4cf4b5e36e9a86ffde33451b13821f5a4d1ef6f774554003
OpenAccessLink https://www.sciencedirect.com/science/article/abs/pii/S0167739X19305795
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_future_2019_04_018
crossref_citationtrail_10_1016_j_future_2019_04_018
elsevier_sciencedirect_doi_10_1016_j_future_2019_04_018
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationTitle Future generation computer systems
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Aydinalp-Koksal, Ugursal (b29) 2008; 85
Akyurek, Akyurek, Kleissl, Rosing (b19) 2014
Ilany, Gal (b41) 2016; 30
Albadi, El-Saadany (b7) 2008; 78
Tso, Yau (b33) 2007; 32
M. Sundermeyer, R. Schlüter, H. Ney, LSTM neural networks for language modeling, in: Thirteenth Annual Conference of the International Speech Communication Association, 2012.
Aksanli, Rosing (b6) 2013
Khairalla, Ning, AL-Jallad, El-Faroug (b39) 2018; 11
Bauer, Scartezzini (b26) 1998; 27
Lucas, Silva, Neto (b10) 2012; 41
Aksanli (b14) 2018
Box, Pierce (b15) 1970; 65
Chatfield (b17) 1978; 27
Clarke (b25) 2007
Kalogirou (b30) 2006; 1
Aydoğan, Fujita, Baarslag, Jonker, Ito (b45) 2019
Yang, Guo, Liu, Steck (b52) 2014; 41
Rice (b40) 1976
Guo, Pan, Fang, Khargonekar (b2) 2013; 4
Gers, Schmidhuber, Cummins (b18) 1999
Kimbara, Kurosu, Endo, Kamimura, Matsuba, Yamada (b27) 1995
SDGE (b11) 2019
xiang Zhao, Magouls (b24) 2012; 16
Alpaydin (b59) 1998
Royston (b62) 1992; 2
Gu, Purdom, Franco, Wah (b49) 1996
Zhang (b16) 2003; 50
Chou, Tran (b38) 2018; 165
Pisello, Taylor, Xu, Cotana (b3) 2012; 58
Aydoğan, Marsa-Maestre, Klein, Jonker (b43) 2018; 27
Keller, Gray, Givens (b56) 1985
Hernández, Baladron, Aguiar, Carro, Sanchez-Esguevillas, Lloret, Chinarro, Gomez-Sanz, Cook (b9) 2013; 51
C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al. A practical guide to support vector classification.
Brazdil, Carrier, Soares, Vilalta (b51) 2008
Kayacan, Ulutas, Kaynak (b32) 2010; 37
Lu, Dong, Li (b8) 2005; 73
Thorburn (b61) 1918; 27
Gomes, Selman (b47) 2001; 126
Julong (b23) 1989; 1
Ho, Pepyne (b21) 2002; 115
Venkatesh, Aksanli, Junqua, Morin, Rosing (b4) 2013
Venkatesh, Aksanli, Rosing (b5) 2013
United States Energy Information Administration (b1) 2017
Güneş, Arditi, Aydoğan (b44) 2017
Dreiseitl, Ohno-Machado (b54) 2002; 35
Xu, Hutter, Hoos, Leyton-Brown (b48) 2009; 4
Newsham, Birt (b28) 2010
Swan, Ugursal (b34) 2009; 13
Liaw, Wiener (b57) 2002; 2
Cunha, Soares, de Carvalho (b50) 2018; 423
Pecan Street Incorporation (b20) 2015
Lin, Kraus, Baarslag, Tykhonov, Hindriks, Jonker (b42) 2014; 30
Whitley, Ball (b63) 2002; 6
Rajkumar, Agarwal (b55) 2012
Alimoglu, Alpaydin (b60) 1997
Gensler, Henze, Sick, Raabe (b36) 2016
Sokolova, Aksanli (b13) 2019; 141
Matsune, Fujita (b46) 2018; 101
Bianco, Manca, Nardini, Minea (b22) 2010; 87
P. Chujai, N. Kerdprasop, K. Kerdprasop, Time series analysis of household electric consumption with ARIMA and ARMA models, in: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1, pp. 295–300.
Haykin, Network (b37) 2004; 2
Aksanli, Rosing (b12) 2017
Dong, Cao, Lee (b31) 2005; 37
Matsune (10.1016/j.future.2019.04.018_b46) 2018; 101
Yang (10.1016/j.future.2019.04.018_b52) 2014; 41
Güneş (10.1016/j.future.2019.04.018_b44) 2017
Chatfield (10.1016/j.future.2019.04.018_b17) 1978; 27
Aksanli (10.1016/j.future.2019.04.018_b12) 2017
Haykin (10.1016/j.future.2019.04.018_b37) 2004; 2
Hernández (10.1016/j.future.2019.04.018_b9) 2013; 51
Tso (10.1016/j.future.2019.04.018_b33) 2007; 32
Ilany (10.1016/j.future.2019.04.018_b41) 2016; 30
Box (10.1016/j.future.2019.04.018_b15) 1970; 65
Rice (10.1016/j.future.2019.04.018_b40) 1976
Bianco (10.1016/j.future.2019.04.018_b22) 2010; 87
Aydinalp-Koksal (10.1016/j.future.2019.04.018_b29) 2008; 85
Pisello (10.1016/j.future.2019.04.018_b3) 2012; 58
Gensler (10.1016/j.future.2019.04.018_b36) 2016
Liaw (10.1016/j.future.2019.04.018_b57) 2002; 2
Alpaydin (10.1016/j.future.2019.04.018_b59) 1998
Newsham (10.1016/j.future.2019.04.018_b28) 2010
Chou (10.1016/j.future.2019.04.018_b38) 2018; 165
10.1016/j.future.2019.04.018_b58
Khairalla (10.1016/j.future.2019.04.018_b39) 2018; 11
Zhang (10.1016/j.future.2019.04.018_b16) 2003; 50
Aydoğan (10.1016/j.future.2019.04.018_b45) 2019
Clarke (10.1016/j.future.2019.04.018_b25) 2007
10.1016/j.future.2019.04.018_b53
Dong (10.1016/j.future.2019.04.018_b31) 2005; 37
Venkatesh (10.1016/j.future.2019.04.018_b5) 2013
Swan (10.1016/j.future.2019.04.018_b34) 2009; 13
Ho (10.1016/j.future.2019.04.018_b21) 2002; 115
Albadi (10.1016/j.future.2019.04.018_b7) 2008; 78
Aydoğan (10.1016/j.future.2019.04.018_b43) 2018; 27
Bauer (10.1016/j.future.2019.04.018_b26) 1998; 27
Sokolova (10.1016/j.future.2019.04.018_b13) 2019; 141
Aksanli (10.1016/j.future.2019.04.018_b14) 2018
Gers (10.1016/j.future.2019.04.018_b18) 1999
xiang Zhao (10.1016/j.future.2019.04.018_b24) 2012; 16
Venkatesh (10.1016/j.future.2019.04.018_b4) 2013
Cunha (10.1016/j.future.2019.04.018_b50) 2018; 423
Royston (10.1016/j.future.2019.04.018_b62) 1992; 2
Brazdil (10.1016/j.future.2019.04.018_b51) 2008
Lu (10.1016/j.future.2019.04.018_b8) 2005; 73
Kimbara (10.1016/j.future.2019.04.018_b27) 1995
Pecan Street Incorporation (10.1016/j.future.2019.04.018_b20) 2015
Thorburn (10.1016/j.future.2019.04.018_b61) 1918; 27
United States Energy Information Administration (10.1016/j.future.2019.04.018_b1) 2017
Whitley (10.1016/j.future.2019.04.018_b63) 2002; 6
Kalogirou (10.1016/j.future.2019.04.018_b30) 2006; 1
Rajkumar (10.1016/j.future.2019.04.018_b55) 2012
Lin (10.1016/j.future.2019.04.018_b42) 2014; 30
Gu (10.1016/j.future.2019.04.018_b49) 1996
Keller (10.1016/j.future.2019.04.018_b56) 1985
Alimoglu (10.1016/j.future.2019.04.018_b60) 1997
Guo (10.1016/j.future.2019.04.018_b2) 2013; 4
Aksanli (10.1016/j.future.2019.04.018_b6) 2013
Lucas (10.1016/j.future.2019.04.018_b10) 2012; 41
Akyurek (10.1016/j.future.2019.04.018_b19) 2014
10.1016/j.future.2019.04.018_b35
Julong (10.1016/j.future.2019.04.018_b23) 1989; 1
Dreiseitl (10.1016/j.future.2019.04.018_b54) 2002; 35
Kayacan (10.1016/j.future.2019.04.018_b32) 2010; 37
Xu (10.1016/j.future.2019.04.018_b48) 2009; 4
SDGE (10.1016/j.future.2019.04.018_b11) 2019
Gomes (10.1016/j.future.2019.04.018_b47) 2001; 126
References_xml – volume: 32
  start-page: 1761
  year: 2007
  end-page: 1768
  ident: b33
  article-title: Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks
  publication-title: Energy
– start-page: 157
  year: 2013
  end-page: 162
  ident: b6
  article-title: Optimal battery configuration in a residential home with time-of-use pricing
  publication-title: 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)
– start-page: 1
  year: 2013
  end-page: 8
  ident: b4
  article-title: Homesim: comprehensive, smart, residential electrical energy simulation and scheduling
  publication-title: 2013 International Green Computing Conference Proceedings
– volume: 30
  start-page: 697
  year: 2016
  end-page: 723
  ident: b41
  article-title: Algorithm selection in bilateral negotiation
  publication-title: Auton. Agent. Multi-Ag. Syst.
– volume: 41
  start-page: 1
  year: 2014
  end-page: 10
  ident: b52
  article-title: A survey of collaborative filtering based social recommender systems
  publication-title: Comput. Commun.
– volume: 85
  start-page: 271
  year: 2008
  end-page: 296
  ident: b29
  article-title: Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector
  publication-title: Appl. Energy
– volume: 51
  start-page: 106
  year: 2013
  end-page: 113
  ident: b9
  article-title: A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants
  publication-title: IEEE Commun. Mag.
– volume: 41
  start-page: 537
  year: 2012
  end-page: 547
  ident: b10
  article-title: Life cycle analysis of energy supply infrastructure for conventional and electric vehicles
  publication-title: Energy Policy
– volume: 65
  start-page: 1509
  year: 1970
  end-page: 1526
  ident: b15
  article-title: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models
  publication-title: J. Am. Stat. Assoc.
– volume: 27
  start-page: 134
  year: 2018
  end-page: 155
  ident: b43
  article-title: A machine learning approach for mechanism selection in complex negotiations
  publication-title: J. Syst. Sci. Syst. Eng.
– volume: 27
  start-page: 264
  year: 1978
  end-page: 279
  ident: b17
  article-title: The holt-winters forecasting procedure
  publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat.
– year: 1998
  ident: b59
  article-title: Techniques for combining multiple learners
  publication-title: Proceedings of Engineering of Intelligent Systems
– reference: C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al. A practical guide to support vector classification.
– volume: 4
  start-page: 53
  year: 2009
  end-page: 55
  ident: b48
  article-title: Satzilla2009: an automatic algorithm portfolio for sat
  publication-title: SAT
– start-page: 933
  year: 2012
  end-page: 941
  ident: b55
  article-title: A differentially private stochastic gradient descent algorithm for multiparty classification
  publication-title: Artificial Intelligence and Statistics
– volume: 27
  start-page: 147
  year: 1998
  end-page: 154
  ident: b26
  article-title: A simplified correlation method accounting for heating and cooling loads in energy-efficient buildings
  publication-title: Energy Build.
– year: 1996
  ident: b49
  article-title: Algorithms for the satisfiability (sat) problem: a survey
– year: 2018
  ident: b14
  article-title: Accurate and data-limited prediction for smart home energy management
  publication-title: ASME 2018 12th International Conference on Energy Sustainability collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum
– start-page: 65
  year: 1976
  end-page: 118
  ident: b40
  article-title: The algorithm selection problem
  publication-title: Advances in Computers, vol. 15
– volume: 101
  start-page: 2474
  year: 2018
  end-page: 2484
  ident: b46
  article-title: Weighting estimation methods for opponents’ utility functions using boosting in multi-time negotiations
  publication-title: IEICE Trans. Inf. Syst.
– volume: 35
  start-page: 352
  year: 2002
  end-page: 359
  ident: b54
  article-title: Logistic regression and artificial neural network classification models: a methodology review
  publication-title: J. Biomed. Inform.
– start-page: 000161
  year: 2013
  end-page: 000166
  ident: b5
  article-title: Residential energy simulation and scheduling: a case study approach
  publication-title: 2013 IEEE Symposium on Computers and Communications (ISCC)
– year: 2007
  ident: b25
  article-title: Energy simulation in building design
– start-page: 127
  year: 2014
  end-page: 132
  ident: b19
  article-title: Tesla: taylor expanded solar analog forecasting
  publication-title: 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)
– volume: 87
  start-page: 3584
  year: 2010
  end-page: 3590
  ident: b22
  article-title: Analysis and forecasting of nonresidential electricity consumption in romania
  publication-title: Appl. Energy
– volume: 37
  start-page: 1784
  year: 2010
  end-page: 1789
  ident: b32
  article-title: Grey system theory-based models in time series prediction
  publication-title: Expert Syst. Appl.
– year: 2019
  ident: b11
  article-title: Reduce your use rewards
– volume: 126
  start-page: 43
  year: 2001
  end-page: 62
  ident: b47
  article-title: Algorithm portfolios
  publication-title: Artificial Intelligence
– volume: 30
  start-page: 48
  year: 2014
  end-page: 70
  ident: b42
  article-title: Genius: an integrated environment for supporting the design of generic automated negotiators
  publication-title: Comput. Intell.
– volume: 16
  start-page: 3586
  year: 2012
  end-page: 3592
  ident: b24
  article-title: A review on the prediction of building energy consumption
  publication-title: Renew. Sustain. Energy Rev.
– volume: 11
  start-page: 1605
  year: 2018
  ident: b39
  article-title: Short-term forecasting for energy consumption through stacking heterogeneous ensemble learning model
  publication-title: Energies
– year: 2017
  ident: b12
  article-title: Human behavior aware energy management in residential cyber-physical systems
  publication-title: IEEE Trans. Emerg. Top. Comput.
– volume: 13
  start-page: 1819
  year: 2009
  end-page: 1835
  ident: b34
  article-title: Modeling of end-use energy consumption in the residential sector: a review of modeling techniques
  publication-title: Renew. Sust. Energ. Rev.
– reference: P. Chujai, N. Kerdprasop, K. Kerdprasop, Time series analysis of household electric consumption with ARIMA and ARMA models, in: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1, pp. 295–300.
– volume: 27
  start-page: 345
  year: 1918
  end-page: 353
  ident: b61
  article-title: The myth of occam’s razor
  publication-title: Mind
– volume: 423
  start-page: 128
  year: 2018
  end-page: 144
  ident: b50
  article-title: Metalearning and recommender systems: a literature review and empirical study on the algorithm selection problem for collaborative filtering
  publication-title: Inform. Sci.
– volume: 58
  start-page: 37
  year: 2012
  end-page: 45
  ident: b3
  article-title: Inter-building effect: simulating the impact of a network of buildings on the accuracy of building energy performance predictions
  publication-title: Build. Environ.
– volume: 141
  start-page: 062003
  year: 2019
  ident: b13
  article-title: Demographical energy usage analysis of residential buildings
  publication-title: J. Energ. Resour. Technol.
– year: 2015
  ident: b20
  article-title: Dataport
– volume: 50
  start-page: 159
  year: 2003
  end-page: 175
  ident: b16
  article-title: Time series forecasting using a hybrid arima and neural network model
  publication-title: Neurocomputing
– start-page: 580
  year: 1985
  end-page: 585
  ident: b56
  article-title: A fuzzy k-nearest neighbor algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 78
  start-page: 1989
  year: 2008
  end-page: 1996
  ident: b7
  article-title: A summary of demand response in electricity markets
  publication-title: Electr. Pow. Syst. Res.
– start-page: 450
  year: 2017
  end-page: 458
  ident: b44
  article-title: Collective voice of experts in multilateral negotiation
  publication-title: International Conference on Principles and Practice of Multi-Agent Systems
– volume: 2
  start-page: 117
  year: 1992
  end-page: 119
  ident: b62
  article-title: Approximating the shapiro-wilk w-test for non-normality
  publication-title: Stat. Comput.
– volume: 6
  start-page: 509
  year: 2002
  ident: b63
  article-title: Statistics review 6: Nonparametric methods
  publication-title: Crit. Care
– start-page: 13
  year: 2010
  end-page: 18
  ident: b28
  article-title: Building-level occupancy data to improve arima-based electricity use forecasts
  publication-title: Proceedings of the 2nd ACM workshop on embedded sensing systems for energy-efficiency in building
– volume: 165
  start-page: 709
  year: 2018
  end-page: 726
  ident: b38
  article-title: Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders
  publication-title: Energy
– volume: 37
  start-page: 545
  year: 2005
  end-page: 553
  ident: b31
  article-title: Applying support vector machines to predict building energy consumption in tropical region
  publication-title: Energy Build.
– volume: 1
  start-page: 1
  year: 1989
  end-page: 24
  ident: b23
  article-title: Introduction to grey system theory
  publication-title: J. Grey Syst.
– year: 2019
  ident: b45
  article-title: Anac 2017: repeated multilateral negotiation league
  publication-title: Advances in Automated Negotiations
– year: 1995
  ident: b27
  article-title: On-line prediction for load profile of an air-conditioning system
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: b57
  article-title: Classification and regression by randomforest
  publication-title: R news
– year: 1999
  ident: b18
  article-title: Learning to forget: Continual prediction with LSTM
– volume: 73
  start-page: 19
  year: 2005
  end-page: 29
  ident: b8
  article-title: Electricity market price spike forecast with data mining techniques
  publication-title: Electr. Pow. Syst. Res.
– volume: 1
  start-page: 201
  year: 2006
  end-page: 216
  ident: b30
  article-title: Artificial neural networks in energy applications in buildings
  publication-title: Int. J. Low-Carbon Technol.
– volume: 115
  start-page: 549
  year: 2002
  end-page: 570
  ident: b21
  article-title: Simple explanation of the no-free-lunch theorem and its implications
  publication-title: J. Optim. Theory Appl.
– start-page: 002858
  year: 2016
  end-page: 002865
  ident: b36
  article-title: Deep learning for solar power forecasting an approach using autoencoder and lstm neural networks
  publication-title: 2016 IEEE international conference on systems, man, and cybernetics (SMC)
– volume: 4
  start-page: 1341
  year: 2013
  end-page: 1350
  ident: b2
  article-title: Decentralized coordination of energy utilization for residential households in the smart grid
  publication-title: IEEE Trans. Smart Grid
– volume: 2
  start-page: 41
  year: 2004
  ident: b37
  article-title: A comprehensive foundation
  publication-title: Neural Netw.
– reference: M. Sundermeyer, R. Schlüter, H. Ney, LSTM neural networks for language modeling, in: Thirteenth Annual Conference of the International Speech Communication Association, 2012.
– start-page: 637
  year: 1997
  end-page: 640
  ident: b60
  article-title: Combining multiple representations and classifiers for pen-based handwritten digit recognition
  publication-title: Proceedings of the Fourth International Conference on Document Analysis and Recognition, vol. 2
– year: 2017
  ident: b1
  article-title: How much energy is consumed in US residential and commercial buildings?
– year: 2008
  ident: b51
  article-title: Metalearning: Applications to Data Mining
– year: 2007
  ident: 10.1016/j.future.2019.04.018_b25
– year: 2018
  ident: 10.1016/j.future.2019.04.018_b14
  article-title: Accurate and data-limited prediction for smart home energy management
– year: 2015
  ident: 10.1016/j.future.2019.04.018_b20
– start-page: 580
  issue: 4
  year: 1985
  ident: 10.1016/j.future.2019.04.018_b56
  article-title: A fuzzy k-nearest neighbor algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1985.6313426
– volume: 50
  start-page: 159
  year: 2003
  ident: 10.1016/j.future.2019.04.018_b16
  article-title: Time series forecasting using a hybrid arima and neural network model
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
– volume: 87
  start-page: 3584
  issue: 11
  year: 2010
  ident: 10.1016/j.future.2019.04.018_b22
  article-title: Analysis and forecasting of nonresidential electricity consumption in romania
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.05.018
– year: 2008
  ident: 10.1016/j.future.2019.04.018_b51
– start-page: 157
  year: 2013
  ident: 10.1016/j.future.2019.04.018_b6
  article-title: Optimal battery configuration in a residential home with time-of-use pricing
– volume: 1
  start-page: 201
  issue: 3
  year: 2006
  ident: 10.1016/j.future.2019.04.018_b30
  article-title: Artificial neural networks in energy applications in buildings
  publication-title: Int. J. Low-Carbon Technol.
  doi: 10.1093/ijlct/1.3.201
– volume: 32
  start-page: 1761
  issn: 0360-5442
  issue: 9
  year: 2007
  ident: 10.1016/j.future.2019.04.018_b33
  article-title: Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2006.11.010
– start-page: 1
  year: 2013
  ident: 10.1016/j.future.2019.04.018_b4
  article-title: Homesim: comprehensive, smart, residential electrical energy simulation and scheduling
– volume: 141
  start-page: 062003
  issue: 6
  year: 2019
  ident: 10.1016/j.future.2019.04.018_b13
  article-title: Demographical energy usage analysis of residential buildings
  publication-title: J. Energ. Resour. Technol.
  doi: 10.1115/1.4042451
– volume: 73
  start-page: 19
  issue: 1
  year: 2005
  ident: 10.1016/j.future.2019.04.018_b8
  article-title: Electricity market price spike forecast with data mining techniques
  publication-title: Electr. Pow. Syst. Res.
  doi: 10.1016/S0378-7796(04)00125-7
– year: 1995
  ident: 10.1016/j.future.2019.04.018_b27
– year: 2019
  ident: 10.1016/j.future.2019.04.018_b11
– start-page: 450
  year: 2017
  ident: 10.1016/j.future.2019.04.018_b44
  article-title: Collective voice of experts in multilateral negotiation
– volume: 423
  start-page: 128
  year: 2018
  ident: 10.1016/j.future.2019.04.018_b50
  article-title: Metalearning and recommender systems: a literature review and empirical study on the algorithm selection problem for collaborative filtering
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.09.050
– ident: 10.1016/j.future.2019.04.018_b53
  doi: 10.21437/Interspeech.2012-65
– volume: 13
  start-page: 1819
  issue: 8
  year: 2009
  ident: 10.1016/j.future.2019.04.018_b34
  article-title: Modeling of end-use energy consumption in the residential sector: a review of modeling techniques
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2008.09.033
– volume: 65
  start-page: 1509
  issue: 332
  year: 1970
  ident: 10.1016/j.future.2019.04.018_b15
  article-title: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1970.10481180
– start-page: 13
  year: 2010
  ident: 10.1016/j.future.2019.04.018_b28
  article-title: Building-level occupancy data to improve arima-based electricity use forecasts
– volume: 115
  start-page: 549
  issue: 3
  year: 2002
  ident: 10.1016/j.future.2019.04.018_b21
  article-title: Simple explanation of the no-free-lunch theorem and its implications
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021251113462
– volume: 4
  start-page: 1341
  issue: 3
  year: 2013
  ident: 10.1016/j.future.2019.04.018_b2
  article-title: Decentralized coordination of energy utilization for residential households in the smart grid
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2013.2268581
– issue: 1
  year: 2017
  ident: 10.1016/j.future.2019.04.018_b12
  article-title: Human behavior aware energy management in residential cyber-physical systems
  publication-title: IEEE Trans. Emerg. Top. Comput.
– volume: 30
  start-page: 48
  issue: 1
  year: 2014
  ident: 10.1016/j.future.2019.04.018_b42
  article-title: Genius: an integrated environment for supporting the design of generic automated negotiators
  publication-title: Comput. Intell.
  doi: 10.1111/j.1467-8640.2012.00463.x
– volume: 4
  start-page: 53
  year: 2009
  ident: 10.1016/j.future.2019.04.018_b48
  article-title: Satzilla2009: an automatic algorithm portfolio for sat
  publication-title: SAT
– year: 1998
  ident: 10.1016/j.future.2019.04.018_b59
  article-title: Techniques for combining multiple learners
– year: 2019
  ident: 10.1016/j.future.2019.04.018_b45
  article-title: Anac 2017: repeated multilateral negotiation league
– volume: 2
  start-page: 117
  issue: 3
  year: 1992
  ident: 10.1016/j.future.2019.04.018_b62
  article-title: Approximating the shapiro-wilk w-test for non-normality
  publication-title: Stat. Comput.
  doi: 10.1007/BF01891203
– start-page: 637
  year: 1997
  ident: 10.1016/j.future.2019.04.018_b60
  article-title: Combining multiple representations and classifiers for pen-based handwritten digit recognition
– start-page: 65
  year: 1976
  ident: 10.1016/j.future.2019.04.018_b40
  article-title: The algorithm selection problem
– volume: 37
  start-page: 1784
  issue: 2
  year: 2010
  ident: 10.1016/j.future.2019.04.018_b32
  article-title: Grey system theory-based models in time series prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.07.064
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.future.2019.04.018_b57
  article-title: Classification and regression by randomforest
  publication-title: R news
– volume: 6
  start-page: 509
  issue: 6
  year: 2002
  ident: 10.1016/j.future.2019.04.018_b63
  article-title: Statistics review 6: Nonparametric methods
  publication-title: Crit. Care
  doi: 10.1186/cc1820
– start-page: 127
  year: 2014
  ident: 10.1016/j.future.2019.04.018_b19
  article-title: Tesla: taylor expanded solar analog forecasting
– volume: 27
  start-page: 345
  issue: 107
  year: 1918
  ident: 10.1016/j.future.2019.04.018_b61
  article-title: The myth of occam’s razor
  publication-title: Mind
  doi: 10.1093/mind/XXVII.3.345
– year: 2017
  ident: 10.1016/j.future.2019.04.018_b1
– volume: 30
  start-page: 697
  issue: 4
  year: 2016
  ident: 10.1016/j.future.2019.04.018_b41
  article-title: Algorithm selection in bilateral negotiation
  publication-title: Auton. Agent. Multi-Ag. Syst.
  doi: 10.1007/s10458-015-9302-8
– volume: 85
  start-page: 271
  issue: 4
  year: 2008
  ident: 10.1016/j.future.2019.04.018_b29
  article-title: Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2006.09.012
– volume: 78
  start-page: 1989
  issue: 11
  year: 2008
  ident: 10.1016/j.future.2019.04.018_b7
  article-title: A summary of demand response in electricity markets
  publication-title: Electr. Pow. Syst. Res.
  doi: 10.1016/j.epsr.2008.04.002
– volume: 16
  start-page: 3586
  issn: 1364-0321
  issue: 6
  year: 2012
  ident: 10.1016/j.future.2019.04.018_b24
  article-title: A review on the prediction of building energy consumption
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.02.049
– volume: 2
  start-page: 41
  issue: 2004
  year: 2004
  ident: 10.1016/j.future.2019.04.018_b37
  article-title: A comprehensive foundation
  publication-title: Neural Netw.
– volume: 11
  start-page: 1605
  issue: 6
  year: 2018
  ident: 10.1016/j.future.2019.04.018_b39
  article-title: Short-term forecasting for energy consumption through stacking heterogeneous ensemble learning model
  publication-title: Energies
  doi: 10.3390/en11061605
– volume: 27
  start-page: 264
  issue: 3
  year: 1978
  ident: 10.1016/j.future.2019.04.018_b17
  article-title: The holt-winters forecasting procedure
  publication-title: J. R. Stat. Soc. Ser. C. Appl. Stat.
– ident: 10.1016/j.future.2019.04.018_b35
– volume: 41
  start-page: 1
  year: 2014
  ident: 10.1016/j.future.2019.04.018_b52
  article-title: A survey of collaborative filtering based social recommender systems
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2013.06.009
– ident: 10.1016/j.future.2019.04.018_b58
– volume: 101
  start-page: 2474
  issue: 10
  year: 2018
  ident: 10.1016/j.future.2019.04.018_b46
  article-title: Weighting estimation methods for opponents’ utility functions using boosting in multi-time negotiations
  publication-title: IEICE Trans. Inf. Syst.
  doi: 10.1587/transinf.2018EDP7056
– volume: 126
  start-page: 43
  issn: 0004-3702
  issue: 1
  year: 2001
  ident: 10.1016/j.future.2019.04.018_b47
  article-title: Algorithm portfolios
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(00)00081-3
– year: 1999
  ident: 10.1016/j.future.2019.04.018_b18
– volume: 37
  start-page: 545
  issue: 5
  year: 2005
  ident: 10.1016/j.future.2019.04.018_b31
  article-title: Applying support vector machines to predict building energy consumption in tropical region
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2004.09.009
– start-page: 933
  year: 2012
  ident: 10.1016/j.future.2019.04.018_b55
  article-title: A differentially private stochastic gradient descent algorithm for multiparty classification
– volume: 35
  start-page: 352
  issue: 5–6
  year: 2002
  ident: 10.1016/j.future.2019.04.018_b54
  article-title: Logistic regression and artificial neural network classification models: a methodology review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/S1532-0464(03)00034-0
– volume: 51
  start-page: 106
  issue: 1
  year: 2013
  ident: 10.1016/j.future.2019.04.018_b9
  article-title: A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2013.6400446
– volume: 1
  start-page: 1
  issue: 1
  year: 1989
  ident: 10.1016/j.future.2019.04.018_b23
  article-title: Introduction to grey system theory
  publication-title: J. Grey Syst.
– volume: 27
  start-page: 134
  issue: 2
  year: 2018
  ident: 10.1016/j.future.2019.04.018_b43
  article-title: A machine learning approach for mechanism selection in complex negotiations
  publication-title: J. Syst. Sci. Syst. Eng.
  doi: 10.1007/s11518-018-5369-5
– volume: 58
  start-page: 37
  year: 2012
  ident: 10.1016/j.future.2019.04.018_b3
  article-title: Inter-building effect: simulating the impact of a network of buildings on the accuracy of building energy performance predictions
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.06.017
– start-page: 000161
  year: 2013
  ident: 10.1016/j.future.2019.04.018_b5
  article-title: Residential energy simulation and scheduling: a case study approach
– volume: 165
  start-page: 709
  year: 2018
  ident: 10.1016/j.future.2019.04.018_b38
  article-title: Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.144
– start-page: 002858
  year: 2016
  ident: 10.1016/j.future.2019.04.018_b36
  article-title: Deep learning for solar power forecasting an approach using autoencoder and lstm neural networks
– volume: 27
  start-page: 147
  issue: 2
  year: 1998
  ident: 10.1016/j.future.2019.04.018_b26
  article-title: A simplified correlation method accounting for heating and cooling loads in energy-efficient buildings
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(97)00035-2
– volume: 41
  start-page: 537
  year: 2012
  ident: 10.1016/j.future.2019.04.018_b10
  article-title: Life cycle analysis of energy supply infrastructure for conventional and electric vehicles
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.11.015
– year: 1996
  ident: 10.1016/j.future.2019.04.018_b49
SSID ssj0001731
Score 2.4135022
Snippet Balancing supply and demand management in energy grids requires knowing energy consumption in advance. Therefore, forecasting residential energy consumption...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 391
SubjectTerms Algorithm selection
Combining multiple learners
Electricity consumption prediction
Time series prediction
Title Algorithm selection and combining multiple learners for residential energy prediction
URI https://dx.doi.org/10.1016/j.future.2019.04.018
Volume 99
WOSCitedRecordID wos000502894300032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELbS0EMvUPpQ6Us-lFO1Vbb2PnwMEbRUiPYAUm4rv7ZAwyYKKYJf0r_L2B47tCBaDr3sJo7Xu8l8mRnbM_MR8k7lWg8qVWfcGpZx3Q6y2iqeGVaC-ajtoDW-zuxetb9fj8fiW6_3K-bCnE-qrqsvLsTsv4oa2kDYLnX2HuJOg0IDvAahwxHEDsd_Evxw8n0KM_6j0_dnnuMmxhvDvZRng1gGEXrKCJfB62INYd597LN2QWg2ZATO5m4bJ4kusnn6MiSOe9kifDRSQ2Bd6OSmf3Lb8FsjUCfuXHpwfO1kirQZ_tgcFZtiR3bexd3KcQcE3_jPUt9LM3XtrnfAxeURIhsXLXKRwt_SOibo54p5Ft2kiANTEmpSFki80ChzX870pr4PSw8nH0IBFhepJ3zlWtTpv5XX_sPspWDEGOd20oRRGjdKM-ANjPKArHysClH3ycpwd3v8JRn5vEKqS_weMSvThw7efJrbvZ5rnszBY7KKUxA6DNBZJz3bPSFrkd6DorZ_Sg4TkmhCEgUk0YQkGpFEI5IoIIleQxINSKJLJD0jhzvbB6PPGbJwZBqc80VWG6WMBb_SKlVJliv4Q3NVWFZaIeuybY1ljBe5ctUs87aQ3OS2LVuYV4CrCkbjOel3086-cGF04LAboWGSwLkG0yGNFMLIVmoNbrHaICz-So3GEvWOKWXS3CWjDZKlq2ahRMtf-ldRAA26mcF9bABVd1758p53ekUeLcH_mvQX85_2DXmozxfHZ_O3CKkrrUaiAA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithm+selection+and+combining+multiple+learners+for+residential+energy+prediction&rft.jtitle=Future+generation+computer+systems&rft.au=G%C3%BCng%C3%B6r%2C+Onat&rft.au=Ak%C5%9Fanl%C4%B1%2C+Bar%C4%B1%C5%9F&rft.au=Aydo%C4%9Fan%2C+Reyhan&rft.date=2019-10-01&rft.issn=0167-739X&rft.volume=99&rft.spage=391&rft.epage=400&rft_id=info:doi/10.1016%2Fj.future.2019.04.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2019_04_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon