Mobile Robot Path Planning based on Parameter Optimization Ant Colony Algorithm

The basic ant colony algorithm for mobile robot path planning exists many problems, such as lack of stability, algorithm premature convergence, more difficult to find optimal solution for complex problems and so on. This paper proposes improvement measures. Apply genetic algorithm to optimization an...

Full description

Saved in:
Bibliographic Details
Published in:Procedia engineering Vol. 15; pp. 2738 - 2741
Main Authors: Zhangqi, Wang, Xiaoguang, Zhu, Qingyao, Han
Format: Journal Article
Language:English
Published: Elsevier Ltd 2011
Subjects:
ISSN:1877-7058, 1877-7058
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The basic ant colony algorithm for mobile robot path planning exists many problems, such as lack of stability, algorithm premature convergence, more difficult to find optimal solution for complex problems and so on. This paper proposes improvement measures. Apply genetic algorithm to optimization and configuration parameters of the basic ant colony algorithm. Simulation results show that the improved optimal path length significantly less than the basic ant colony algorithm and volatility is smaller, stability significantly improves. The stability of improved ant colony algorithm is superior to the basic ant colony algorithm, verify the effectiveness of the improvement measures.
AbstractList The basic ant colony algorithm for mobile robot path planning exists many problems, such as lack of stability, algorithm premature convergence, more difficult to find optimal solution for complex problems and so on. This paper proposes improvement measures. Apply genetic algorithm to optimization and configuration parameters of the basic ant colony algorithm. Simulation results show that the improved optimal path length significantly less than the basic ant colony algorithm and volatility is smaller, stability significantly improves. The stability of improved ant colony algorithm is superior to the basic ant colony algorithm, verify the effectiveness of the improvement measures.
Author Qingyao, Han
Zhangqi, Wang
Xiaoguang, Zhu
Author_xml – sequence: 1
  givenname: Wang
  surname: Zhangqi
  fullname: Zhangqi, Wang
– sequence: 2
  givenname: Zhu
  surname: Xiaoguang
  fullname: Xiaoguang, Zhu
– sequence: 3
  givenname: Han
  surname: Qingyao
  fullname: Qingyao, Han
BookMark eNqFkM9KAzEQh4NUsNa-gYe8wK7J7mb_eBBK0SpUWkTPIdlM2pTdpCRBqE_v1noQDzqXGX7wDTPfJRpZZwGha0pSSmh5s0v33oHdpBmhNCV1yig7Q2NaV1VSEVaPfswXaBrCjhyrIhmjY7R6dtJ0gF-cdBGvRdzidSesNXaDpQigsLND7EUPETxe7aPpzYeIZohnNuK565w94Fm3cd7EbX-FzrXoAky_-wS9Pdy_zh-T5WrxNJ8tkzZnWUyqhulGaVIq0JrmstBAWpKDYJluKCit8rzUBESR67IgZVOpLBNKMCk1Y4XMJ-j2tLf1LgQPmrcmfp0VvTAdp4Qf7fAdP9nhRzuc1HywM8DFL3jvTS_84T_s7oTB8Ni7Ac9Da8C2oIyHNnLlzN8LPgHJpoSW
CitedBy_id crossref_primary_10_1177_0954406218768840
crossref_primary_10_1155_2019_1932812
crossref_primary_10_1155_2021_6636150
crossref_primary_10_1016_j_cie_2024_110335
crossref_primary_10_1155_2016_7672839
crossref_primary_10_1186_s10033_018_0311_9
crossref_primary_10_1007_s00500_015_1991_z
crossref_primary_10_1016_j_mfglet_2024_09_187
crossref_primary_10_3390_drones6100273
crossref_primary_10_3233_IFS_151661
crossref_primary_10_1016_j_oceaneng_2025_121242
crossref_primary_10_1109_ACCESS_2020_3028467
crossref_primary_10_3390_app11052114
crossref_primary_10_1109_ACCESS_2020_3021073
crossref_primary_10_4028_www_scientific_net_AMM_527_203
crossref_primary_10_1109_ACCESS_2023_3241960
crossref_primary_10_1631_jzus_C1200226
crossref_primary_10_3390_s22186943
Cites_doi 10.1109/ICEC.1997.592327
10.1109/3477.484436
ContentType Journal Article
Copyright 2011
Copyright_xml – notice: 2011
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.proeng.2011.08.515
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1877-7058
EndPage 2741
ExternalDocumentID 10_1016_j_proeng_2011_08_515
S1877705811020169
GroupedDBID --K
0R~
0SF
1B1
4.4
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADMUD
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FEDTE
FNPLU
HVGLF
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
OZT
P2P
RIG
ROL
SES
SSZ
XH2
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c352t-795f9df06deff13b4fe0c03ea52f91edfd336f0ea43f640697d22ada5bbf554b3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000300876502152&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1877-7058
IngestDate Sat Nov 29 08:07:45 EST 2025
Tue Nov 18 21:49:27 EST 2025
Fri Feb 23 02:30:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mobile Robot
Path planning
Genetic algorithm
Ant colony algorithm
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-795f9df06deff13b4fe0c03ea52f91edfd336f0ea43f640697d22ada5bbf554b3
OpenAccessLink https://dx.doi.org/10.1016/j.proeng.2011.08.515
PageCount 4
ParticipantIDs crossref_citationtrail_10_1016_j_proeng_2011_08_515
crossref_primary_10_1016_j_proeng_2011_08_515
elsevier_sciencedirect_doi_10_1016_j_proeng_2011_08_515
PublicationCentury 2000
PublicationDate 2011
2011-00-00
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – year: 2011
  text: 2011
PublicationDecade 2010
PublicationTitle Procedia engineering
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ming Zhou, Shudong (bib0025) 1999
Zixing (bib0005) 1996; 18
Dorigo, Maniezzo, Colorni (bib0015) 1996; 26
Thomas Stutzle, Holgerhoos (bib0040) 1997
Haibin (bib0020) 2005
T. Stutzle, H. Hoos. The MAX-MIN ant system and local search for the traveling sales man problem[C]. In Proceeding IEEE International Conference on Evolutionary Computation. USA. 1997: 309-314.
Cai, Peng Z.H (bib0010) 2002; 33
Shiyong (bib0030) 2004
Dorigo (10.1016/j.proeng.2011.08.515_bib0015) 1996; 26
Shiyong (10.1016/j.proeng.2011.08.515_bib0030) 2004
Zixing (10.1016/j.proeng.2011.08.515_bib0005) 1996; 18
10.1016/j.proeng.2011.08.515_bib0035
Cai (10.1016/j.proeng.2011.08.515_bib0010) 2002; 33
Ming Zhou (10.1016/j.proeng.2011.08.515_bib0025) 1999
Haibin (10.1016/j.proeng.2011.08.515_bib0020) 2005
Thomas Stutzle (10.1016/j.proeng.2011.08.515_bib0040) 1997
References_xml – volume: 33
  start-page: 61
  year: 2002
  end-page: 71
  ident: bib0010
  publication-title: Cooperative coevolutionary adaptive genetic algorithm in path planning of cooperative multi-mobile robot systems.Journal of Intelligent and Robotic Systems [J].
– year: 2005
  ident: bib0020
  article-title: Principle and application of ant colony algorithm [M]
– year: 2004
  ident: bib0030
  article-title: Ant colony algorithm and its application[M]
– reference: T. Stutzle, H. Hoos. The MAX-MIN ant system and local search for the traveling sales man problem[C]. In Proceeding IEEE International Conference on Evolutionary Computation. USA. 1997: 309-314.
– volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: bib0015
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: IEEE Transaction on Systems. Man and Cybernetics-Part B.
– start-page: 245
  year: 1997
  end-page: 249
  ident: bib0040
  article-title: Improvements on the Ant System: introducing max-min ant system
  publication-title: In Proceeding of 2nd International Conference on Artificial Neural Network and Genetic Algorithms[C]. Wien: Springer Verlag.
– volume: 18
  start-page: 248
  year: 1996
  end-page: 253
  ident: bib0005
  article-title: The progress of intelligent robotics:Trends and countermeasures
  publication-title: robotic
– year: 1999
  ident: bib0025
  article-title: Principle and application of genetic algorithms[M]
– year: 2004
  ident: 10.1016/j.proeng.2011.08.515_bib0030
– volume: 18
  start-page: 248
  issue: 4
  year: 1996
  ident: 10.1016/j.proeng.2011.08.515_bib0005
  article-title: The progress of intelligent robotics:Trends and countermeasures
  publication-title: robotic
– ident: 10.1016/j.proeng.2011.08.515_bib0035
  doi: 10.1109/ICEC.1997.592327
– volume: 26
  start-page: 29
  issue: 1
  year: 1996
  ident: 10.1016/j.proeng.2011.08.515_bib0015
  article-title: Ant system: optimization by a colony of cooperating agents
  publication-title: IEEE Transaction on Systems. Man and Cybernetics-Part B.
  doi: 10.1109/3477.484436
– year: 2005
  ident: 10.1016/j.proeng.2011.08.515_bib0020
– start-page: 245
  year: 1997
  ident: 10.1016/j.proeng.2011.08.515_bib0040
  article-title: Improvements on the Ant System: introducing max-min ant system
  publication-title: In Proceeding of 2nd International Conference on Artificial Neural Network and Genetic Algorithms[C]. Wien: Springer Verlag.
– volume: 33
  start-page: 61
  issue: 4
  year: 2002
  ident: 10.1016/j.proeng.2011.08.515_bib0010
  publication-title: Cooperative coevolutionary adaptive genetic algorithm in path planning of cooperative multi-mobile robot systems.Journal of Intelligent and Robotic Systems [J].
– year: 1999
  ident: 10.1016/j.proeng.2011.08.515_bib0025
SSID ssj0000070251
Score 2.076595
Snippet The basic ant colony algorithm for mobile robot path planning exists many problems, such as lack of stability, algorithm premature convergence, more difficult...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 2738
SubjectTerms Ant colony algorithm
Genetic algorithm
Mobile Robot
Path planning
Title Mobile Robot Path Planning based on Parameter Optimization Ant Colony Algorithm
URI https://dx.doi.org/10.1016/j.proeng.2011.08.515
Volume 15
WOSCitedRecordID wos000300876502152&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-7058
  dateEnd: 20181231
  omitProxy: false
  ssIdentifier: ssj0000070251
  issn: 1877-7058
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELZa2kN7qChtBX0gH7itjLLxZh0fUdWKQ3lIUHXFJXJim10ECV2yFVz62ztjOw_ECmilSqtoZa3j7MwXz2Qy8w0hW2mkCpWkisVCaTaSPGfSCMWKEVgHME9KFo7E9ZvY308nE3kY0m2vXDsBUZbp9bW8_K-qhjFQNpbO_oW625PCAHwHpcMR1A7HRyl-r8rhTseU6apGBv5p25hogCZL4-uBQ4U5WciPeABbxkWoxUQmAYwkVOXNYOf8tJrP6ulF33t1VQUAqIHpWAxvRZ5_utyAH6obnsxUdboIQemT6aINtMLUG-XitLsBoLoJpnahsKYcpss9wt0zFYKJyHOxb5slY82Wm_T3TMHTnv1FPp2le7sPM5yhZYF_2bKvJuFkt1mzj3BdXBbcmxgZZ56SZ7GApyfM7vzdheGQ7ih2TTrbC20KLF0W4N3FljswPafkeJW8Ck8TdMej4DV5Yso18rLHMfmGHHg8UIcHinigDR6owwOtStrigfbxQAEP1OOBtnh4S75__XL8eZeFLhqsAOe6ZkImVmobjbWxdsjzkTVREXGjktjKodFWcz62kVEjbsdYBy10HCutkjy34Gvm_B1ZKavSrBMqwdmTqQGPXcK9HGk1FBZzqgysoUHOG4Q3osmKQDGPnU7OsyaX8CzzAs1QoFmUZiDQDcLaWZeeYuWB34tG6llwE737lwFS7p35_p9nfiAv_MsE_HwkK_V8YT6R58WvenY133SQ-gMqdo8R
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mobile+Robot+Path+Planning+based+on+Parameter+Optimization+Ant+Colony+Algorithm&rft.jtitle=Procedia+engineering&rft.au=Zhangqi%2C+Wang&rft.au=Xiaoguang%2C+Zhu&rft.au=Qingyao%2C+Han&rft.date=2011&rft.pub=Elsevier+Ltd&rft.issn=1877-7058&rft.eissn=1877-7058&rft.volume=15&rft.spage=2738&rft.epage=2741&rft_id=info:doi/10.1016%2Fj.proeng.2011.08.515&rft.externalDocID=S1877705811020169
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7058&client=summon