Patterns for High Performance Multiscale Computing

We describe our Multiscale Computing Patterns software for High Performance Multiscale Computing. Following a short review of Multiscale Computing Patterns, this paper introduces the Multiscale Computing Patterns Software, which consists of description, optimisation and execution components. First,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future generation computer systems Jg. 91; S. 335 - 346
Hauptverfasser: Alowayyed, S., Piontek, T., Suter, J.L., Hoenen, O., Groen, D., Luk, O., Bosak, B., Kopta, P., Kurowski, K., Perks, O., Brabazon, K., Jancauskas, V., Coster, D., Coveney, P.V., Hoekstra, A.G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.02.2019
Schlagworte:
ISSN:0167-739X, 1872-7115
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We describe our Multiscale Computing Patterns software for High Performance Multiscale Computing. Following a short review of Multiscale Computing Patterns, this paper introduces the Multiscale Computing Patterns Software, which consists of description, optimisation and execution components. First, the description component translates the task graph, representing a multiscale simulation, to a particular type of multiscale computing pattern. Second, the optimisation component selects and applies algorithms to find the most suitable mapping between submodels and available HPC resources. Third, the execution component which a middleware layer maps submodels to the number and type of physical resources based on the suggestions emanating from the optimisation part together with infrastructure-specific metrics such as queueing time and resource availability. The main purpose of the Multiscale Computing Patterns software is to leverage the Multiscale Computing Patterns to simplify and automate the execution of complex multiscale simulations on high performance computers, and to provide both application-specific and pattern-specific performance optimisation. We test the performance and the resource usage for three multiscale models, which are expressed in terms of two Multiscale Computing Patterns. In doing so, we demonstrate how the software automates resource selection and load balancing, and delivers performance benefits from both the end-user and the HPC system level perspectives. •We introduce the idea of the Multiscale Computing Patterns (MCP).•We present the MCP software for High Performance Multiscale Computing.•To simplify and automate the execution of complex multiscale simulations on HPC.•Also to provide both application-specific and pattern-specific performance optimisation.•We test the performance and the resource usage for three multiscale models (two MCPs).•We demonstrate how the software automates resource selection and load balancing.
AbstractList We describe our Multiscale Computing Patterns software for High Performance Multiscale Computing. Following a short review of Multiscale Computing Patterns, this paper introduces the Multiscale Computing Patterns Software, which consists of description, optimisation and execution components. First, the description component translates the task graph, representing a multiscale simulation, to a particular type of multiscale computing pattern. Second, the optimisation component selects and applies algorithms to find the most suitable mapping between submodels and available HPC resources. Third, the execution component which a middleware layer maps submodels to the number and type of physical resources based on the suggestions emanating from the optimisation part together with infrastructure-specific metrics such as queueing time and resource availability. The main purpose of the Multiscale Computing Patterns software is to leverage the Multiscale Computing Patterns to simplify and automate the execution of complex multiscale simulations on high performance computers, and to provide both application-specific and pattern-specific performance optimisation. We test the performance and the resource usage for three multiscale models, which are expressed in terms of two Multiscale Computing Patterns. In doing so, we demonstrate how the software automates resource selection and load balancing, and delivers performance benefits from both the end-user and the HPC system level perspectives. •We introduce the idea of the Multiscale Computing Patterns (MCP).•We present the MCP software for High Performance Multiscale Computing.•To simplify and automate the execution of complex multiscale simulations on HPC.•Also to provide both application-specific and pattern-specific performance optimisation.•We test the performance and the resource usage for three multiscale models (two MCPs).•We demonstrate how the software automates resource selection and load balancing.
Author Brabazon, K.
Bosak, B.
Kurowski, K.
Jancauskas, V.
Perks, O.
Suter, J.L.
Coster, D.
Luk, O.
Kopta, P.
Coveney, P.V.
Hoekstra, A.G.
Hoenen, O.
Piontek, T.
Groen, D.
Alowayyed, S.
Author_xml – sequence: 1
  givenname: S.
  surname: Alowayyed
  fullname: Alowayyed, S.
  email: S.A.Alowayyed@uva.nl
  organization: Computational Science Lab, Institute for Informatics, Faculty of Science, University of Amsterdam, The Netherlands
– sequence: 2
  givenname: T.
  orcidid: 0000-0003-0147-3996
  surname: Piontek
  fullname: Piontek, T.
  organization: Poznań Supercomputing and Networking Center, Poznań, Poland
– sequence: 3
  givenname: J.L.
  surname: Suter
  fullname: Suter, J.L.
  organization: Centre for Computational Science, University College London, United Kingdom
– sequence: 4
  givenname: O.
  orcidid: 0000-0001-6953-8800
  surname: Hoenen
  fullname: Hoenen, O.
  organization: Max-Planck-Institut für Plasmaphysik, Garching, Germany
– sequence: 5
  givenname: D.
  orcidid: 0000-0001-7463-3765
  surname: Groen
  fullname: Groen, D.
  organization: Centre for Computational Science, University College London, United Kingdom
– sequence: 6
  givenname: O.
  orcidid: 0000-0003-0560-4797
  surname: Luk
  fullname: Luk, O.
  organization: Max-Planck-Institut für Plasmaphysik, Garching, Germany
– sequence: 7
  givenname: B.
  surname: Bosak
  fullname: Bosak, B.
  organization: Poznań Supercomputing and Networking Center, Poznań, Poland
– sequence: 8
  givenname: P.
  surname: Kopta
  fullname: Kopta, P.
  organization: Poznań Supercomputing and Networking Center, Poznań, Poland
– sequence: 9
  givenname: K.
  surname: Kurowski
  fullname: Kurowski, K.
  organization: Poznań Supercomputing and Networking Center, Poznań, Poland
– sequence: 10
  givenname: O.
  surname: Perks
  fullname: Perks, O.
  organization: ARM Ltd., Warwick, United Kingdom
– sequence: 11
  givenname: K.
  surname: Brabazon
  fullname: Brabazon, K.
  organization: ARM Ltd., Warwick, United Kingdom
– sequence: 12
  givenname: V.
  surname: Jancauskas
  fullname: Jancauskas, V.
  organization: Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften, Garching, Germany
– sequence: 13
  givenname: D.
  orcidid: 0000-0002-2470-9706
  surname: Coster
  fullname: Coster, D.
  organization: Max-Planck-Institut für Plasmaphysik, Garching, Germany
– sequence: 14
  givenname: P.V.
  orcidid: 0000-0002-8787-7256
  surname: Coveney
  fullname: Coveney, P.V.
  organization: Centre for Computational Science, University College London, United Kingdom
– sequence: 15
  givenname: A.G.
  orcidid: 0000-0002-3955-2449
  surname: Hoekstra
  fullname: Hoekstra, A.G.
  email: A.G.Hoekstra@uva.nl
  organization: Computational Science Lab, Institute for Informatics, Faculty of Science, University of Amsterdam, The Netherlands
BookMark eNqFkM1KAzEURoNUsK2-gYt5gRnzO8m4EKSoFSp2oeAupOlNTZnOlCQj-PZNqSsXCh_cu7jng3MnaNT1HSB0TXBFMKlvtpUb0hCgopioCudwcYbGRElaSkLECI3zmSwlaz4u0CTGLcaYSEbGiC5NShC6WLg-FHO_-SyWEPK-M52F4mVok4_WtFDM-t1-SL7bXKJzZ9oIVz9zit4fH95m83Lx-vQ8u1-UlgmaSsktpURYAZQz16xIbRsBztUYW8NXXK3rFafYESGlVJipmhnFFQXDTN3whk3R7anXhj7GAE5bn0zyfZeC8a0mWB_t9Vaf7PXRXuMcLjLMf8H74HcmfP-H3Z0wyGJfHoKO1kP-xNoHsEmve_93wQF7cXgT
CitedBy_id crossref_primary_10_1016_j_cpc_2022_108596
crossref_primary_10_1002_ente_202000901
crossref_primary_10_1002_ctpp_202200177
crossref_primary_10_1007_s11042_020_08805_w
crossref_primary_10_1002_adts_201800168
crossref_primary_10_1016_j_addma_2021_102089
crossref_primary_10_1109_ACCESS_2021_3073667
Cites_doi 10.1109/MCSE.2013.47
10.1016/j.jocs.2014.04.004
10.1002/chin.200851222
10.1016/j.cpc.2012.09.024
10.1098/rsfs.2012.0087
10.1016/j.jocs.2017.07.004
10.1088/0029-5515/54/9/099501
10.1002/adma.201403361
10.5194/gmd-6-373-2013
10.1007/s10951-008-0058-8
10.1016/j.simpat.2013.08.007
10.1093/bib/bbp038
10.1098/rsta.2016.0146
10.1098/rsta.2013.0378
10.1038/nmat2247
10.1021/acs.jctc.6b00979
10.3389/fphys.2017.00563
10.1098/rsif.2014.0022
10.1016/j.procs.2017.05.084
10.1016/j.nucengdes.2009.05.021
10.1098/rsta.2013.0407
10.1615/IntJMultCompEng.v5.i6.60
10.1016/j.cpc.2016.05.020
10.1007/s10723-016-9384-9
10.1088/0957-4484/26/43/434004
10.1103/PhysRevE.67.046704
10.1016/j.jpdc.2012.12.011
ContentType Journal Article
Copyright 2018 The Authors
Copyright_xml – notice: 2018 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.future.2018.08.045
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 346
ExternalDocumentID 10_1016_j_future_2018_08_045
S0167739X18300669
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c352t-74c2215c5e243f9b16c95eff600ca4b48d6b420f15777803863a8482ea3a69493
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451790900028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Tue Nov 18 21:38:41 EST 2025
Sat Nov 29 07:25:38 EST 2025
Fri Feb 23 02:47:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Modelling methodology
High performance computing
Multiscale computing
Distributed computing
Model coupling
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-74c2215c5e243f9b16c95eff600ca4b48d6b420f15777803863a8482ea3a69493
ORCID 0000-0002-8787-7256
0000-0002-2470-9706
0000-0003-0147-3996
0000-0003-0560-4797
0000-0002-3955-2449
0000-0001-6953-8800
0000-0001-7463-3765
OpenAccessLink https://dx.doi.org/10.1016/j.future.2018.08.045
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_future_2018_08_045
crossref_primary_10_1016_j_future_2018_08_045
elsevier_sciencedirect_doi_10_1016_j_future_2018_08_045
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationTitle Future generation computer systems
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Borgdorff, Ben Belgacem, Bona-Casas, Fazendeiro, Groen, Hoenen, Mizeranschi, Suter, Coster, Coveney, Dubitzky, Hoekstra, Strand, Chopard (b10) 2014; 372
Kurowski, Oleksiak, Pia̧tek, Piontek, Przybyszewski, Wȩglarz (b29) 2013; 39
O. Hoenen, L. Fazendeiro, B.D. Scott, J. Borgdorff, A.G. Hoekstra, P. Strand, D.P. Coster, Designing and running turbulence transport simulations using a distributed multiscale computing approach, in: EPS 2013, Europhysics Conference Abstracts, Vol. 37D, no. 37, 2013, pp. P4.155.
Hill (b12) 2008; 7
Leibniz-Rechenzentrum, SuperMUC Petascale System. URL
Bosak, Komasa, Kopta, Kurowski, Mamoński, Piontek (b31) 2012
Bhati, Wan, Wright, Coveney (b41) 2017; 13
Kurowski, Nabrzyski, Oleksiak, Weglarz (b26) 2003; vol. 64
January, Byrd, Oró, O’Connor (b27) 2015
Mountrakis, Lorenz, Malaspinas, Alowayyed, Chopard, Hoekstra (b36) 2015
Hoekstra, Lorenz, Falcone, Chopard (b2) 2007; 5
Groen, Zasada, Coveney (b5) 2014; 16
Groen, Bhati, Suter, Hetherington, Zasada, Coveney (b25) 2016; 207
Závodszky, van Rooij, Azizi, Hoekstra (b37) 2017; 8
FlowKit-Ltd, Palabos. URL
Kurowski, Nabrzyski, Oleksiak, Weglarz (b28) 2008; 11
Sloot, Hoekstra (b17) 2009; 11
Falchetto, Coster, Coelho, Scott, Figini, Kalupin, Nardon, Nowak, Alves, Artaud (b34) 2014; 54
Hoekstra, Caiazzo, Lorenz, Falcone, Chopard (b19) 2010
Alowayyed, Groen, Coveney, Hoekstra (b23) 2017; 22
Chopard, Borgdorff, Hoekstra (b3) 2014; 372
Poznań-Supercomputing-Networking-Center, Eagle. URL
Suter, Groen, Coveney (b11) 2015; 27
Piontek, Bosak, Ciznicki, Grabowski, Kopta, Kulczewski, Szejnfeld, Kurowski (b21) 2016; 14
Hoekstra, Chopard, Coveney (b1) 2014; 372
Zavodszky, van Rooij, Azizi, Alowayyed, Hoekstra (b39) 2017; 108
S.K. Sadiq, D. Wright, S.J. Watson, S.J. Zasada, I. Stoica, P.V. Coveney, Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases, 2008.
I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith, M. Theimer, OGSA Basic Execution Service version 1.0, 2007.
Delgado-Buscalioni, Coveney (b13) 2003; 67
Knap, Spear, Borodin, Leiter (b22) 2015; 26
Bosak, Kopta, Kurowski, Piontek, Mamoński (b24) 2014
Zwart, McMillan, van Elteren, Pelupessy, de Vries (b14) 2013; 184
Borgdorff, Mamonski, Bosak, Kurowski, Ben Belgacem, Chopard, Groen, Coveney, Hoekstra (b20) 2014; 5
Hoekstra, Alowayyed, Lorenz, Melnikova, Mountrakis, van Rooij, Svitenkov, Závodszky, Zun (b8) 2016; 374
.
Hoekstra, Lorenz, Falcone, Chopard (b18) 2007
Tahir, Bona-Casas, Narracott, Iqbal, Gunn, Lawford, Hoekstra (b6) 2014; 11
Groen, Borgdorff, Bona-Casas, Hetherington, Nash, Zasada, Saverchenko, Mamonski, Kurowski, Bernabeu, Hoekstra, Coveney (b7) 2013; 3
HEMOCELL A high-performance framework for dense cellular suspension flows. URL
Borgdorff, Falcone, Lorenz, Bona-Casas, Chopard, Hoekstra (b4) 2013; 73
Valcke (b15) 2013; 6
Gaston, Newman, Hansen, Lebrun-Grandie (b16) 2009; 239
Hoekstra, Sloot (b42) 2005
10.1016/j.future.2018.08.045_b35
Borgdorff (10.1016/j.future.2018.08.045_b10) 2014; 372
Borgdorff (10.1016/j.future.2018.08.045_b20) 2014; 5
10.1016/j.future.2018.08.045_b33
Groen (10.1016/j.future.2018.08.045_b5) 2014; 16
Zwart (10.1016/j.future.2018.08.045_b14) 2013; 184
10.1016/j.future.2018.08.045_b32
Groen (10.1016/j.future.2018.08.045_b25) 2016; 207
10.1016/j.future.2018.08.045_b30
Gaston (10.1016/j.future.2018.08.045_b16) 2009; 239
Bosak (10.1016/j.future.2018.08.045_b24) 2014
Borgdorff (10.1016/j.future.2018.08.045_b4) 2013; 73
Mountrakis (10.1016/j.future.2018.08.045_b36) 2015
Kurowski (10.1016/j.future.2018.08.045_b26) 2003; vol. 64
Hoekstra (10.1016/j.future.2018.08.045_b1) 2014; 372
Závodszky (10.1016/j.future.2018.08.045_b37) 2017; 8
Hill (10.1016/j.future.2018.08.045_b12) 2008; 7
10.1016/j.future.2018.08.045_b9
Kurowski (10.1016/j.future.2018.08.045_b28) 2008; 11
Hoekstra (10.1016/j.future.2018.08.045_b42) 2005
10.1016/j.future.2018.08.045_b38
Hoekstra (10.1016/j.future.2018.08.045_b18) 2007
Kurowski (10.1016/j.future.2018.08.045_b29) 2013; 39
Hoekstra (10.1016/j.future.2018.08.045_b2) 2007; 5
Delgado-Buscalioni (10.1016/j.future.2018.08.045_b13) 2003; 67
Groen (10.1016/j.future.2018.08.045_b7) 2013; 3
10.1016/j.future.2018.08.045_b40
Suter (10.1016/j.future.2018.08.045_b11) 2015; 27
Tahir (10.1016/j.future.2018.08.045_b6) 2014; 11
Hoekstra (10.1016/j.future.2018.08.045_b8) 2016; 374
Bhati (10.1016/j.future.2018.08.045_b41) 2017; 13
Sloot (10.1016/j.future.2018.08.045_b17) 2009; 11
January (10.1016/j.future.2018.08.045_b27) 2015
Zavodszky (10.1016/j.future.2018.08.045_b39) 2017; 108
Alowayyed (10.1016/j.future.2018.08.045_b23) 2017; 22
Knap (10.1016/j.future.2018.08.045_b22) 2015; 26
Hoekstra (10.1016/j.future.2018.08.045_b19) 2010
Chopard (10.1016/j.future.2018.08.045_b3) 2014; 372
Bosak (10.1016/j.future.2018.08.045_b31) 2012
Valcke (10.1016/j.future.2018.08.045_b15) 2013; 6
Piontek (10.1016/j.future.2018.08.045_b21) 2016; 14
Falchetto (10.1016/j.future.2018.08.045_b34) 2014; 54
References_xml – reference: I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith, M. Theimer, OGSA Basic Execution Service version 1.0, 2007.
– volume: 6
  start-page: 373
  year: 2013
  ident: b15
  article-title: The OASIS3 coupler: a European climate modelling community software
  publication-title: Geosci. Model Dev.
– start-page: 245
  year: 2005
  end-page: 254
  ident: b42
  article-title: Introducing Grid speedup
  publication-title: Advances in Grid Computing - EGC 2005
– reference: O. Hoenen, L. Fazendeiro, B.D. Scott, J. Borgdorff, A.G. Hoekstra, P. Strand, D.P. Coster, Designing and running turbulence transport simulations using a distributed multiscale computing approach, in: EPS 2013, Europhysics Conference Abstracts, Vol. 37D, no. 37, 2013, pp. P4.155.
– volume: 54
  start-page: 99501
  year: 2014
  ident: b34
  article-title: Corrigendum: The European integrated tokamak modelling (ITM) effort: achievements and first physics results (2014 Nucl. Fusion 54 043018)
  publication-title: Nucl. Fusion
– volume: 67
  start-page: 46704
  year: 2003
  ident: b13
  article-title: Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow
  publication-title: Phys. Rev. E
– volume: 239
  start-page: 1768
  year: 2009
  end-page: 1778
  ident: b16
  article-title: MOOSE: A parallel computational framework for coupled systems of nonlinear equations
  publication-title: Nucl. Eng. Des.
– start-page: 10
  year: 2015
  ident: b36
  article-title: Parallel performance of an IB-LBM suspension simulation framework
  publication-title: International Conference on Computational Science
– volume: 14
  start-page: 559
  year: 2016
  end-page: 573
  ident: b21
  article-title: Development of science gateways using QCG-lessons learned from the deployment on large scale distributed and HPC infrastructures
  publication-title: J. Grid Comput.
– volume: 13
  start-page: 210
  year: 2017
  end-page: 222
  ident: b41
  article-title: Rapid, accurate, precise, and reliable relative free energy prediction using ensemble based thermodynamic integration
  publication-title: J. Chem. Theory Comput.
– reference: Poznań-Supercomputing-Networking-Center, Eagle. URL
– volume: 372
  start-page: 20130407
  year: 2014
  ident: b10
  article-title: Performance of distributed multiscale simulations
  publication-title: Phil. Trans. R. Soc. A
– start-page: 922
  year: 2007
  end-page: 930
  ident: b18
  article-title: Towards a complex automata framework for multi-scale modeling: Formalism and the scale separation map
  publication-title: Computational Science–ICCS 2007
– volume: 5
  start-page: 491
  year: 2007
  end-page: 502
  ident: b2
  article-title: Toward a complex automata formalism for multiscale modeling
  publication-title: Int. J. Multiscale Comput. Eng.
– volume: 3
  start-page: 20120087
  year: 2013
  ident: b7
  article-title: Flexible composition and execution of high performance, high fidelity multiscale biomedical simulations
  publication-title: Interface Focus
– start-page: 34
  year: 2014
  end-page: 53
  ident: b24
  article-title: New QosCosGrid middleware capabilities and its integration with European e-infrastructure
  publication-title: eScience on Distributed Computing Infrastructure
– volume: 26
  start-page: 434004
  year: 2015
  ident: b22
  article-title: Advancing a distributed multi-scale computing framework for large-scale high-throughput discovery in materials science
  publication-title: Nanotechnology
– volume: 73
  start-page: 465
  year: 2013
  end-page: 483
  ident: b4
  article-title: Foundations of distributed multiscale computing: Formalization, specification, and analysis
  publication-title: J. Parallel Distrib. Comput.
– volume: 11
  start-page: 371
  year: 2008
  end-page: 379
  ident: b28
  article-title: A multicriteria approach to two-level hierarchy scheduling in grids
  publication-title: J. Sched.
– volume: 39
  start-page: 135
  year: 2013
  end-page: 151
  ident: b29
  article-title: DCworms-A tool for simulation of energy efficiency in distributed computing infrastructures
  publication-title: Simul. Model. Pract. Theory
– volume: 7
  start-page: 680
  year: 2008
  ident: b12
  article-title: Nuclear energy for the future
  publication-title: Nature Mater.
– volume: 372
  start-page: 20130377
  year: 2014
  ident: b1
  article-title: Multiscale modelling and simulation: a position paper
  publication-title: Philos. Trans. Ser. A Math. Phys. Eng. Sci.
– volume: 207
  start-page: 375
  year: 2016
  end-page: 385
  ident: b25
  article-title: FabSim: facilitating computational research through automation on large-scale and distributed e-infrastructures
  publication-title: Comput. Phys. Comm.
– volume: 11
  start-page: 142
  year: 2009
  end-page: 152
  ident: b17
  article-title: Multi-scale modelling in computational biomedicine
  publication-title: Brief. Bioinform.
– volume: 11
  start-page: 20140022
  year: 2014
  ident: b6
  article-title: Endothelial repair process and its relevance to longitudinal neointimal tissue patterns: comparing histology with in silico modelling
  publication-title: J. R. Soc. Interface / R. Soc.
– start-page: 29
  year: 2010
  end-page: 57
  ident: b19
  article-title: Complex automata: multi-scale modeling with coupled cellular automata
  publication-title: Simul. Complex Syst. Cell. Autom.
– volume: 374
  start-page: 20160146
  year: 2016
  ident: b8
  article-title: Towards the virtual artery: a multiscale model for vascular physiology at the physics-chemistry-biology interface
  publication-title: Phil. Trans. R. Soc. A
– reference: FlowKit-Ltd, Palabos. URL
– volume: vol. 64
  start-page: 271
  year: 2003
  end-page: 294
  ident: b26
  publication-title: Multicriteria Aspects of Grid Resource Management
– start-page: 40
  year: 2012
  end-page: 55
  ident: b31
  article-title: New capabilities in QosCosGrid middleware for advanced job management, advance reservation and co-allocation of computing resources-quantum chemistry application use case
  publication-title: Building a National Distributed e-Infrastructure-PL-Grid
– reference: Leibniz-Rechenzentrum, SuperMUC Petascale System. URL
– reference: S.K. Sadiq, D. Wright, S.J. Watson, S.J. Zasada, I. Stoica, P.V. Coveney, Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases, 2008.
– volume: 372
  start-page: 20130378
  year: 2014
  ident: b3
  article-title: A framework for multi-scale modelling
  publication-title: Phil. Trans. R. Soc. A
– reference: .
– volume: 184
  start-page: 456
  year: 2013
  end-page: 468
  ident: b14
  article-title: Multi-physics simulations using a hierarchical interchangeable software interface
  publication-title: Comput. Phys. Comm.
– volume: 27
  start-page: 966
  year: 2015
  end-page: 984
  ident: b11
  article-title: Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties
  publication-title: Adv. Mater.
– volume: 108
  start-page: 159
  year: 2017
  end-page: 165
  ident: b39
  article-title: Hemocell: a high-performance microscopic cellular library
  publication-title: Procedia Comput. Sci.
– start-page: 25
  year: 2015
  end-page: 35
  ident: b27
  article-title: Allinea MAP: Adding energy and OpenMP profiling without increasing overhead
  publication-title: Tools for High Performance Computing 2014
– volume: 5
  start-page: 719
  year: 2014
  end-page: 731
  ident: b20
  article-title: Distributed multiscale computing with MUSCLE 2, the multiscale coupling library and environment
  publication-title: J. Comput. Sci.
– volume: 22
  start-page: 15
  year: 2017
  end-page: 25
  ident: b23
  article-title: Multiscale computing in the exascale era
  publication-title: J. Comput. Sci.
– volume: 16
  start-page: 34
  year: 2014
  end-page: 43
  ident: b5
  article-title: Survey of multiscale and multiphysics applications and communities
  publication-title: Comput. Sci. Eng.
– volume: 8
  start-page: 563
  year: 2017
  ident: b37
  article-title: Cellular level in-silico modeling of blood rheology with an improved material model for red blood cells
  publication-title: Front. Phys.
– reference: HEMOCELL A high-performance framework for dense cellular suspension flows. URL
– start-page: 10
  year: 2015
  ident: 10.1016/j.future.2018.08.045_b36
  article-title: Parallel performance of an IB-LBM suspension simulation framework
– volume: 16
  start-page: 34
  issue: 2
  year: 2014
  ident: 10.1016/j.future.2018.08.045_b5
  article-title: Survey of multiscale and multiphysics applications and communities
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2013.47
– start-page: 40
  year: 2012
  ident: 10.1016/j.future.2018.08.045_b31
  article-title: New capabilities in QosCosGrid middleware for advanced job management, advance reservation and co-allocation of computing resources-quantum chemistry application use case
– ident: 10.1016/j.future.2018.08.045_b32
– volume: 5
  start-page: 719
  issue: 5
  year: 2014
  ident: 10.1016/j.future.2018.08.045_b20
  article-title: Distributed multiscale computing with MUSCLE 2, the multiscale coupling library and environment
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2014.04.004
– start-page: 34
  year: 2014
  ident: 10.1016/j.future.2018.08.045_b24
  article-title: New QosCosGrid middleware capabilities and its integration with European e-infrastructure
– ident: 10.1016/j.future.2018.08.045_b40
  doi: 10.1002/chin.200851222
– ident: 10.1016/j.future.2018.08.045_b9
– volume: 184
  start-page: 456
  issue: 3
  year: 2013
  ident: 10.1016/j.future.2018.08.045_b14
  article-title: Multi-physics simulations using a hierarchical interchangeable software interface
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2012.09.024
– start-page: 922
  year: 2007
  ident: 10.1016/j.future.2018.08.045_b18
  article-title: Towards a complex automata framework for multi-scale modeling: Formalism and the scale separation map
– volume: 3
  start-page: 20120087
  issue: 2
  year: 2013
  ident: 10.1016/j.future.2018.08.045_b7
  article-title: Flexible composition and execution of high performance, high fidelity multiscale biomedical simulations
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2012.0087
– volume: 22
  start-page: 15
  year: 2017
  ident: 10.1016/j.future.2018.08.045_b23
  article-title: Multiscale computing in the exascale era
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.07.004
– volume: 54
  start-page: 99501
  issue: 9
  year: 2014
  ident: 10.1016/j.future.2018.08.045_b34
  article-title: Corrigendum: The European integrated tokamak modelling (ITM) effort: achievements and first physics results (2014 Nucl. Fusion 54 043018)
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/54/9/099501
– volume: 27
  start-page: 966
  issue: 6
  year: 2015
  ident: 10.1016/j.future.2018.08.045_b11
  article-title: Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403361
– volume: vol. 64
  start-page: 271
  year: 2003
  ident: 10.1016/j.future.2018.08.045_b26
– start-page: 29
  year: 2010
  ident: 10.1016/j.future.2018.08.045_b19
  article-title: Complex automata: multi-scale modeling with coupled cellular automata
  publication-title: Simul. Complex Syst. Cell. Autom.
– start-page: 25
  year: 2015
  ident: 10.1016/j.future.2018.08.045_b27
  article-title: Allinea MAP: Adding energy and OpenMP profiling without increasing overhead
– volume: 6
  start-page: 373
  issue: 2
  year: 2013
  ident: 10.1016/j.future.2018.08.045_b15
  article-title: The OASIS3 coupler: a European climate modelling community software
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-6-373-2013
– volume: 11
  start-page: 371
  issue: 5
  year: 2008
  ident: 10.1016/j.future.2018.08.045_b28
  article-title: A multicriteria approach to two-level hierarchy scheduling in grids
  publication-title: J. Sched.
  doi: 10.1007/s10951-008-0058-8
– volume: 39
  start-page: 135
  year: 2013
  ident: 10.1016/j.future.2018.08.045_b29
  article-title: DCworms-A tool for simulation of energy efficiency in distributed computing infrastructures
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2013.08.007
– volume: 11
  start-page: 142
  issue: 1
  year: 2009
  ident: 10.1016/j.future.2018.08.045_b17
  article-title: Multi-scale modelling in computational biomedicine
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbp038
– ident: 10.1016/j.future.2018.08.045_b35
– volume: 374
  start-page: 20160146
  issue: 2080
  year: 2016
  ident: 10.1016/j.future.2018.08.045_b8
  article-title: Towards the virtual artery: a multiscale model for vascular physiology at the physics-chemistry-biology interface
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2016.0146
– volume: 372
  start-page: 20130378
  year: 2014
  ident: 10.1016/j.future.2018.08.045_b3
  article-title: A framework for multi-scale modelling
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2013.0378
– volume: 7
  start-page: 680
  issue: 9
  year: 2008
  ident: 10.1016/j.future.2018.08.045_b12
  article-title: Nuclear energy for the future
  publication-title: Nature Mater.
  doi: 10.1038/nmat2247
– ident: 10.1016/j.future.2018.08.045_b33
– volume: 13
  start-page: 210
  issue: 1
  year: 2017
  ident: 10.1016/j.future.2018.08.045_b41
  article-title: Rapid, accurate, precise, and reliable relative free energy prediction using ensemble based thermodynamic integration
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.6b00979
– volume: 372
  start-page: 20130377
  year: 2014
  ident: 10.1016/j.future.2018.08.045_b1
  article-title: Multiscale modelling and simulation: a position paper
  publication-title: Philos. Trans. Ser. A Math. Phys. Eng. Sci.
– volume: 8
  start-page: 563
  year: 2017
  ident: 10.1016/j.future.2018.08.045_b37
  article-title: Cellular level in-silico modeling of blood rheology with an improved material model for red blood cells
  publication-title: Front. Phys.
  doi: 10.3389/fphys.2017.00563
– volume: 11
  start-page: 20140022
  issue: 94
  year: 2014
  ident: 10.1016/j.future.2018.08.045_b6
  article-title: Endothelial repair process and its relevance to longitudinal neointimal tissue patterns: comparing histology with in silico modelling
  publication-title: J. R. Soc. Interface / R. Soc.
  doi: 10.1098/rsif.2014.0022
– start-page: 245
  year: 2005
  ident: 10.1016/j.future.2018.08.045_b42
  article-title: Introducing Grid speedup Γ : A scalability metric for parallel applications on the grid
– volume: 108
  start-page: 159
  year: 2017
  ident: 10.1016/j.future.2018.08.045_b39
  article-title: Hemocell: a high-performance microscopic cellular library
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.05.084
– volume: 239
  start-page: 1768
  issue: 10
  year: 2009
  ident: 10.1016/j.future.2018.08.045_b16
  article-title: MOOSE: A parallel computational framework for coupled systems of nonlinear equations
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2009.05.021
– volume: 372
  start-page: 20130407
  year: 2014
  ident: 10.1016/j.future.2018.08.045_b10
  article-title: Performance of distributed multiscale simulations
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2013.0407
– volume: 5
  start-page: 491
  issue: 6
  year: 2007
  ident: 10.1016/j.future.2018.08.045_b2
  article-title: Toward a complex automata formalism for multiscale modeling
  publication-title: Int. J. Multiscale Comput. Eng.
  doi: 10.1615/IntJMultCompEng.v5.i6.60
– volume: 207
  start-page: 375
  year: 2016
  ident: 10.1016/j.future.2018.08.045_b25
  article-title: FabSim: facilitating computational research through automation on large-scale and distributed e-infrastructures
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2016.05.020
– volume: 14
  start-page: 559
  issue: 4
  year: 2016
  ident: 10.1016/j.future.2018.08.045_b21
  article-title: Development of science gateways using QCG-lessons learned from the deployment on large scale distributed and HPC infrastructures
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-016-9384-9
– volume: 26
  start-page: 434004
  issue: 43
  year: 2015
  ident: 10.1016/j.future.2018.08.045_b22
  article-title: Advancing a distributed multi-scale computing framework for large-scale high-throughput discovery in materials science
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/43/434004
– ident: 10.1016/j.future.2018.08.045_b30
– volume: 67
  start-page: 46704
  issue: 4
  year: 2003
  ident: 10.1016/j.future.2018.08.045_b13
  article-title: Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.046704
– volume: 73
  start-page: 465
  issue: 4
  year: 2013
  ident: 10.1016/j.future.2018.08.045_b4
  article-title: Foundations of distributed multiscale computing: Formalization, specification, and analysis
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2012.12.011
– ident: 10.1016/j.future.2018.08.045_b38
SSID ssj0001731
Score 2.3404703
Snippet We describe our Multiscale Computing Patterns software for High Performance Multiscale Computing. Following a short review of Multiscale Computing Patterns,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 335
SubjectTerms Distributed computing
High performance computing
Model coupling
Modelling methodology
Multiscale computing
Title Patterns for High Performance Multiscale Computing
URI https://dx.doi.org/10.1016/j.future.2018.08.045
Volume 91
WOSCitedRecordID wos000451790900028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF7UevDiW6wvcvAmKW12N5s9FlFUpBaq0FvYbDagSFp81n_v7LNFxcfBSwhLsml3vsxMtzPfh9AhL1NeMIFjCAdpTEQhwA-2y7iTKKEok4milRGbYL1eNhzyvusueTRyAqyus8mEj__V1DAGxtats38wd5gUBuAcjA5HMDscf2X4vmHMrA3Pginj0FXuoTnANNw-gmHUkRV08KHLS3UajhEtrKwcNqTTfXCkzyEH796PXsXbm90sHbSCj73VfFe2_joMDp6d_sdF6zIMno3gIcbpXbVmNx90v1Mo5HD7keBnGTZquMGhWvkt5xGxZSNxwRXb_cZPfttuIdy1LJGKrrjLDLMqodM45f-b_xC-QlGhr1e7y-0suZ4l1yKbhM6jRsIoB8_d6J6fDC9CsO4wJ1npvofvrjQlgJ8_zdfZy0xGcr2Klt1PiahrIbCG5lS9jla8TEfkvPYGSjwiIkBBpBERzSAimiIiCojYRDenJ9fHZ7GTyoglZNBPMSMygeRNUpUQXPGik0pOVVVBOisFKUhWpgVJ2lWHMsayNryXWGQkgxcSi5QTjrfQQj2q1TaKOK4qyDn1ZJiosixSLeYsE1ZmglNaNBH2S5BLxyOv5Uzu8-8M0ERxuGtseVR-uJ751c1dLmhzvBwg8-2dO3980i5amiJ7Dy08PTyrfbQoX2DtHw4cXt4BVWqBIw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterns+for+High+Performance+Multiscale+Computing&rft.jtitle=Future+generation+computer+systems&rft.au=Alowayyed%2C+S.&rft.au=Piontek%2C+T.&rft.au=Suter%2C+J.L.&rft.au=Hoenen%2C+O.&rft.date=2019-02-01&rft.issn=0167-739X&rft.volume=91&rft.spage=335&rft.epage=346&rft_id=info:doi/10.1016%2Fj.future.2018.08.045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2018_08_045
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon