Patterns for High Performance Multiscale Computing
We describe our Multiscale Computing Patterns software for High Performance Multiscale Computing. Following a short review of Multiscale Computing Patterns, this paper introduces the Multiscale Computing Patterns Software, which consists of description, optimisation and execution components. First,...
Gespeichert in:
| Veröffentlicht in: | Future generation computer systems Jg. 91; S. 335 - 346 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.02.2019
|
| Schlagworte: | |
| ISSN: | 0167-739X, 1872-7115 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We describe our Multiscale Computing Patterns software for High Performance Multiscale Computing. Following a short review of Multiscale Computing Patterns, this paper introduces the Multiscale Computing Patterns Software, which consists of description, optimisation and execution components. First, the description component translates the task graph, representing a multiscale simulation, to a particular type of multiscale computing pattern. Second, the optimisation component selects and applies algorithms to find the most suitable mapping between submodels and available HPC resources. Third, the execution component which a middleware layer maps submodels to the number and type of physical resources based on the suggestions emanating from the optimisation part together with infrastructure-specific metrics such as queueing time and resource availability. The main purpose of the Multiscale Computing Patterns software is to leverage the Multiscale Computing Patterns to simplify and automate the execution of complex multiscale simulations on high performance computers, and to provide both application-specific and pattern-specific performance optimisation. We test the performance and the resource usage for three multiscale models, which are expressed in terms of two Multiscale Computing Patterns. In doing so, we demonstrate how the software automates resource selection and load balancing, and delivers performance benefits from both the end-user and the HPC system level perspectives.
•We introduce the idea of the Multiscale Computing Patterns (MCP).•We present the MCP software for High Performance Multiscale Computing.•To simplify and automate the execution of complex multiscale simulations on HPC.•Also to provide both application-specific and pattern-specific performance optimisation.•We test the performance and the resource usage for three multiscale models (two MCPs).•We demonstrate how the software automates resource selection and load balancing. |
|---|---|
| AbstractList | We describe our Multiscale Computing Patterns software for High Performance Multiscale Computing. Following a short review of Multiscale Computing Patterns, this paper introduces the Multiscale Computing Patterns Software, which consists of description, optimisation and execution components. First, the description component translates the task graph, representing a multiscale simulation, to a particular type of multiscale computing pattern. Second, the optimisation component selects and applies algorithms to find the most suitable mapping between submodels and available HPC resources. Third, the execution component which a middleware layer maps submodels to the number and type of physical resources based on the suggestions emanating from the optimisation part together with infrastructure-specific metrics such as queueing time and resource availability. The main purpose of the Multiscale Computing Patterns software is to leverage the Multiscale Computing Patterns to simplify and automate the execution of complex multiscale simulations on high performance computers, and to provide both application-specific and pattern-specific performance optimisation. We test the performance and the resource usage for three multiscale models, which are expressed in terms of two Multiscale Computing Patterns. In doing so, we demonstrate how the software automates resource selection and load balancing, and delivers performance benefits from both the end-user and the HPC system level perspectives.
•We introduce the idea of the Multiscale Computing Patterns (MCP).•We present the MCP software for High Performance Multiscale Computing.•To simplify and automate the execution of complex multiscale simulations on HPC.•Also to provide both application-specific and pattern-specific performance optimisation.•We test the performance and the resource usage for three multiscale models (two MCPs).•We demonstrate how the software automates resource selection and load balancing. |
| Author | Brabazon, K. Bosak, B. Kurowski, K. Jancauskas, V. Perks, O. Suter, J.L. Coster, D. Luk, O. Kopta, P. Coveney, P.V. Hoekstra, A.G. Hoenen, O. Piontek, T. Groen, D. Alowayyed, S. |
| Author_xml | – sequence: 1 givenname: S. surname: Alowayyed fullname: Alowayyed, S. email: S.A.Alowayyed@uva.nl organization: Computational Science Lab, Institute for Informatics, Faculty of Science, University of Amsterdam, The Netherlands – sequence: 2 givenname: T. orcidid: 0000-0003-0147-3996 surname: Piontek fullname: Piontek, T. organization: Poznań Supercomputing and Networking Center, Poznań, Poland – sequence: 3 givenname: J.L. surname: Suter fullname: Suter, J.L. organization: Centre for Computational Science, University College London, United Kingdom – sequence: 4 givenname: O. orcidid: 0000-0001-6953-8800 surname: Hoenen fullname: Hoenen, O. organization: Max-Planck-Institut für Plasmaphysik, Garching, Germany – sequence: 5 givenname: D. orcidid: 0000-0001-7463-3765 surname: Groen fullname: Groen, D. organization: Centre for Computational Science, University College London, United Kingdom – sequence: 6 givenname: O. orcidid: 0000-0003-0560-4797 surname: Luk fullname: Luk, O. organization: Max-Planck-Institut für Plasmaphysik, Garching, Germany – sequence: 7 givenname: B. surname: Bosak fullname: Bosak, B. organization: Poznań Supercomputing and Networking Center, Poznań, Poland – sequence: 8 givenname: P. surname: Kopta fullname: Kopta, P. organization: Poznań Supercomputing and Networking Center, Poznań, Poland – sequence: 9 givenname: K. surname: Kurowski fullname: Kurowski, K. organization: Poznań Supercomputing and Networking Center, Poznań, Poland – sequence: 10 givenname: O. surname: Perks fullname: Perks, O. organization: ARM Ltd., Warwick, United Kingdom – sequence: 11 givenname: K. surname: Brabazon fullname: Brabazon, K. organization: ARM Ltd., Warwick, United Kingdom – sequence: 12 givenname: V. surname: Jancauskas fullname: Jancauskas, V. organization: Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften, Garching, Germany – sequence: 13 givenname: D. orcidid: 0000-0002-2470-9706 surname: Coster fullname: Coster, D. organization: Max-Planck-Institut für Plasmaphysik, Garching, Germany – sequence: 14 givenname: P.V. orcidid: 0000-0002-8787-7256 surname: Coveney fullname: Coveney, P.V. organization: Centre for Computational Science, University College London, United Kingdom – sequence: 15 givenname: A.G. orcidid: 0000-0002-3955-2449 surname: Hoekstra fullname: Hoekstra, A.G. email: A.G.Hoekstra@uva.nl organization: Computational Science Lab, Institute for Informatics, Faculty of Science, University of Amsterdam, The Netherlands |
| BookMark | eNqFkM1KAzEURoNUsK2-gYt5gRnzO8m4EKSoFSp2oeAupOlNTZnOlCQj-PZNqSsXCh_cu7jng3MnaNT1HSB0TXBFMKlvtpUb0hCgopioCudwcYbGRElaSkLECI3zmSwlaz4u0CTGLcaYSEbGiC5NShC6WLg-FHO_-SyWEPK-M52F4mVok4_WtFDM-t1-SL7bXKJzZ9oIVz9zit4fH95m83Lx-vQ8u1-UlgmaSsktpURYAZQz16xIbRsBztUYW8NXXK3rFafYESGlVJipmhnFFQXDTN3whk3R7anXhj7GAE5bn0zyfZeC8a0mWB_t9Vaf7PXRXuMcLjLMf8H74HcmfP-H3Z0wyGJfHoKO1kP-xNoHsEmve_93wQF7cXgT |
| CitedBy_id | crossref_primary_10_1016_j_cpc_2022_108596 crossref_primary_10_1002_ente_202000901 crossref_primary_10_1002_ctpp_202200177 crossref_primary_10_1007_s11042_020_08805_w crossref_primary_10_1002_adts_201800168 crossref_primary_10_1016_j_addma_2021_102089 crossref_primary_10_1109_ACCESS_2021_3073667 |
| Cites_doi | 10.1109/MCSE.2013.47 10.1016/j.jocs.2014.04.004 10.1002/chin.200851222 10.1016/j.cpc.2012.09.024 10.1098/rsfs.2012.0087 10.1016/j.jocs.2017.07.004 10.1088/0029-5515/54/9/099501 10.1002/adma.201403361 10.5194/gmd-6-373-2013 10.1007/s10951-008-0058-8 10.1016/j.simpat.2013.08.007 10.1093/bib/bbp038 10.1098/rsta.2016.0146 10.1098/rsta.2013.0378 10.1038/nmat2247 10.1021/acs.jctc.6b00979 10.3389/fphys.2017.00563 10.1098/rsif.2014.0022 10.1016/j.procs.2017.05.084 10.1016/j.nucengdes.2009.05.021 10.1098/rsta.2013.0407 10.1615/IntJMultCompEng.v5.i6.60 10.1016/j.cpc.2016.05.020 10.1007/s10723-016-9384-9 10.1088/0957-4484/26/43/434004 10.1103/PhysRevE.67.046704 10.1016/j.jpdc.2012.12.011 |
| ContentType | Journal Article |
| Copyright | 2018 The Authors |
| Copyright_xml | – notice: 2018 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.future.2018.08.045 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7115 |
| EndPage | 346 |
| ExternalDocumentID | 10_1016_j_future_2018_08_045 S0167739X18300669 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c352t-74c2215c5e243f9b16c95eff600ca4b48d6b420f15777803863a8482ea3a69493 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451790900028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-739X |
| IngestDate | Tue Nov 18 21:38:41 EST 2025 Sat Nov 29 07:25:38 EST 2025 Fri Feb 23 02:47:42 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Modelling methodology High performance computing Multiscale computing Distributed computing Model coupling |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c352t-74c2215c5e243f9b16c95eff600ca4b48d6b420f15777803863a8482ea3a69493 |
| ORCID | 0000-0002-8787-7256 0000-0002-2470-9706 0000-0003-0147-3996 0000-0003-0560-4797 0000-0002-3955-2449 0000-0001-6953-8800 0000-0001-7463-3765 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.future.2018.08.045 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_future_2018_08_045 crossref_primary_10_1016_j_future_2018_08_045 elsevier_sciencedirect_doi_10_1016_j_future_2018_08_045 |
| PublicationCentury | 2000 |
| PublicationDate | February 2019 2019-02-00 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Borgdorff, Ben Belgacem, Bona-Casas, Fazendeiro, Groen, Hoenen, Mizeranschi, Suter, Coster, Coveney, Dubitzky, Hoekstra, Strand, Chopard (b10) 2014; 372 Kurowski, Oleksiak, Pia̧tek, Piontek, Przybyszewski, Wȩglarz (b29) 2013; 39 O. Hoenen, L. Fazendeiro, B.D. Scott, J. Borgdorff, A.G. Hoekstra, P. Strand, D.P. Coster, Designing and running turbulence transport simulations using a distributed multiscale computing approach, in: EPS 2013, Europhysics Conference Abstracts, Vol. 37D, no. 37, 2013, pp. P4.155. Hill (b12) 2008; 7 Leibniz-Rechenzentrum, SuperMUC Petascale System. URL Bosak, Komasa, Kopta, Kurowski, Mamoński, Piontek (b31) 2012 Bhati, Wan, Wright, Coveney (b41) 2017; 13 Kurowski, Nabrzyski, Oleksiak, Weglarz (b26) 2003; vol. 64 January, Byrd, Oró, O’Connor (b27) 2015 Mountrakis, Lorenz, Malaspinas, Alowayyed, Chopard, Hoekstra (b36) 2015 Hoekstra, Lorenz, Falcone, Chopard (b2) 2007; 5 Groen, Zasada, Coveney (b5) 2014; 16 Groen, Bhati, Suter, Hetherington, Zasada, Coveney (b25) 2016; 207 Závodszky, van Rooij, Azizi, Hoekstra (b37) 2017; 8 FlowKit-Ltd, Palabos. URL Kurowski, Nabrzyski, Oleksiak, Weglarz (b28) 2008; 11 Sloot, Hoekstra (b17) 2009; 11 Falchetto, Coster, Coelho, Scott, Figini, Kalupin, Nardon, Nowak, Alves, Artaud (b34) 2014; 54 Hoekstra, Caiazzo, Lorenz, Falcone, Chopard (b19) 2010 Alowayyed, Groen, Coveney, Hoekstra (b23) 2017; 22 Chopard, Borgdorff, Hoekstra (b3) 2014; 372 Poznań-Supercomputing-Networking-Center, Eagle. URL Suter, Groen, Coveney (b11) 2015; 27 Piontek, Bosak, Ciznicki, Grabowski, Kopta, Kulczewski, Szejnfeld, Kurowski (b21) 2016; 14 Hoekstra, Chopard, Coveney (b1) 2014; 372 Zavodszky, van Rooij, Azizi, Alowayyed, Hoekstra (b39) 2017; 108 S.K. Sadiq, D. Wright, S.J. Watson, S.J. Zasada, I. Stoica, P.V. Coveney, Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases, 2008. I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith, M. Theimer, OGSA Basic Execution Service version 1.0, 2007. Delgado-Buscalioni, Coveney (b13) 2003; 67 Knap, Spear, Borodin, Leiter (b22) 2015; 26 Bosak, Kopta, Kurowski, Piontek, Mamoński (b24) 2014 Zwart, McMillan, van Elteren, Pelupessy, de Vries (b14) 2013; 184 Borgdorff, Mamonski, Bosak, Kurowski, Ben Belgacem, Chopard, Groen, Coveney, Hoekstra (b20) 2014; 5 Hoekstra, Alowayyed, Lorenz, Melnikova, Mountrakis, van Rooij, Svitenkov, Závodszky, Zun (b8) 2016; 374 . Hoekstra, Lorenz, Falcone, Chopard (b18) 2007 Tahir, Bona-Casas, Narracott, Iqbal, Gunn, Lawford, Hoekstra (b6) 2014; 11 Groen, Borgdorff, Bona-Casas, Hetherington, Nash, Zasada, Saverchenko, Mamonski, Kurowski, Bernabeu, Hoekstra, Coveney (b7) 2013; 3 HEMOCELL A high-performance framework for dense cellular suspension flows. URL Borgdorff, Falcone, Lorenz, Bona-Casas, Chopard, Hoekstra (b4) 2013; 73 Valcke (b15) 2013; 6 Gaston, Newman, Hansen, Lebrun-Grandie (b16) 2009; 239 Hoekstra, Sloot (b42) 2005 10.1016/j.future.2018.08.045_b35 Borgdorff (10.1016/j.future.2018.08.045_b10) 2014; 372 Borgdorff (10.1016/j.future.2018.08.045_b20) 2014; 5 10.1016/j.future.2018.08.045_b33 Groen (10.1016/j.future.2018.08.045_b5) 2014; 16 Zwart (10.1016/j.future.2018.08.045_b14) 2013; 184 10.1016/j.future.2018.08.045_b32 Groen (10.1016/j.future.2018.08.045_b25) 2016; 207 10.1016/j.future.2018.08.045_b30 Gaston (10.1016/j.future.2018.08.045_b16) 2009; 239 Bosak (10.1016/j.future.2018.08.045_b24) 2014 Borgdorff (10.1016/j.future.2018.08.045_b4) 2013; 73 Mountrakis (10.1016/j.future.2018.08.045_b36) 2015 Kurowski (10.1016/j.future.2018.08.045_b26) 2003; vol. 64 Hoekstra (10.1016/j.future.2018.08.045_b1) 2014; 372 Závodszky (10.1016/j.future.2018.08.045_b37) 2017; 8 Hill (10.1016/j.future.2018.08.045_b12) 2008; 7 10.1016/j.future.2018.08.045_b9 Kurowski (10.1016/j.future.2018.08.045_b28) 2008; 11 Hoekstra (10.1016/j.future.2018.08.045_b42) 2005 10.1016/j.future.2018.08.045_b38 Hoekstra (10.1016/j.future.2018.08.045_b18) 2007 Kurowski (10.1016/j.future.2018.08.045_b29) 2013; 39 Hoekstra (10.1016/j.future.2018.08.045_b2) 2007; 5 Delgado-Buscalioni (10.1016/j.future.2018.08.045_b13) 2003; 67 Groen (10.1016/j.future.2018.08.045_b7) 2013; 3 10.1016/j.future.2018.08.045_b40 Suter (10.1016/j.future.2018.08.045_b11) 2015; 27 Tahir (10.1016/j.future.2018.08.045_b6) 2014; 11 Hoekstra (10.1016/j.future.2018.08.045_b8) 2016; 374 Bhati (10.1016/j.future.2018.08.045_b41) 2017; 13 Sloot (10.1016/j.future.2018.08.045_b17) 2009; 11 January (10.1016/j.future.2018.08.045_b27) 2015 Zavodszky (10.1016/j.future.2018.08.045_b39) 2017; 108 Alowayyed (10.1016/j.future.2018.08.045_b23) 2017; 22 Knap (10.1016/j.future.2018.08.045_b22) 2015; 26 Hoekstra (10.1016/j.future.2018.08.045_b19) 2010 Chopard (10.1016/j.future.2018.08.045_b3) 2014; 372 Bosak (10.1016/j.future.2018.08.045_b31) 2012 Valcke (10.1016/j.future.2018.08.045_b15) 2013; 6 Piontek (10.1016/j.future.2018.08.045_b21) 2016; 14 Falchetto (10.1016/j.future.2018.08.045_b34) 2014; 54 |
| References_xml | – reference: I. Foster, A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher, C. Smith, M. Theimer, OGSA Basic Execution Service version 1.0, 2007. – volume: 6 start-page: 373 year: 2013 ident: b15 article-title: The OASIS3 coupler: a European climate modelling community software publication-title: Geosci. Model Dev. – start-page: 245 year: 2005 end-page: 254 ident: b42 article-title: Introducing Grid speedup publication-title: Advances in Grid Computing - EGC 2005 – reference: O. Hoenen, L. Fazendeiro, B.D. Scott, J. Borgdorff, A.G. Hoekstra, P. Strand, D.P. Coster, Designing and running turbulence transport simulations using a distributed multiscale computing approach, in: EPS 2013, Europhysics Conference Abstracts, Vol. 37D, no. 37, 2013, pp. P4.155. – volume: 54 start-page: 99501 year: 2014 ident: b34 article-title: Corrigendum: The European integrated tokamak modelling (ITM) effort: achievements and first physics results (2014 Nucl. Fusion 54 043018) publication-title: Nucl. Fusion – volume: 67 start-page: 46704 year: 2003 ident: b13 article-title: Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow publication-title: Phys. Rev. E – volume: 239 start-page: 1768 year: 2009 end-page: 1778 ident: b16 article-title: MOOSE: A parallel computational framework for coupled systems of nonlinear equations publication-title: Nucl. Eng. Des. – start-page: 10 year: 2015 ident: b36 article-title: Parallel performance of an IB-LBM suspension simulation framework publication-title: International Conference on Computational Science – volume: 14 start-page: 559 year: 2016 end-page: 573 ident: b21 article-title: Development of science gateways using QCG-lessons learned from the deployment on large scale distributed and HPC infrastructures publication-title: J. Grid Comput. – volume: 13 start-page: 210 year: 2017 end-page: 222 ident: b41 article-title: Rapid, accurate, precise, and reliable relative free energy prediction using ensemble based thermodynamic integration publication-title: J. Chem. Theory Comput. – reference: Poznań-Supercomputing-Networking-Center, Eagle. URL – volume: 372 start-page: 20130407 year: 2014 ident: b10 article-title: Performance of distributed multiscale simulations publication-title: Phil. Trans. R. Soc. A – start-page: 922 year: 2007 end-page: 930 ident: b18 article-title: Towards a complex automata framework for multi-scale modeling: Formalism and the scale separation map publication-title: Computational Science–ICCS 2007 – volume: 5 start-page: 491 year: 2007 end-page: 502 ident: b2 article-title: Toward a complex automata formalism for multiscale modeling publication-title: Int. J. Multiscale Comput. Eng. – volume: 3 start-page: 20120087 year: 2013 ident: b7 article-title: Flexible composition and execution of high performance, high fidelity multiscale biomedical simulations publication-title: Interface Focus – start-page: 34 year: 2014 end-page: 53 ident: b24 article-title: New QosCosGrid middleware capabilities and its integration with European e-infrastructure publication-title: eScience on Distributed Computing Infrastructure – volume: 26 start-page: 434004 year: 2015 ident: b22 article-title: Advancing a distributed multi-scale computing framework for large-scale high-throughput discovery in materials science publication-title: Nanotechnology – volume: 73 start-page: 465 year: 2013 end-page: 483 ident: b4 article-title: Foundations of distributed multiscale computing: Formalization, specification, and analysis publication-title: J. Parallel Distrib. Comput. – volume: 11 start-page: 371 year: 2008 end-page: 379 ident: b28 article-title: A multicriteria approach to two-level hierarchy scheduling in grids publication-title: J. Sched. – volume: 39 start-page: 135 year: 2013 end-page: 151 ident: b29 article-title: DCworms-A tool for simulation of energy efficiency in distributed computing infrastructures publication-title: Simul. Model. Pract. Theory – volume: 7 start-page: 680 year: 2008 ident: b12 article-title: Nuclear energy for the future publication-title: Nature Mater. – volume: 372 start-page: 20130377 year: 2014 ident: b1 article-title: Multiscale modelling and simulation: a position paper publication-title: Philos. Trans. Ser. A Math. Phys. Eng. Sci. – volume: 207 start-page: 375 year: 2016 end-page: 385 ident: b25 article-title: FabSim: facilitating computational research through automation on large-scale and distributed e-infrastructures publication-title: Comput. Phys. Comm. – volume: 11 start-page: 142 year: 2009 end-page: 152 ident: b17 article-title: Multi-scale modelling in computational biomedicine publication-title: Brief. Bioinform. – volume: 11 start-page: 20140022 year: 2014 ident: b6 article-title: Endothelial repair process and its relevance to longitudinal neointimal tissue patterns: comparing histology with in silico modelling publication-title: J. R. Soc. Interface / R. Soc. – start-page: 29 year: 2010 end-page: 57 ident: b19 article-title: Complex automata: multi-scale modeling with coupled cellular automata publication-title: Simul. Complex Syst. Cell. Autom. – volume: 374 start-page: 20160146 year: 2016 ident: b8 article-title: Towards the virtual artery: a multiscale model for vascular physiology at the physics-chemistry-biology interface publication-title: Phil. Trans. R. Soc. A – reference: FlowKit-Ltd, Palabos. URL – volume: vol. 64 start-page: 271 year: 2003 end-page: 294 ident: b26 publication-title: Multicriteria Aspects of Grid Resource Management – start-page: 40 year: 2012 end-page: 55 ident: b31 article-title: New capabilities in QosCosGrid middleware for advanced job management, advance reservation and co-allocation of computing resources-quantum chemistry application use case publication-title: Building a National Distributed e-Infrastructure-PL-Grid – reference: Leibniz-Rechenzentrum, SuperMUC Petascale System. URL – reference: S.K. Sadiq, D. Wright, S.J. Watson, S.J. Zasada, I. Stoica, P.V. Coveney, Automated molecular simulation based binding affinity calculator for ligand-bound HIV-1 proteases, 2008. – volume: 372 start-page: 20130378 year: 2014 ident: b3 article-title: A framework for multi-scale modelling publication-title: Phil. Trans. R. Soc. A – reference: . – volume: 184 start-page: 456 year: 2013 end-page: 468 ident: b14 article-title: Multi-physics simulations using a hierarchical interchangeable software interface publication-title: Comput. Phys. Comm. – volume: 27 start-page: 966 year: 2015 end-page: 984 ident: b11 article-title: Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties publication-title: Adv. Mater. – volume: 108 start-page: 159 year: 2017 end-page: 165 ident: b39 article-title: Hemocell: a high-performance microscopic cellular library publication-title: Procedia Comput. Sci. – start-page: 25 year: 2015 end-page: 35 ident: b27 article-title: Allinea MAP: Adding energy and OpenMP profiling without increasing overhead publication-title: Tools for High Performance Computing 2014 – volume: 5 start-page: 719 year: 2014 end-page: 731 ident: b20 article-title: Distributed multiscale computing with MUSCLE 2, the multiscale coupling library and environment publication-title: J. Comput. Sci. – volume: 22 start-page: 15 year: 2017 end-page: 25 ident: b23 article-title: Multiscale computing in the exascale era publication-title: J. Comput. Sci. – volume: 16 start-page: 34 year: 2014 end-page: 43 ident: b5 article-title: Survey of multiscale and multiphysics applications and communities publication-title: Comput. Sci. Eng. – volume: 8 start-page: 563 year: 2017 ident: b37 article-title: Cellular level in-silico modeling of blood rheology with an improved material model for red blood cells publication-title: Front. Phys. – reference: HEMOCELL A high-performance framework for dense cellular suspension flows. URL – start-page: 10 year: 2015 ident: 10.1016/j.future.2018.08.045_b36 article-title: Parallel performance of an IB-LBM suspension simulation framework – volume: 16 start-page: 34 issue: 2 year: 2014 ident: 10.1016/j.future.2018.08.045_b5 article-title: Survey of multiscale and multiphysics applications and communities publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2013.47 – start-page: 40 year: 2012 ident: 10.1016/j.future.2018.08.045_b31 article-title: New capabilities in QosCosGrid middleware for advanced job management, advance reservation and co-allocation of computing resources-quantum chemistry application use case – ident: 10.1016/j.future.2018.08.045_b32 – volume: 5 start-page: 719 issue: 5 year: 2014 ident: 10.1016/j.future.2018.08.045_b20 article-title: Distributed multiscale computing with MUSCLE 2, the multiscale coupling library and environment publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2014.04.004 – start-page: 34 year: 2014 ident: 10.1016/j.future.2018.08.045_b24 article-title: New QosCosGrid middleware capabilities and its integration with European e-infrastructure – ident: 10.1016/j.future.2018.08.045_b40 doi: 10.1002/chin.200851222 – ident: 10.1016/j.future.2018.08.045_b9 – volume: 184 start-page: 456 issue: 3 year: 2013 ident: 10.1016/j.future.2018.08.045_b14 article-title: Multi-physics simulations using a hierarchical interchangeable software interface publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2012.09.024 – start-page: 922 year: 2007 ident: 10.1016/j.future.2018.08.045_b18 article-title: Towards a complex automata framework for multi-scale modeling: Formalism and the scale separation map – volume: 3 start-page: 20120087 issue: 2 year: 2013 ident: 10.1016/j.future.2018.08.045_b7 article-title: Flexible composition and execution of high performance, high fidelity multiscale biomedical simulations publication-title: Interface Focus doi: 10.1098/rsfs.2012.0087 – volume: 22 start-page: 15 year: 2017 ident: 10.1016/j.future.2018.08.045_b23 article-title: Multiscale computing in the exascale era publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.07.004 – volume: 54 start-page: 99501 issue: 9 year: 2014 ident: 10.1016/j.future.2018.08.045_b34 article-title: Corrigendum: The European integrated tokamak modelling (ITM) effort: achievements and first physics results (2014 Nucl. Fusion 54 043018) publication-title: Nucl. Fusion doi: 10.1088/0029-5515/54/9/099501 – volume: 27 start-page: 966 issue: 6 year: 2015 ident: 10.1016/j.future.2018.08.045_b11 article-title: Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties publication-title: Adv. Mater. doi: 10.1002/adma.201403361 – volume: vol. 64 start-page: 271 year: 2003 ident: 10.1016/j.future.2018.08.045_b26 – start-page: 29 year: 2010 ident: 10.1016/j.future.2018.08.045_b19 article-title: Complex automata: multi-scale modeling with coupled cellular automata publication-title: Simul. Complex Syst. Cell. Autom. – start-page: 25 year: 2015 ident: 10.1016/j.future.2018.08.045_b27 article-title: Allinea MAP: Adding energy and OpenMP profiling without increasing overhead – volume: 6 start-page: 373 issue: 2 year: 2013 ident: 10.1016/j.future.2018.08.045_b15 article-title: The OASIS3 coupler: a European climate modelling community software publication-title: Geosci. Model Dev. doi: 10.5194/gmd-6-373-2013 – volume: 11 start-page: 371 issue: 5 year: 2008 ident: 10.1016/j.future.2018.08.045_b28 article-title: A multicriteria approach to two-level hierarchy scheduling in grids publication-title: J. Sched. doi: 10.1007/s10951-008-0058-8 – volume: 39 start-page: 135 year: 2013 ident: 10.1016/j.future.2018.08.045_b29 article-title: DCworms-A tool for simulation of energy efficiency in distributed computing infrastructures publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2013.08.007 – volume: 11 start-page: 142 issue: 1 year: 2009 ident: 10.1016/j.future.2018.08.045_b17 article-title: Multi-scale modelling in computational biomedicine publication-title: Brief. Bioinform. doi: 10.1093/bib/bbp038 – ident: 10.1016/j.future.2018.08.045_b35 – volume: 374 start-page: 20160146 issue: 2080 year: 2016 ident: 10.1016/j.future.2018.08.045_b8 article-title: Towards the virtual artery: a multiscale model for vascular physiology at the physics-chemistry-biology interface publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2016.0146 – volume: 372 start-page: 20130378 year: 2014 ident: 10.1016/j.future.2018.08.045_b3 article-title: A framework for multi-scale modelling publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2013.0378 – volume: 7 start-page: 680 issue: 9 year: 2008 ident: 10.1016/j.future.2018.08.045_b12 article-title: Nuclear energy for the future publication-title: Nature Mater. doi: 10.1038/nmat2247 – ident: 10.1016/j.future.2018.08.045_b33 – volume: 13 start-page: 210 issue: 1 year: 2017 ident: 10.1016/j.future.2018.08.045_b41 article-title: Rapid, accurate, precise, and reliable relative free energy prediction using ensemble based thermodynamic integration publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b00979 – volume: 372 start-page: 20130377 year: 2014 ident: 10.1016/j.future.2018.08.045_b1 article-title: Multiscale modelling and simulation: a position paper publication-title: Philos. Trans. Ser. A Math. Phys. Eng. Sci. – volume: 8 start-page: 563 year: 2017 ident: 10.1016/j.future.2018.08.045_b37 article-title: Cellular level in-silico modeling of blood rheology with an improved material model for red blood cells publication-title: Front. Phys. doi: 10.3389/fphys.2017.00563 – volume: 11 start-page: 20140022 issue: 94 year: 2014 ident: 10.1016/j.future.2018.08.045_b6 article-title: Endothelial repair process and its relevance to longitudinal neointimal tissue patterns: comparing histology with in silico modelling publication-title: J. R. Soc. Interface / R. Soc. doi: 10.1098/rsif.2014.0022 – start-page: 245 year: 2005 ident: 10.1016/j.future.2018.08.045_b42 article-title: Introducing Grid speedup Γ : A scalability metric for parallel applications on the grid – volume: 108 start-page: 159 year: 2017 ident: 10.1016/j.future.2018.08.045_b39 article-title: Hemocell: a high-performance microscopic cellular library publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.05.084 – volume: 239 start-page: 1768 issue: 10 year: 2009 ident: 10.1016/j.future.2018.08.045_b16 article-title: MOOSE: A parallel computational framework for coupled systems of nonlinear equations publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2009.05.021 – volume: 372 start-page: 20130407 year: 2014 ident: 10.1016/j.future.2018.08.045_b10 article-title: Performance of distributed multiscale simulations publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2013.0407 – volume: 5 start-page: 491 issue: 6 year: 2007 ident: 10.1016/j.future.2018.08.045_b2 article-title: Toward a complex automata formalism for multiscale modeling publication-title: Int. J. Multiscale Comput. Eng. doi: 10.1615/IntJMultCompEng.v5.i6.60 – volume: 207 start-page: 375 year: 2016 ident: 10.1016/j.future.2018.08.045_b25 article-title: FabSim: facilitating computational research through automation on large-scale and distributed e-infrastructures publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2016.05.020 – volume: 14 start-page: 559 issue: 4 year: 2016 ident: 10.1016/j.future.2018.08.045_b21 article-title: Development of science gateways using QCG-lessons learned from the deployment on large scale distributed and HPC infrastructures publication-title: J. Grid Comput. doi: 10.1007/s10723-016-9384-9 – volume: 26 start-page: 434004 issue: 43 year: 2015 ident: 10.1016/j.future.2018.08.045_b22 article-title: Advancing a distributed multi-scale computing framework for large-scale high-throughput discovery in materials science publication-title: Nanotechnology doi: 10.1088/0957-4484/26/43/434004 – ident: 10.1016/j.future.2018.08.045_b30 – volume: 67 start-page: 46704 issue: 4 year: 2003 ident: 10.1016/j.future.2018.08.045_b13 article-title: Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.046704 – volume: 73 start-page: 465 issue: 4 year: 2013 ident: 10.1016/j.future.2018.08.045_b4 article-title: Foundations of distributed multiscale computing: Formalization, specification, and analysis publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2012.12.011 – ident: 10.1016/j.future.2018.08.045_b38 |
| SSID | ssj0001731 |
| Score | 2.3404703 |
| Snippet | We describe our Multiscale Computing Patterns software for High Performance Multiscale Computing. Following a short review of Multiscale Computing Patterns,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 335 |
| SubjectTerms | Distributed computing High performance computing Model coupling Modelling methodology Multiscale computing |
| Title | Patterns for High Performance Multiscale Computing |
| URI | https://dx.doi.org/10.1016/j.future.2018.08.045 |
| Volume | 91 |
| WOSCitedRecordID | wos000451790900028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEF7UevDiW6wvcvAmKW12N5s9FlFUpBaq0FvYbDagSFp81n_v7LNFxcfBSwhLsml3vsxMtzPfh9AhL1NeMIFjCAdpTEQhwA-2y7iTKKEok4milRGbYL1eNhzyvusueTRyAqyus8mEj__V1DAGxtats38wd5gUBuAcjA5HMDscf2X4vmHMrA3Pginj0FXuoTnANNw-gmHUkRV08KHLS3UajhEtrKwcNqTTfXCkzyEH796PXsXbm90sHbSCj73VfFe2_joMDp6d_sdF6zIMno3gIcbpXbVmNx90v1Mo5HD7keBnGTZquMGhWvkt5xGxZSNxwRXb_cZPfttuIdy1LJGKrrjLDLMqodM45f-b_xC-QlGhr1e7y-0suZ4l1yKbhM6jRsIoB8_d6J6fDC9CsO4wJ1npvofvrjQlgJ8_zdfZy0xGcr2Klt1PiahrIbCG5lS9jla8TEfkvPYGSjwiIkBBpBERzSAimiIiCojYRDenJ9fHZ7GTyoglZNBPMSMygeRNUpUQXPGik0pOVVVBOisFKUhWpgVJ2lWHMsayNryXWGQkgxcSi5QTjrfQQj2q1TaKOK4qyDn1ZJiosixSLeYsE1ZmglNaNBH2S5BLxyOv5Uzu8-8M0ERxuGtseVR-uJ751c1dLmhzvBwg8-2dO3980i5amiJ7Dy08PTyrfbQoX2DtHw4cXt4BVWqBIw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterns+for+High+Performance+Multiscale+Computing&rft.jtitle=Future+generation+computer+systems&rft.au=Alowayyed%2C+S.&rft.au=Piontek%2C+T.&rft.au=Suter%2C+J.L.&rft.au=Hoenen%2C+O.&rft.date=2019-02-01&rft.issn=0167-739X&rft.volume=91&rft.spage=335&rft.epage=346&rft_id=info:doi/10.1016%2Fj.future.2018.08.045&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2018_08_045 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |