Intuitive robot programming through environment perception, augmented reality simulation and automated program verification

The increasing complexity of products and machines as well as short production cycles with small lot sizes present great challenges to production industry. Both, the programming of industrial robots in online mode using hand-held control devices or in offline mode using text-based programming requir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia CIRP Jg. 76; S. 161 - 166
Hauptverfasser: Wassermann, Jonas, Vick, Axel, Krüger, Jörg
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 2018
Schlagworte:
ISSN:2212-8271, 2212-8271
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The increasing complexity of products and machines as well as short production cycles with small lot sizes present great challenges to production industry. Both, the programming of industrial robots in online mode using hand-held control devices or in offline mode using text-based programming requires specific knowledge of robotics and manufacturer-dependent robot control systems. In particular for small and medium-sized enterprises the machine control software needs to be easy, intuitive and usable without time-consuming learning steps, even for employees with no in-depth knowledge of information technology. To simplify the programming of application programs for industrial robots, we extended a cloud-based, task-oriented robot control system with environment perception and plausibility check functions. For the environment perception a depth camera and pointcloud processing hardware were installed. We detect objects located in the robot’s workspace by pointcloud processing with ROS and the PCL and add them to the augmented reality user interface of the robot control. The combination of process knowledge from task-oriented application programming and information about available workpieces from automated image processing enables a plausibility check and verification of the robot program before execution. After a robot program has been approved by the plausibility check, it is tested in an augmented reality simulation for collisions with the detected objects before deployment to the physical robot hardware. Experiments were carried out to evaluate the effectiveness of the developed extensions and confirmed their functionality.
AbstractList The increasing complexity of products and machines as well as short production cycles with small lot sizes present great challenges to production industry. Both, the programming of industrial robots in online mode using hand-held control devices or in offline mode using text-based programming requires specific knowledge of robotics and manufacturer-dependent robot control systems. In particular for small and medium-sized enterprises the machine control software needs to be easy, intuitive and usable without time-consuming learning steps, even for employees with no in-depth knowledge of information technology. To simplify the programming of application programs for industrial robots, we extended a cloud-based, task-oriented robot control system with environment perception and plausibility check functions. For the environment perception a depth camera and pointcloud processing hardware were installed. We detect objects located in the robot’s workspace by pointcloud processing with ROS and the PCL and add them to the augmented reality user interface of the robot control. The combination of process knowledge from task-oriented application programming and information about available workpieces from automated image processing enables a plausibility check and verification of the robot program before execution. After a robot program has been approved by the plausibility check, it is tested in an augmented reality simulation for collisions with the detected objects before deployment to the physical robot hardware. Experiments were carried out to evaluate the effectiveness of the developed extensions and confirmed their functionality.
Author Wassermann, Jonas
Krüger, Jörg
Vick, Axel
Author_xml – sequence: 1
  givenname: Jonas
  surname: Wassermann
  fullname: Wassermann, Jonas
  email: wassermann@iat.tu-berlin.de
  organization: Technische Universität Berlin, Pascalstrasse 8-9, 10587 Berlin, Germany
– sequence: 2
  givenname: Axel
  surname: Vick
  fullname: Vick, Axel
  organization: Fraunhofer Institute for Production Systems and Design Technology IPK, Pascalstrae 8-9, 10587 Berlin, Germany
– sequence: 3
  givenname: Jörg
  surname: Krüger
  fullname: Krüger, Jörg
  organization: Technische Universität Berlin, Pascalstrasse 8-9, 10587 Berlin, Germany
BookMark eNqFUEtLAzEQDlLBWvsPPOQH2DXJvj0IUnwUCl70HLLZ2e2UblKy2YXin3e37UE86FxmmO_BzHdNJsYaIOSWs4Azntxvg72zGl0gGM8CxgMWJhdkKgQXi0ykfPJjviLztt2yodKIhVxMydfK-A499kCdLayng1ntVNOgqanfONvVGwqmR2dNA2bAwWnYe7TmjqquHndQUgdqh_5AW2y6nRpRqkw5ELxt1Eg429IeHFaoj5QbclmpXQvzc5-Rz5fnj-XbYv3-ulo-rRc6jIVfpGEJWQxxonJIqpzzIi0TzdNYRHmiIUkYizXoVIVFziCqoijKRK5LVrFUFFyFMxKdfLWzbeugknuHjXIHyZkcM5RbecpQjhlKxuWQ4SB7-CXT6I-He6dw95_48SSG4bEewclWIxgNJTrQXpYW_zb4BrNRlk4
CitedBy_id crossref_primary_10_1016_j_ifacol_2019_11_307
crossref_primary_10_3390_robotics11050113
crossref_primary_10_1093_jcde_qwad061
crossref_primary_10_3390_act12080323
crossref_primary_10_3390_app11125592
crossref_primary_10_1007_s42452_025_06923_4
crossref_primary_10_1007_s10055_024_01021_z
crossref_primary_10_1016_j_jii_2021_100294
crossref_primary_10_1088_1757_899X_521_1_012017
crossref_primary_10_1080_00207543_2020_1834640
Cites_doi 10.1109/ETFA.2017.8247749
10.1109/WCNC.2014.6953084
10.1109/INDIN.2016.7819154
10.1109/IROS.2004.1389914
10.1109/ISMAR.2003.1240739
10.1109/CW.2009.14
10.1109/ICARCV.2010.5707399
10.1109/ROBOT.2002.1013644
10.1109/RCAR.2016.7784014
10.1109/VECIMS.2007.4373930
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procir.2018.01.036
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2212-8271
EndPage 166
ExternalDocumentID 10_1016_j_procir_2018_01_036
S2212827118300507
GroupedDBID 0R~
0SF
4.4
457
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c352t-73de85e56a9e6f911b7d6c1752496ce66005cec7a3b90e4f444829cd0f072b1a3
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000547342800030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2212-8271
IngestDate Wed Nov 05 20:55:01 EST 2025
Tue Nov 18 21:51:16 EST 2025
Wed May 17 00:06:54 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Industrial Robotics
Robot Programming
Augmented Reality
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-73de85e56a9e6f911b7d6c1752496ce66005cec7a3b90e4f444829cd0f072b1a3
OpenAccessLink https://dx.doi.org/10.1016/j.procir.2018.01.036
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_procir_2018_01_036
crossref_citationtrail_10_1016_j_procir_2018_01_036
elsevier_sciencedirect_doi_10_1016_j_procir_2018_01_036
PublicationCentury 2000
PublicationDate 2018
2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle Procedia CIRP
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References R. Marin, P. J. Sanz, and J. S. Sanchez. A very high level interface to teleoperate a robot via web including augmented reality. In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), volume 3, pages 2725–2730, 2002.
Z. Pan, J. Polden, N. Larkin, S. V. Duin, and J. Norrish. Recent progress on programming methods for industrial robots. In ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), pages 1–8, June 2010.
Y. Lin, S. Song, and M. Q. H. Meng. The implementation of augmented reality in a robotic teleoperation system. In 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR), pages 134–139, June 2016.
S. M. Abbas, S. Hassan, and J. Yun. Augmented reality based teaching pendant for industrial robot. In 2012 12th International Conference on Control, Automation and Systems, pages 2210–2213, Oct 2012.
C. L. Ng, T. C. Ng, T. A. N. Nguyen, G. Yang, and W. Chen. Intuitive robot tool path teaching using laser and camera in augmented reality environment. In 2010 11th International Conference on Control Automation Robotics Vision, pages 114–119, Dec 2010.
I. Mal, D. Sedlek, and P. Leit£o. Augmented reality experiments with industrial robot in industry 4.0 environment. In 2016 IEEE 14th International Conference on Industrial Informatics (INDIN), pages 176–181, July 2016.
H. Fang, S. K. Ong, and A. Y. C. Nee. Robot programming using augmented reality. In 2009 International Conference on CyberWorlds, pages 13–20, Sept 2009.
R. Bischoff and A. Kazi. Perspectives on augmented reality based human-robot interaction with industrial robots. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 4, pages 3226–3231 vol.4, Sept 2004.
G. Reinhart, W. Vogl, and I. Kresse. A projection-based user interface for industrial robots. In 2007 IEEE Symposium on Virtual Environments, Human-Computer Interfaces and Measurement Systems, pages 67– 71, June 2007.
Jan Guhl, Son Tung Nguyen, and Jörg Krüger. Concept and architecture for programming industrial robots using augmented reality with mobile devices like microsoft hololens. In Emerging Technologies And Factory Automation, USA, 2017. IEEE.
T. Pettersen, J. Pretlove, C. Skourup, T. Engedal, and T. Lokstad. Augmented reality for programming industrial robots. In The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings., pages 319–320, Oct 2003.
P. H. Chiu, P. H. Tseng, and K. T. Feng. Cloud computing based mobile augmented reality interactive system. In 2014 IEEE Wireless Communications and Networking Conference (WCNC), pages 3320–3325, April 2014.
10.1016/j.procir.2018.01.036_bib00010
10.1016/j.procir.2018.01.036_bib00012
10.1016/j.procir.2018.01.036_bib0001
10.1016/j.procir.2018.01.036_bib00011
10.1016/j.procir.2018.01.036_bib0002
10.1016/j.procir.2018.01.036_bib0003
10.1016/j.procir.2018.01.036_bib0004
10.1016/j.procir.2018.01.036_bib0005
10.1016/j.procir.2018.01.036_bib0006
10.1016/j.procir.2018.01.036_bib0007
10.1016/j.procir.2018.01.036_bib0008
10.1016/j.procir.2018.01.036_bib0009
References_xml – reference: R. Marin, P. J. Sanz, and J. S. Sanchez. A very high level interface to teleoperate a robot via web including augmented reality. In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), volume 3, pages 2725–2730, 2002.
– reference: H. Fang, S. K. Ong, and A. Y. C. Nee. Robot programming using augmented reality. In 2009 International Conference on CyberWorlds, pages 13–20, Sept 2009.
– reference: I. Mal, D. Sedlek, and P. Leit£o. Augmented reality experiments with industrial robot in industry 4.0 environment. In 2016 IEEE 14th International Conference on Industrial Informatics (INDIN), pages 176–181, July 2016.
– reference: T. Pettersen, J. Pretlove, C. Skourup, T. Engedal, and T. Lokstad. Augmented reality for programming industrial robots. In The Second IEEE and ACM International Symposium on Mixed and Augmented Reality, 2003. Proceedings., pages 319–320, Oct 2003.
– reference: C. L. Ng, T. C. Ng, T. A. N. Nguyen, G. Yang, and W. Chen. Intuitive robot tool path teaching using laser and camera in augmented reality environment. In 2010 11th International Conference on Control Automation Robotics Vision, pages 114–119, Dec 2010.
– reference: S. M. Abbas, S. Hassan, and J. Yun. Augmented reality based teaching pendant for industrial robot. In 2012 12th International Conference on Control, Automation and Systems, pages 2210–2213, Oct 2012.
– reference: G. Reinhart, W. Vogl, and I. Kresse. A projection-based user interface for industrial robots. In 2007 IEEE Symposium on Virtual Environments, Human-Computer Interfaces and Measurement Systems, pages 67– 71, June 2007.
– reference: R. Bischoff and A. Kazi. Perspectives on augmented reality based human-robot interaction with industrial robots. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 4, pages 3226–3231 vol.4, Sept 2004.
– reference: Y. Lin, S. Song, and M. Q. H. Meng. The implementation of augmented reality in a robotic teleoperation system. In 2016 IEEE International Conference on Real-time Computing and Robotics (RCAR), pages 134–139, June 2016.
– reference: Jan Guhl, Son Tung Nguyen, and Jörg Krüger. Concept and architecture for programming industrial robots using augmented reality with mobile devices like microsoft hololens. In Emerging Technologies And Factory Automation, USA, 2017. IEEE.
– reference: Z. Pan, J. Polden, N. Larkin, S. V. Duin, and J. Norrish. Recent progress on programming methods for industrial robots. In ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics), pages 1–8, June 2010.
– reference: P. H. Chiu, P. H. Tseng, and K. T. Feng. Cloud computing based mobile augmented reality interactive system. In 2014 IEEE Wireless Communications and Networking Conference (WCNC), pages 3320–3325, April 2014.
– ident: 10.1016/j.procir.2018.01.036_bib0001
  doi: 10.1109/ETFA.2017.8247749
– ident: 10.1016/j.procir.2018.01.036_bib00010
  doi: 10.1109/WCNC.2014.6953084
– ident: 10.1016/j.procir.2018.01.036_bib00011
  doi: 10.1109/INDIN.2016.7819154
– ident: 10.1016/j.procir.2018.01.036_bib0009
– ident: 10.1016/j.procir.2018.01.036_bib0004
  doi: 10.1109/IROS.2004.1389914
– ident: 10.1016/j.procir.2018.01.036_bib0005
– ident: 10.1016/j.procir.2018.01.036_bib0003
  doi: 10.1109/ISMAR.2003.1240739
– ident: 10.1016/j.procir.2018.01.036_bib0007
  doi: 10.1109/CW.2009.14
– ident: 10.1016/j.procir.2018.01.036_bib0008
  doi: 10.1109/ICARCV.2010.5707399
– ident: 10.1016/j.procir.2018.01.036_bib0002
  doi: 10.1109/ROBOT.2002.1013644
– ident: 10.1016/j.procir.2018.01.036_bib00012
  doi: 10.1109/RCAR.2016.7784014
– ident: 10.1016/j.procir.2018.01.036_bib0006
  doi: 10.1109/VECIMS.2007.4373930
SSID ssj0000740312
Score 2.1477344
Snippet The increasing complexity of products and machines as well as short production cycles with small lot sizes present great challenges to production industry....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 161
SubjectTerms Augmented Reality
Industrial Robotics
Robot Programming
Title Intuitive robot programming through environment perception, augmented reality simulation and automated program verification
URI https://dx.doi.org/10.1016/j.procir.2018.01.036
Volume 76
WOSCitedRecordID wos000547342800030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2212-8271
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000740312
  issn: 2212-8271
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwgEOqLxEgSIfuJWgJE78OJYVVQuoQqiU3iLHdqqtutlqm61WQuKf8F8ZP-KN6KrQA5cosZLJbubTzGd7Hgi9kSWROlV10pCySQqgb4kgUiQlJVoIbRri2rcdf2aHh_zkRHwZjX71uTBX56xt-XIpLv6rqmEMlG1TZ2-h7igUBuAclA5HUDsc_0nxB-BFfEDQfFbPuj4Ca-rzonxXnkF6my1cHEJbXCTn4tSV6bRJLZ6iX06mocWXL-y66GbAco3uBe_AF7LxRisVB67rchAAfjvjg68xi-y7tPv_0741M8wDIqk_Dk3dd5cmhn18cjv578enHlkf3RUNRbnCYsXQsubgIxOe-34r78yasWCO2dCeZjQbuObMN2i5ZvX9AsSZ9TlqYou8ZtzVYiVrimz_4fxiSGIf7XZWeSmVlVKlWQVS7qC7OYOZl40M_blawgP2BSbR7lPFP9InZ7oIwus_Zz35GRCao030MMxE8K5H0CM0Mu1j9GBQn_IJ-hGxhB2W8ABLOGAJD7CEV1h6iyOScEASXiEJA5JwRFIvFg-R9BR92_twNN5PQreORAGJ7xJGtOGlKakUhjbgQ2umqQJ2ChN8qgwFZl0qo5gktUhN0RRFwXOhdNqkLK8zSZ6hjXbWmucI66zkRBNap4oWMpdcMKJ0XTPg67zmbAuR_jNWKpSytx1VzqubtLiFkvjUhS_l8pf7Wa-hKtBRTzMrwN2NT7645Zteovv2yq_svUIb3XxhttE9ddVNLuevHeh-AxcRs84
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intuitive+robot+programming+through+environment+perception%2C+augmented+reality+simulation+and+automated+program+verification&rft.jtitle=Procedia+CIRP&rft.au=Wassermann%2C+Jonas&rft.au=Vick%2C+Axel&rft.au=Kr%C3%BCger%2C+J%C3%B6rg&rft.date=2018&rft.issn=2212-8271&rft.eissn=2212-8271&rft.volume=76&rft.spage=161&rft.epage=166&rft_id=info:doi/10.1016%2Fj.procir.2018.01.036&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procir_2018_01_036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-8271&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-8271&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-8271&client=summon