RelTR: Relation Transformer for Scene Graph Generation

Different objects in the same scene are more or less related to each other, but only a limited number of these relationships are noteworthy. Inspired by Detection Transformer, which excels in object detection, we view scene graph generation as a set prediction problem. In this article, we propose an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 9; pp. 11169 - 11183
Main Authors: Cong, Yuren, Yang, Michael Ying, Rosenhahn, Bodo
Format: Journal Article
Language:English
Published: United States IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Different objects in the same scene are more or less related to each other, but only a limited number of these relationships are noteworthy. Inspired by Detection Transformer, which excels in object detection, we view scene graph generation as a set prediction problem. In this article, we propose an end-to-end scene graph generation model Relation Transformer (RelTR), which has an encoder-decoder architecture. The encoder reasons about the visual feature context while the decoder infers a fixed-size set of triplets subject-predicate-object using different types of attention mechanisms with coupled subject and object queries. We design a set prediction loss performing the matching between the ground truth and predicted triplets for the end-to-end training. In contrast to most existing scene graph generation methods, RelTR is a one-stage method that predicts sparse scene graphs directly only using visual appearance without combining entities and labeling all possible predicates. Extensive experiments on the Visual Genome, Open Images V6, and VRD datasets demonstrate the superior performance and fast inference of our model.
AbstractList Different objects in the same scene are more or less related to each other, but only a limited number of these relationships are noteworthy. Inspired by Detection Transformer, which excels in object detection, we view scene graph generation as a set prediction problem. In this article, we propose an end-to-end scene graph generation model Relation Transformer (RelTR), which has an encoder-decoder architecture. The encoder reasons about the visual feature context while the decoder infers a fixed-size set of triplets subject-predicate-object using different types of attention mechanisms with coupled subject and object queries. We design a set prediction loss performing the matching between the ground truth and predicted triplets for the end-to-end training. In contrast to most existing scene graph generation methods, RelTR is a one-stage method that predicts sparse scene graphs directly only using visual appearance without combining entities and labeling all possible predicates. Extensive experiments on the Visual Genome, Open Images V6, and VRD datasets demonstrate the superior performance and fast inference of our model.Different objects in the same scene are more or less related to each other, but only a limited number of these relationships are noteworthy. Inspired by Detection Transformer, which excels in object detection, we view scene graph generation as a set prediction problem. In this article, we propose an end-to-end scene graph generation model Relation Transformer (RelTR), which has an encoder-decoder architecture. The encoder reasons about the visual feature context while the decoder infers a fixed-size set of triplets subject-predicate-object using different types of attention mechanisms with coupled subject and object queries. We design a set prediction loss performing the matching between the ground truth and predicted triplets for the end-to-end training. In contrast to most existing scene graph generation methods, RelTR is a one-stage method that predicts sparse scene graphs directly only using visual appearance without combining entities and labeling all possible predicates. Extensive experiments on the Visual Genome, Open Images V6, and VRD datasets demonstrate the superior performance and fast inference of our model.
Different objects in the same scene are more or less related to each other, but only a limited number of these relationships are noteworthy. Inspired by Detection Transformer, which excels in object detection, we view scene graph generation as a set prediction problem. In this article, we propose an end-to-end scene graph generation model Relation Transformer (RelTR), which has an encoder-decoder architecture. The encoder reasons about the visual feature context while the decoder infers a fixed-size set of triplets subject-predicate-object using different types of attention mechanisms with coupled subject and object queries. We design a set prediction loss performing the matching between the ground truth and predicted triplets for the end-to-end training. In contrast to most existing scene graph generation methods, RelTR is a one-stage method that predicts sparse scene graphs directly only using visual appearance without combining entities and labeling all possible predicates. Extensive experiments on the Visual Genome, Open Images V6, and VRD datasets demonstrate the superior performance and fast inference of our model.
Author Rosenhahn, Bodo
Cong, Yuren
Yang, Michael Ying
Author_xml – sequence: 1
  givenname: Yuren
  orcidid: 0000-0001-7505-8563
  surname: Cong
  fullname: Cong, Yuren
  email: cong@tnt.uni-hannover.de
  organization: Institute of Information Processing, Leibniz University Hannover, Hannover, Germany
– sequence: 2
  givenname: Michael Ying
  orcidid: 0000-0002-0649-9987
  surname: Yang
  fullname: Yang, Michael Ying
  email: michael.yang@utwente.nl
  organization: Scene Understanding Group, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, NB, The Netherlands
– sequence: 3
  givenname: Bodo
  orcidid: 0000-0003-3861-1424
  surname: Rosenhahn
  fullname: Rosenhahn, Bodo
  email: rosenhahn@tnt.uni-hannover.de
  organization: Institute of Information Processing, Leibniz University Hannover, Hannover, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37074895$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1Lw0AQhhep2A_9AyIS8OIldXcn2ex6K0VroaLUel426QRT0qTuJgf_vdsvkB48vXN43mHm6ZNOVVdIyDWjQ8aoeli8j16nQ045DIELSYU4Iz3OBA0VV7xDepQJHkrJZZf0nVtRyqKYwgXpQkKTSKq4R8Qcy8X8MfBhmqKugoU1lctru0Yb-Ag-MqwwmFiz-QomfrQ77JKc56Z0eHXIAfl8flqMX8LZ22Q6Hs3CDGLehAkkucRIMcYzASJFwJTFcUxRYa7SKElzjJAxNFypXGQyQzDLZaoEWyrIYxiQ-_3eja2_W3SNXhcuw7I0Fdat01xSAPAywKN3J-iqbm3lr_NUlKg4AYg8dXug2nSNS72xxdrYH3004gG5BzJbO2cx11nR7H5urClKzajeytc7-XorXx_k-yo_qR63_1u62ZcKRPxTYNRrSuAXoteNrw
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TIP_2025_3543114
crossref_primary_10_1109_TMC_2024_3438152
crossref_primary_10_1109_TPAMI_2024_3389030
crossref_primary_10_1016_j_isprsjprs_2025_01_012
crossref_primary_10_1109_LRA_2024_3412593
crossref_primary_10_1016_j_ins_2025_122668
crossref_primary_10_3390_info15120766
crossref_primary_10_1007_s40747_024_01746_z
crossref_primary_10_1016_j_patrec_2025_04_005
crossref_primary_10_1007_s11263_025_02564_7
crossref_primary_10_1016_j_neucom_2023_127052
crossref_primary_10_1016_j_neucom_2025_131307
crossref_primary_10_1109_TIP_2025_3540296
crossref_primary_10_1016_j_neucom_2025_130130
crossref_primary_10_1016_j_patcog_2024_111039
crossref_primary_10_1109_TVT_2025_3529763
crossref_primary_10_1145_3659610
crossref_primary_10_1016_j_eswa_2025_129525
crossref_primary_10_1109_MWC_002_2400349
crossref_primary_10_1007_s10618_025_01121_7
crossref_primary_10_1109_TCSVT_2023_3349130
crossref_primary_10_1109_TPAMI_2023_3332246
crossref_primary_10_1016_j_rineng_2025_105397
crossref_primary_10_1109_LCOMM_2024_3496534
crossref_primary_10_3390_s24134329
crossref_primary_10_1007_s11263_025_02365_y
crossref_primary_10_1016_j_patrec_2025_04_036
crossref_primary_10_3233_MGS_230132
crossref_primary_10_1016_j_patcog_2025_112183
crossref_primary_10_1109_TIE_2023_3323695
crossref_primary_10_1109_TPAMI_2025_3531452
crossref_primary_10_1109_JIOT_2024_3464646
crossref_primary_10_1145_3748318
crossref_primary_10_1109_TPAMI_2025_3559995
crossref_primary_10_1109_MNET_2023_3334285
crossref_primary_10_1016_j_patcog_2025_111641
crossref_primary_10_1016_j_compag_2025_110865
crossref_primary_10_1016_j_inffus_2025_103260
crossref_primary_10_1109_ACCESS_2024_3450908
crossref_primary_10_1038_s40494_025_01950_1
crossref_primary_10_1109_ACCESS_2025_3555230
crossref_primary_10_1109_TCSVT_2025_3548308
crossref_primary_10_1109_JSTARS_2025_3571939
crossref_primary_10_1109_ACCESS_2024_3360113
crossref_primary_10_1109_TVT_2025_3541019
crossref_primary_10_1016_j_image_2025_117273
crossref_primary_10_1109_MWC_001_2300014
crossref_primary_10_1109_ACCESS_2023_3332098
crossref_primary_10_1016_j_neunet_2024_107002
crossref_primary_10_1016_j_isci_2024_109571
crossref_primary_10_1109_TPAMI_2024_3508072
crossref_primary_10_1016_j_dsp_2024_104611
crossref_primary_10_1109_TPAMI_2024_3402143
crossref_primary_10_1038_s41598_023_48916_6
crossref_primary_10_1016_j_dcan_2025_04_010
crossref_primary_10_1016_j_patcog_2025_111992
crossref_primary_10_1016_j_engappai_2025_111984
crossref_primary_10_1109_TIP_2023_3345652
crossref_primary_10_1007_s44443_025_00063_w
crossref_primary_10_1007_s11263_025_02499_z
crossref_primary_10_1016_j_eswa_2025_127486
crossref_primary_10_1109_TMI_2024_3444279
Cites_doi 10.1109/CVPR46437.2021.00863
10.1109/ICCV48922.2021.00144
10.1007/s11263-020-01316-z
10.1109/CVPR.2018.00611
10.1109/CVPR.2017.331
10.1109/CVPR46437.2021.01096
10.1109/CVPR.2008.4587799
10.1007/978-3-030-01219-9_20
10.1007/978-3-030-58565-5_38
10.1109/GC46384.2019.00015
10.1109/CVPR46437.2021.01138
10.1609/aaai.v33i01.33013159
10.1109/CVPR42600.2020.00377
10.1109/CVPR.2017.330
10.1109/CVPR.2019.00408
10.1109/CVPR46437.2021.01372
10.1109/ICCV48922.2021.01560
10.1109/ICCV.2017.142
10.1109/CVPR46437.2021.00014
10.1109/CVPR52688.2022.01890
10.1007/978-3-030-58592-1_36
10.1109/ICCV.2019.00972
10.1109/ICCV48922.2021.01512
10.1109/CVPR.2019.00857
10.1109/ICIP.2019.8803182
10.1007/978-3-319-46448-0_51
10.1109/CVPR42600.2020.01025
10.1007/s11263-008-0140-x
10.1109/CVPR42600.2020.00380
10.1109/CVPR46437.2021.01165
10.1109/CVPR.2019.00527
10.1109/CVPR.2019.00550
10.1109/CVPR.2019.01094
10.1109/ICCV.2017.121
10.1109/ICCV.2017.325
10.1109/CVPR.2017.469
10.1145/3240508.3240668
10.1109/ICCV48922.2021.01563
10.1109/ICCV48922.2021.01607
10.1109/CVPR.2019.00075
10.1109/CVPR.2019.00838
10.1109/CVPR.2019.00207
10.1109/TPAMI.2016.2577031
10.1007/978-3-030-01246-5_21
10.1109/CVPR52688.2022.01883
10.1109/CVPR.2019.01180
10.1109/ICCV48922.2021.01343
10.1109/CVPR.2015.7298990
10.1145/3474085.3475297
10.1109/ICCV.2019.00471
10.1109/ICCV48922.2021.01606
10.1109/CVPRW53098.2021.00244
10.1109/ICCVW.2019.00218
10.1109/CVPR.2019.00632
10.1007/978-3-030-01246-5_41
10.1145/3195106.3195114
10.1109/ICCV.2019.01042
10.1109/ICCV48922.2021.01608
10.1109/ICCV.2019.00466
10.1109/CVPR.2018.00133
10.1109/CVPR.2016.255
10.1145/3394171.3413722
10.1109/CVPR.2019.00678
10.1109/CVPR.2017.352
10.1109/CVPR.2009.5206848
10.1109/CVPR52688.2022.01888
10.1007/s11263-016-0981-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2023.3268066
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 11183
ExternalDocumentID 37074895
10_1109_TPAMI_2023_3268066
10105507
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Bundesministerium für Bildung und Forschung; Federal Ministry of Education and Research
  grantid: 01DD20003
  funderid: 10.13039/501100002347
– fundername: Deutsche Forschungsgemeinschaft
  funderid: 10.13039/501100001659
– fundername: Center for Digital Innovations
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
RIG
RNI
RZB
VH1
XJT
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c352t-737f8e49112c636be3eb15550e9ef9b47bfe4e11ea299f6c8ce3addb961d93f53
IEDL.DBID RIE
ISICitedReferencesCount 104
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001045832200037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 01:39:45 EDT 2025
Mon Jun 30 06:34:03 EDT 2025
Thu Apr 03 07:04:19 EDT 2025
Sat Nov 29 02:58:23 EST 2025
Tue Nov 18 22:33:42 EST 2025
Wed Aug 27 02:46:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-737f8e49112c636be3eb15550e9ef9b47bfe4e11ea299f6c8ce3addb961d93f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3861-1424
0000-0002-0649-9987
0000-0001-7505-8563
PMID 37074895
PQID 2847957334
PQPubID 85458
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TPAMI_2023_3268066
pubmed_primary_37074895
proquest_miscellaneous_2803331093
ieee_primary_10105507
proquest_journals_2847957334
crossref_primary_10_1109_TPAMI_2023_3268066
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
lee (ref23) 2019
ref15
ref59
ref58
liu (ref68) 2021
ref53
ref11
ref55
ref10
zhu (ref70) 2021
ref19
ref51
ref50
newell (ref81) 2017
ref46
ref45
ref48
ref47
law (ref14) 2018
ref42
ref86
ref85
ref44
ref88
ref43
lin (ref78) 2014
herzig (ref52) 2018
ref49
zhou (ref16) 2019
ref8
ref7
zeng (ref69) 2021
ref9
ref4
ref3
lu (ref41) 2021
ref6
ref5
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref37
carion (ref18) 2020
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
yao (ref71) 2021
menon (ref87) 2021
ref2
ref1
ref39
sun (ref17) 2021
ref38
vaswani (ref54) 2017
loshchilov (ref76) 2019
ref73
ref72
ref24
ref67
yuan (ref65) 2022
ref25
ref20
ref64
ref63
ref22
ref66
ref21
li (ref82) 2017
ref28
ref27
ref29
koner (ref56) 2020
li (ref26) 2019
yu (ref60) 2020
ref62
ref61
References_xml – ident: ref67
  doi: 10.1109/CVPR46437.2021.00863
– ident: ref3
  doi: 10.1109/ICCV48922.2021.00144
– start-page: 734
  year: 2018
  ident: ref14
  article-title: Cornernet: Detecting objects as paired keypoints
  publication-title: Proc Eur Conf Comput Vis
– ident: ref20
  doi: 10.1007/s11263-020-01316-z
– ident: ref9
  doi: 10.1109/CVPR.2018.00611
– ident: ref80
  doi: 10.1109/CVPR.2017.331
– ident: ref50
  doi: 10.1109/CVPR46437.2021.01096
– ident: ref28
  doi: 10.1109/CVPR.2008.4587799
– ident: ref85
  doi: 10.1007/978-3-030-01219-9_20
– ident: ref30
  doi: 10.1007/978-3-030-58565-5_38
– ident: ref25
  doi: 10.1109/GC46384.2019.00015
– ident: ref63
  doi: 10.1109/CVPR46437.2021.01138
– ident: ref79
  doi: 10.1609/aaai.v33i01.33013159
– ident: ref75
  doi: 10.1109/CVPR42600.2020.00377
– ident: ref46
  doi: 10.1109/CVPR.2017.330
– year: 2021
  ident: ref71
  article-title: Efficient DETR: Improving end-to-end object detector with dense prior
– ident: ref53
  doi: 10.1109/CVPR.2019.00408
– ident: ref42
  doi: 10.1109/CVPR46437.2021.01372
– ident: ref33
  doi: 10.1109/ICCV48922.2021.01560
– year: 2022
  ident: ref65
  article-title: RLIP: Relational language-image pre-training for human-object interaction detection
– ident: ref47
  doi: 10.1109/ICCV.2017.142
– start-page: 3948
  year: 2019
  ident: ref26
  article-title: PasteGAN: A semi-parametric method to generate image from scene graph
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref66
  doi: 10.1109/CVPR46437.2021.00014
– start-page: 2171
  year: 2017
  ident: ref81
  article-title: Pixels to graphs by associative embedding
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref57
  doi: 10.1109/CVPR52688.2022.01890
– year: 2021
  ident: ref68
  article-title: CPTR: Full transformer network for image captioning
– year: 2021
  ident: ref87
  article-title: Long-tail learning via logit adjustment
  publication-title: Proc Int Conf Learn Representations
– year: 2019
  ident: ref23
  article-title: Learning visual relation priors for image-text matching and image captioning with neural scene graph generators
– ident: ref12
  doi: 10.1007/978-3-030-58592-1_36
– ident: ref15
  doi: 10.1109/ICCV.2019.00972
– year: 2019
  ident: ref76
  article-title: Decoupled weight decay regularization
  publication-title: Proc Int Conf Learn Representations
– ident: ref45
  doi: 10.1109/ICCV48922.2021.01512
– ident: ref24
  doi: 10.1109/CVPR.2019.00857
– ident: ref27
  doi: 10.1109/ICIP.2019.8803182
– ident: ref2
  doi: 10.1007/978-3-319-46448-0_51
– ident: ref38
  doi: 10.1109/CVPR42600.2020.01025
– ident: ref29
  doi: 10.1007/s11263-008-0140-x
– start-page: 5998
  year: 2017
  ident: ref54
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref51
  doi: 10.1109/CVPR42600.2020.00380
– ident: ref72
  doi: 10.1109/CVPR46437.2021.01165
– ident: ref84
  doi: 10.1109/CVPR.2019.00527
– start-page: 7211
  year: 2018
  ident: ref52
  article-title: Mapping images to scene graphs with permutation-invariant structured prediction
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref86
  doi: 10.1109/CVPR.2019.00550
– ident: ref21
  doi: 10.1109/CVPR.2019.01094
– ident: ref11
  doi: 10.1109/ICCV.2017.121
– ident: ref5
  doi: 10.1109/ICCV.2017.325
– ident: ref83
  doi: 10.1109/CVPR.2017.469
– ident: ref59
  doi: 10.1145/3240508.3240668
– ident: ref34
  doi: 10.1109/ICCV48922.2021.01563
– ident: ref44
  doi: 10.1109/ICCV48922.2021.01607
– ident: ref74
  doi: 10.1109/CVPR.2019.00075
– ident: ref31
  doi: 10.1109/CVPR.2019.00838
– ident: ref13
  doi: 10.1109/CVPR.2019.00207
– ident: ref8
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref49
  doi: 10.1007/978-3-030-01246-5_21
– ident: ref88
  doi: 10.1109/CVPR52688.2022.01883
– ident: ref61
  doi: 10.1109/CVPR.2019.01180
– start-page: 740
  year: 2014
  ident: ref78
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proc Eur Conf Comput Vis
– ident: ref40
  doi: 10.1109/ICCV48922.2021.01343
– start-page: 213
  year: 2020
  ident: ref18
  article-title: End-to-end object detection with transformers
  publication-title: Proc Eur Conf Comput Vis
– ident: ref1
  doi: 10.1109/CVPR.2015.7298990
– year: 2020
  ident: ref56
  article-title: Relation transformer network
– year: 2017
  ident: ref82
  article-title: ViP-CNN: A visual phrase reasoning convolutional neural network for visual relationsip detection
– ident: ref37
  doi: 10.1145/3474085.3475297
– ident: ref36
  doi: 10.1109/ICCV.2019.00471
– ident: ref39
  doi: 10.1109/ICCV48922.2021.01606
– ident: ref55
  doi: 10.1109/CVPRW53098.2021.00244
– start-page: 9934
  year: 2021
  ident: ref17
  article-title: What makes for end-to-end object detection?
  publication-title: Proc Int Conf Mach Learn
– ident: ref58
  doi: 10.1109/ICCVW.2019.00218
– ident: ref10
  doi: 10.1109/CVPR.2019.00632
– ident: ref48
  doi: 10.1007/978-3-030-01246-5_41
– ident: ref4
  doi: 10.1145/3195106.3195114
– ident: ref22
  doi: 10.1109/ICCV.2019.01042
– year: 2020
  ident: ref60
  article-title: Cogtree: Cognition tree loss for unbiased scene graph generation
– ident: ref32
  doi: 10.1109/ICCV48922.2021.01608
– ident: ref6
  doi: 10.1109/ICCV.2019.00466
– ident: ref7
  doi: 10.1109/CVPR.2018.00133
– year: 2021
  ident: ref70
  article-title: Deformable DETR: Deformable transformers for end-to-end object detection
  publication-title: Proc Int Conf Learn Representations
– ident: ref73
  doi: 10.1109/CVPR.2016.255
– ident: ref43
  doi: 10.1145/3394171.3413722
– ident: ref35
  doi: 10.1109/CVPR.2019.00678
– year: 2019
  ident: ref16
  article-title: Objects as points
– start-page: 1
  year: 2021
  ident: ref41
  article-title: Multi-view scene graph generation in videos
  publication-title: Proc Int Challenge Activity Recognit Workshop
– year: 2021
  ident: ref69
  article-title: MOTR: End-to-end multiple-object tracking with transformer
– ident: ref62
  doi: 10.1109/CVPR.2017.352
– ident: ref77
  doi: 10.1109/CVPR.2009.5206848
– ident: ref64
  doi: 10.1109/CVPR52688.2022.01888
– ident: ref19
  doi: 10.1007/s11263-016-0981-7
SSID ssj0014503
Score 2.7020633
Snippet Different objects in the same scene are more or less related to each other, but only a limited number of these relationships are noteworthy. Inspired by...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11169
SubjectTerms Coders
Decoding
Encoders-Decoders
Object detection
Object recognition
One-stage
Predictions
Predictive models
Proposals
scene graph generation
scene understanding
Task analysis
Transformers
visual relationship detection
Visualization
Title RelTR: Relation Transformer for Scene Graph Generation
URI https://ieeexplore.ieee.org/document/10105507
https://www.ncbi.nlm.nih.gov/pubmed/37074895
https://www.proquest.com/docview/2847957334
https://www.proquest.com/docview/2803331093
Volume 45
WOSCitedRecordID wos001045832200037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60iNSD1fqKLyJ4k9Q0m-xmvYn4AhUpVXoLyWYCQmmlD3-_M5uk6KGCpwQymww7z83uzAdwTuaDMpbGy7UvPIpQkRdHWnrKGBVgnEpl4d7en9TLSzwY6NeqWN3WwiCiPXyGHb61e_n52Mz5VxlZOMM5cu34qlKqLNZabBmEkYVBphSGTJzWEXWFjK8v-6_Xz48dBgrvULYSU5RtwrpQPndeiX4FJIuwsjzZtEHnrvVPdrdgs8ou3etSHbZhBUdtaNXIDW5lyG3Y-NGGcAdkD4f93pVbH4xz-3U2S2PoQuPII7r33NvaLftUM9kuvN3d9m8evApPwTOUZs08JVQRY0juLTBSyAwFOeqIOESNhc5ClRUYIgkvpRhVSBMbFOT-Mi27uRZFJPagMRqP8ADc1E8xyKVIuyoPsyhIVernpqDFEwbGR-FAt57UxFTNxhnzYpjYRYevEyuThGWSVDJx4GIx5rNstfEn9S7P-A_KcrIdOK6Fl1TmOE04Bmvu_Bg6cLZ4TIbEuyPpCMdzpvGF4D6pxPx-KfTFy2tdOVzy0SNoMm_l2bNjaMwmczyBNfM1-5hOTklbB_Gp1dZvNd7gzQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED5EReeDP6dOp1bwTTq7pk0a30ScinOIVPGttOkVhLGJbv793qXt0AcFn1ropT1yudylyX0fwAm5D8pIGjfXnnApQoVuFGrpKmOUj1EqlaV7e-6rwSB6edEPVbG6rYVBRHv4DDt8a_fy87GZ8q8y8nCmc-Ta8YUwCPxuWa412zQIQkuETEkMOTmtJOoaGU-fxQ8X97cdpgrvUL4SUZxtwJJQHmOvhD9CkuVY-T3dtGGnt_ZPhddhtcovnYtyQGzAHI42Ya3mbnAqV96ElW9AhFsgH3EYP5479dE4J67zWWpDF2pHc6JzzejWTolUzWJNeOpdxZc3bsWo4BpKtCauEqqIMKAJzjdSyAwFTdUhaYgaC50FKiswQDJfSlGqkCYyKGgCzLTs5loUodiG-dF4hLvgpF6Kfi5F2lV5kIV-qlIvNwUtn9A3HooWdOtOTUwFN86sF8PELjs8nVibJGyTpLJJC05nbd5KsI0_pZvc498ky85uQbs2XlI55EfCUVgz9mPQguPZY3Il3h9JRziesownBCOlkvI7pdFnL6_Hyt4vHz2C5Zv4vp_0bwd3-9BgPcuTaG2Yn7xP8QAWzefk9eP90I7ZL8N54yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RelTR%3A+Relation+Transformer+for+Scene+Graph+Generation&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Cong%2C+Yuren&rft.au=Yang%2C+Michael+Ying&rft.au=Rosenhahn%2C+Bodo&rft.date=2023-09-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=45&rft.issue=9&rft.spage=11169&rft.epage=11183&rft_id=info:doi/10.1109%2FTPAMI.2023.3268066&rft_id=info%3Apmid%2F37074895&rft.externalDocID=10105507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon