A Multi-Class Tactile Brain-Computer Interface Based on Stimulus-Induced Oscillatory Dynamics
We proposed a multi-class tactile brain-computer interface that utilizes stimulus-induced oscillatory dynamics. It was hypothesized that somatosensory attention can modulate tactile-induced oscillation changes, which can decode different sensation attention tasks. Subjects performed four tactile att...
Saved in:
| Published in: | IEEE transactions on neural systems and rehabilitation engineering Vol. 26; no. 1; pp. 3 - 10 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.01.2018
|
| Subjects: | |
| ISSN: | 1534-4320, 1558-0210, 1558-0210 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We proposed a multi-class tactile brain-computer interface that utilizes stimulus-induced oscillatory dynamics. It was hypothesized that somatosensory attention can modulate tactile-induced oscillation changes, which can decode different sensation attention tasks. Subjects performed four tactile attention tasks, prompted by cues presented in random order and while both wrists were simultaneously stimulated: 1) selective sensation on left hand (SS-L); 2) selective sensation on right hand (SS-R); 3) bilateral selective sensation; and 4) selective sensation suppressed or idle state (SS-S). The classification accuracy between SS-L and SS-R (79.9 ± 8.7%) was comparable with that of a previous tactile BCI system based on selective sensation. Moreover, the accuracy could be improved to an average of 90.3 ± 4.9% by optimal class-pair and frequency-band selection. Three-class discrimination had an accuracy of 75.2 ± 8.3%, with the best discrimination reached for the classes SS-L, SS-R, and SS-S. Finally, four classes were classified with an accuracy of 59.4 ± 7.3%. These results show that the proposed system is a promising new paradigm for multi-class BCI. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1534-4320 1558-0210 1558-0210 |
| DOI: | 10.1109/TNSRE.2017.2731261 |