Human trajectory prediction and generation using LSTM models and GANs

•New deep neural network models are proposed for trajectory prediction.•LSTM and GAN1 models are used for unimodal predictions, GAN3 model for multimodal.•Metrics are proposed for normalizing errors for more consistent comparisons.•New dataset are proposed with low linearity and a high diversity. Hu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Pattern recognition Ročník 120; s. 108136
Hlavní autori: Rossi, Luca, Paolanti, Marina, Pierdicca, Roberto, Frontoni, Emanuele
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.12.2021
Predmet:
ISSN:0031-3203, 1873-5142
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •New deep neural network models are proposed for trajectory prediction.•LSTM and GAN1 models are used for unimodal predictions, GAN3 model for multimodal.•Metrics are proposed for normalizing errors for more consistent comparisons.•New dataset are proposed with low linearity and a high diversity. Human trajectory prediction is an important topic in several application domains, ranging from self-driving cars to environment design and planning, from socially-aware robots to intelligent tracking systems. This complex subject comes with different challenges, such as human-space interaction, human-human interaction, multimodality, and generalizability. Currently, these challenges, especially generalizability, have not been completely explored by state-of-the-art works. This work attempts to fill this gap by proposing and defining new methods and metrics to help understand trajectories. In particular, new deep learning models based on Long Short-Term Memory and Generative Adversarial Network architectures are used in both unimodal and multimodal contexts. These approaches are evaluated with new error metrics, which normalize some biases in standard metrics. Tests have been assessed using newly collected datasets characterized by a higher diversity and lower linearity than those used in state-of-the-art works. The results prove that the proposed models and datasets are comparable to and yield better generalizability than state-of-the-art works. Moreover, we also prove that our datasets better represent multimodal scenarios (allowing for multiple possible behaviors) and that human trajectories are moderately influenced by their spatial region and slightly influenced by their date and time.
AbstractList •New deep neural network models are proposed for trajectory prediction.•LSTM and GAN1 models are used for unimodal predictions, GAN3 model for multimodal.•Metrics are proposed for normalizing errors for more consistent comparisons.•New dataset are proposed with low linearity and a high diversity. Human trajectory prediction is an important topic in several application domains, ranging from self-driving cars to environment design and planning, from socially-aware robots to intelligent tracking systems. This complex subject comes with different challenges, such as human-space interaction, human-human interaction, multimodality, and generalizability. Currently, these challenges, especially generalizability, have not been completely explored by state-of-the-art works. This work attempts to fill this gap by proposing and defining new methods and metrics to help understand trajectories. In particular, new deep learning models based on Long Short-Term Memory and Generative Adversarial Network architectures are used in both unimodal and multimodal contexts. These approaches are evaluated with new error metrics, which normalize some biases in standard metrics. Tests have been assessed using newly collected datasets characterized by a higher diversity and lower linearity than those used in state-of-the-art works. The results prove that the proposed models and datasets are comparable to and yield better generalizability than state-of-the-art works. Moreover, we also prove that our datasets better represent multimodal scenarios (allowing for multiple possible behaviors) and that human trajectories are moderately influenced by their spatial region and slightly influenced by their date and time.
ArticleNumber 108136
Author Pierdicca, Roberto
Paolanti, Marina
Frontoni, Emanuele
Rossi, Luca
Author_xml – sequence: 1
  givenname: Luca
  surname: Rossi
  fullname: Rossi, Luca
  organization: Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione, Ancona 60100, Italy
– sequence: 2
  givenname: Marina
  surname: Paolanti
  fullname: Paolanti, Marina
  email: m.paolanti@staff.univpm.it
  organization: Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione, Ancona 60100, Italy
– sequence: 3
  givenname: Roberto
  surname: Pierdicca
  fullname: Pierdicca, Roberto
  organization: Università Politecnica delle Marche, Dipartimento di Ingegneria Civile, Edile e dell’Architettura, Ancona 60100, Italy
– sequence: 4
  givenname: Emanuele
  surname: Frontoni
  fullname: Frontoni, Emanuele
  organization: Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione, Ancona 60100, Italy
BookMark eNqFkMtOwzAQRS1UJNrCH7DID6T4kTgJC6SqKi1SgQVlbTn2uHLUOpWdIvXvcRNWLGA1mscZ6Z4JGrnWAUL3BM8IJvyhmR1lp9rdjGJK4qgkjF-hMSkLluYkoyM0xpiRlFHMbtAkhAZjUsTFGC3Xp4N0SedlA6pr_Tk5etBWdbZ1iXQ62YEDL_v2FKzbJZuP7WtyaDXsQ3-wmr-FW3Rt5D7A3U-dos_n5XaxTjfvq5fFfJMqltMu5abUBiQnBitaGZ3nVVHzqiyxymVOqwJqqSpjNAEscW0AdM0JyTjU1CidsSnKhr_KtyF4MOLo7UH6syBYXFSIRgwqxEWFGFRE7PEXpmzXZ4q57f4_-GmAY2D4suBFUBacipZ8VCZ0a_9-8A2lG3-y
CitedBy_id crossref_primary_10_1109_JIOT_2022_3203415
crossref_primary_10_1016_j_patcog_2025_112315
crossref_primary_10_1007_s10489_022_04093_z
crossref_primary_10_1016_j_patcog_2022_108894
crossref_primary_10_1016_j_cviu_2024_104142
crossref_primary_10_1016_j_patcog_2021_108252
crossref_primary_10_1016_j_trc_2023_104304
crossref_primary_10_1016_j_knosys_2025_113019
crossref_primary_10_3390_s23156997
crossref_primary_10_1002_int_22900
crossref_primary_10_1007_s11042_024_18228_6
crossref_primary_10_1016_j_neucom_2022_07_085
crossref_primary_10_1016_j_patcog_2025_112270
crossref_primary_10_3390_s23041939
crossref_primary_10_3389_fnbot_2024_1284175
crossref_primary_10_1109_ACCESS_2025_3566337
crossref_primary_10_1016_j_cosrev_2024_100635
crossref_primary_10_1109_TNSE_2022_3140529
crossref_primary_10_1038_s41598_025_86785_3
crossref_primary_10_1080_15568318_2025_2510413
crossref_primary_10_1016_j_patcog_2022_109234
crossref_primary_10_3390_app14209349
crossref_primary_10_1007_s11600_022_00831_6
crossref_primary_10_3390_ijgi13030072
crossref_primary_10_1016_j_pmcj_2023_101809
crossref_primary_10_3390_electronics14122480
crossref_primary_10_1109_ACCESS_2024_3426958
crossref_primary_10_1016_j_ins_2024_120455
crossref_primary_10_1016_j_trc_2025_105145
crossref_primary_10_1016_j_knosys_2023_110637
crossref_primary_10_1016_j_robot_2022_104352
crossref_primary_10_1016_j_patcog_2022_108552
crossref_primary_10_3390_vehicles7020057
crossref_primary_10_3390_su15043535
crossref_primary_10_1016_j_neucom_2023_127117
crossref_primary_10_1145_3716637
crossref_primary_10_1109_TITS_2023_3252262
crossref_primary_10_1016_j_daach_2024_e00340
crossref_primary_10_1016_j_eswa_2023_122423
crossref_primary_10_1016_j_rcim_2024_102864
crossref_primary_10_1080_13658816_2024_2436482
crossref_primary_10_1016_j_ipm_2024_103954
crossref_primary_10_2478_amns_2023_1_00481
crossref_primary_10_1016_j_jag_2023_103412
crossref_primary_10_1016_j_patcog_2023_109997
crossref_primary_10_1016_j_eswa_2024_124635
crossref_primary_10_1016_j_patcog_2023_109633
crossref_primary_10_1109_ACCESS_2024_3428438
crossref_primary_10_3390_app11188299
crossref_primary_10_1061_JCEMD4_COENG_15888
crossref_primary_10_1016_j_neucom_2022_09_005
crossref_primary_10_1016_j_patcog_2023_109559
crossref_primary_10_1186_s40537_023_00727_2
Cites_doi 10.1109/CVPR42600.2020.01052
10.1016/j.eswa.2018.03.035
10.1016/j.patcog.2019.04.025
10.1007/s00138-020-01118-w
10.1109/TPAMI.2017.2728788
10.1016/j.eswa.2019.01.027
10.1162/neco.1997.9.8.1735
10.1007/s10846-017-0674-7
10.1016/j.jretconser.2018.11.005
10.1016/j.eswa.2019.06.041
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2021.108136
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2021_108136
S003132032100323X
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c352t-6f8dfea61f0c29fd5597b69880c5a5297ebac9ffd1e0a0bfeedb61146eb2fcd43
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000691531800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 07:25:29 EST 2025
Tue Nov 18 21:44:55 EST 2025
Fri Feb 23 02:42:55 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Trajectory prediction
Trajectory generation
LSTM
GANs
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-6f8dfea61f0c29fd5597b69880c5a5297ebac9ffd1e0a0bfeedb61146eb2fcd43
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8248611
ParticipantIDs crossref_primary_10_1016_j_patcog_2021_108136
crossref_citationtrail_10_1016_j_patcog_2021_108136
elsevier_sciencedirect_doi_10_1016_j_patcog_2021_108136
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Helbing, Molnar (bib0005) 1998; 51
Lerner, Chrysanthou, Lischinski (bib0027) 2007; 26
Hochreiter, Schmidhuber (bib0001) 1997; 9
Ferracuti, Norscini, Frontoni, Gabellini, Paolanti, Placidi (bib0012) 2019; 47
Bermingham, Lee (bib0011) 2019; 122
Bartoli, Lisanti, Ballan, Del Bimbo (bib0020) 2018
Magdy, Sakr, Mostafa, El-Bahnasy (bib0030) 2015
Kitani, Ziebart, Bagnell, Hebert (bib0014) 2012
Sadeghian, Kosaraju, Sadeghian, Hirose, Rezatofighi, Savarese (bib0019) 2019
Paolanti, Liciotti, Pietrini, Mancini, Frontoni (bib0013) 2018; 91
N. Jaipuria, G. Habibi, J.P. How, A transferable pedestrian motion prediction model for intersections with different geometries
Lee, Choi, Vernaza, Choy, Torr, Chandraker (bib0022) 2017
Gupta, Johnson, Fei-Fei, Savarese, Alahi (bib0007) 2018
Pellegrini, Ess, Schindler, Van Gool (bib0026) 2009
Afsar, Cortez, Santos (bib0009) 2018; 110
Mehran, Oyama, Shah (bib0004) 2009
Chen, Cai, Zhang, Wu, Mu, Li, Sotelo (bib0010) 2019; 138
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0002) 2014
Ballan, Castaldo, Alahi, Palmieri, Savarese (bib0015) 2016
H. Manh, G. Alaghband, Scene-LSTM: a model for human trajectory prediction
Srivastava, Mansimov, Salakhudinov (bib0023) 2015
Y. Chai, B. Sapp, M. Bansal, D. Anguelov, Multipath: multiple probabilistic anchor trajectory hypotheses for behavior prediction, 2019.
Paolanti, Pietrini, Mancini, Frontoni, Zingaretti (bib0029) 2020; 31
Pei, Qi, Zhang, Ma, Yang (bib0021) 2019; 93
Luber, Stork, Tipaldi, Arras (bib0003) 2010
(2018).
J. Liang, L. Jiang, K. Murphy, T. Yu, A. Hauptmann, The garden of forking paths: towards multi-future trajectory prediction, 2019.
Xie, Shu, Todorovic, Zhu (bib0016) 2017; 40
Liang, Jiang, Niebles, Hauptmann, Fei-Fei (bib0008) 2019
Alahi, Goel, Ramanathan, Robicquet, Fei-Fei, Savarese (bib0006) 2016
Gabellini, D’Aloisio, Fabiani, Placidi (bib0028) 2019
Chen (10.1016/j.patcog.2021.108136_bib0010) 2019; 138
Bartoli (10.1016/j.patcog.2021.108136_bib0020) 2018
Luber (10.1016/j.patcog.2021.108136_bib0003) 2010
Ballan (10.1016/j.patcog.2021.108136_bib0015) 2016
Mehran (10.1016/j.patcog.2021.108136_bib0004) 2009
Lee (10.1016/j.patcog.2021.108136_bib0022) 2017
Gupta (10.1016/j.patcog.2021.108136_bib0007) 2018
Alahi (10.1016/j.patcog.2021.108136_bib0006) 2016
10.1016/j.patcog.2021.108136_bib0025
10.1016/j.patcog.2021.108136_bib0024
Liang (10.1016/j.patcog.2021.108136_bib0008) 2019
Paolanti (10.1016/j.patcog.2021.108136_bib0013) 2018; 91
Srivastava (10.1016/j.patcog.2021.108136_bib0023) 2015
Sadeghian (10.1016/j.patcog.2021.108136_bib0019) 2019
Goodfellow (10.1016/j.patcog.2021.108136_bib0002) 2014
Xie (10.1016/j.patcog.2021.108136_bib0016) 2017; 40
Pellegrini (10.1016/j.patcog.2021.108136_bib0026) 2009
Paolanti (10.1016/j.patcog.2021.108136_bib0029) 2020; 31
Bermingham (10.1016/j.patcog.2021.108136_bib0011) 2019; 122
Afsar (10.1016/j.patcog.2021.108136_bib0009) 2018; 110
Pei (10.1016/j.patcog.2021.108136_bib0021) 2019; 93
Ferracuti (10.1016/j.patcog.2021.108136_bib0012) 2019; 47
Gabellini (10.1016/j.patcog.2021.108136_bib0028) 2019
Kitani (10.1016/j.patcog.2021.108136_bib0014) 2012
Hochreiter (10.1016/j.patcog.2021.108136_bib0001) 1997; 9
Helbing (10.1016/j.patcog.2021.108136_bib0005) 1998; 51
10.1016/j.patcog.2021.108136_bib0018
10.1016/j.patcog.2021.108136_bib0017
Lerner (10.1016/j.patcog.2021.108136_bib0027) 2007; 26
Magdy (10.1016/j.patcog.2021.108136_bib0030) 2015
References_xml – start-page: 613
  year: 2015
  end-page: 619
  ident: bib0030
  article-title: Review on trajectory similarity measures
  publication-title: 2015 IEEE seventh international conference on Intelligent Computing and Information Systems (ICICIS)
– reference: (2018).
– volume: 93
  start-page: 273
  year: 2019
  end-page: 282
  ident: bib0021
  article-title: Human trajectory prediction in crowded scene using social-affinity long short-term memory
  publication-title: Pattern Recognit.
– volume: 138
  start-page: 112753
  year: 2019
  ident: bib0010
  article-title: A novel sparse representation model for pedestrian abnormal trajectory understanding
  publication-title: Expert Syst. Appl.
– volume: 110
  start-page: 41
  year: 2018
  end-page: 51
  ident: bib0009
  article-title: Automatic human trajectory destination prediction from video
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: 655
  year: 2007
  end-page: 664
  ident: bib0027
  article-title: Crowds by example
  publication-title: Computer Graphics Forum
– volume: 122
  start-page: 334
  year: 2019
  end-page: 350
  ident: bib0011
  article-title: Mining place-matching patterns from spatio-temporal trajectories using complex real-world places
  publication-title: Expert Syst. Appl.
– start-page: 201
  year: 2012
  end-page: 214
  ident: bib0014
  article-title: Activity forecasting
  publication-title: European Conference on Computer Vision
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0001
  article-title: Long short-term memory
  publication-title: Neural Comput.
– start-page: 336
  year: 2017
  end-page: 345
  ident: bib0022
  article-title: Desire: distant future prediction in dynamic scenes with interacting agents
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1349
  year: 2019
  end-page: 1358
  ident: bib0019
  article-title: Sophie: an attentive GAN for predicting paths compliant to social and physical constraints
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 935
  year: 2009
  end-page: 942
  ident: bib0004
  article-title: Abnormal crowd behavior detection using social force model
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 464
  year: 2010
  end-page: 469
  ident: bib0003
  article-title: People tracking with human motion predictions from social forces
  publication-title: 2010 IEEE International Conference on Robotics and Automation
– reference: J. Liang, L. Jiang, K. Murphy, T. Yu, A. Hauptmann, The garden of forking paths: towards multi-future trajectory prediction, 2019.
– reference: Y. Chai, B. Sapp, M. Bansal, D. Anguelov, Multipath: multiple probabilistic anchor trajectory hypotheses for behavior prediction, 2019.
– reference: N. Jaipuria, G. Habibi, J.P. How, A transferable pedestrian motion prediction model for intersections with different geometries,
– volume: 47
  start-page: 184
  year: 2019
  end-page: 194
  ident: bib0012
  article-title: A business application of rtls technology in intelligent retail environment: defining the shopper’s preferred path and its segmentation
  publication-title: J. Retail. Consum. Serv.
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib0002
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– start-page: 261
  year: 2009
  end-page: 268
  ident: bib0026
  article-title: You’ll never walk alone: modeling social behavior for multi-target tracking
  publication-title: 2009 IEEE 12th International Conference on Computer Vision
– start-page: 2255
  year: 2018
  end-page: 2264
  ident: bib0007
  article-title: Social GAN: socially acceptable trajectories with generative adversarial networks
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 697
  year: 2016
  end-page: 713
  ident: bib0015
  article-title: Knowledge transfer for scene-specific motion prediction
  publication-title: European Conference on Computer Vision
– volume: 40
  start-page: 1639
  year: 2017
  end-page: 1652
  ident: bib0016
  article-title: Learning and inferring “dark matter” and predicting human intents and trajectories in videos
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 5725
  year: 2019
  end-page: 5734
  ident: bib0008
  article-title: Peeking into the future: predicting future person activities and locations in videos
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 31
  start-page: 66
  year: 2020
  ident: bib0029
  article-title: Deep understanding of shopper behaviours and interactions using RGB-D vision
  publication-title: Mach. Vis. Appl.
– start-page: 961
  year: 2016
  end-page: 971
  ident: bib0006
  article-title: Social LSTM: human trajectory prediction in crowded spaces
  publication-title: Proceedings of the IEEE Conference on Computer Vision and pattern Recognition
– start-page: 1941
  year: 2018
  end-page: 1946
  ident: bib0020
  article-title: Context-aware trajectory prediction
  publication-title: 2018 24th International Conference on Pattern Recognition (ICPR)
– reference: H. Manh, G. Alaghband, Scene-LSTM: a model for human trajectory prediction,
– volume: 91
  start-page: 165
  year: 2018
  end-page: 180
  ident: bib0013
  article-title: Modelling and forecasting customer navigation in intelligent retail environments
  publication-title: J. Intell. Robot. Syst.
– volume: 51
  year: 1998
  ident: bib0005
  article-title: Social force model for pedestrian dynamics
  publication-title: Phys. Rev. E
– start-page: 285
  year: 2019
  end-page: 295
  ident: bib0028
  article-title: A large scale trajectory dataset for shopper behaviour understanding
  publication-title: International Conference on Image Analysis and Processing
– start-page: 843
  year: 2015
  end-page: 852
  ident: bib0023
  article-title: Unsupervised learning of video representations using LSTMs
  publication-title: International conference on machine learning
– ident: 10.1016/j.patcog.2021.108136_bib0024
  doi: 10.1109/CVPR42600.2020.01052
– start-page: 336
  year: 2017
  ident: 10.1016/j.patcog.2021.108136_bib0022
  article-title: Desire: distant future prediction in dynamic scenes with interacting agents
– volume: 110
  start-page: 41
  year: 2018
  ident: 10.1016/j.patcog.2021.108136_bib0009
  article-title: Automatic human trajectory destination prediction from video
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.03.035
– start-page: 261
  year: 2009
  ident: 10.1016/j.patcog.2021.108136_bib0026
  article-title: You’ll never walk alone: modeling social behavior for multi-target tracking
– ident: 10.1016/j.patcog.2021.108136_bib0018
– start-page: 843
  year: 2015
  ident: 10.1016/j.patcog.2021.108136_bib0023
  article-title: Unsupervised learning of video representations using LSTMs
– start-page: 5725
  year: 2019
  ident: 10.1016/j.patcog.2021.108136_bib0008
  article-title: Peeking into the future: predicting future person activities and locations in videos
– ident: 10.1016/j.patcog.2021.108136_bib0025
– start-page: 1941
  year: 2018
  ident: 10.1016/j.patcog.2021.108136_bib0020
  article-title: Context-aware trajectory prediction
– start-page: 1349
  year: 2019
  ident: 10.1016/j.patcog.2021.108136_bib0019
  article-title: Sophie: an attentive GAN for predicting paths compliant to social and physical constraints
– start-page: 285
  year: 2019
  ident: 10.1016/j.patcog.2021.108136_bib0028
  article-title: A large scale trajectory dataset for shopper behaviour understanding
– start-page: 613
  year: 2015
  ident: 10.1016/j.patcog.2021.108136_bib0030
  article-title: Review on trajectory similarity measures
– start-page: 464
  year: 2010
  ident: 10.1016/j.patcog.2021.108136_bib0003
  article-title: People tracking with human motion predictions from social forces
– volume: 26
  start-page: 655
  year: 2007
  ident: 10.1016/j.patcog.2021.108136_bib0027
  article-title: Crowds by example
– volume: 93
  start-page: 273
  year: 2019
  ident: 10.1016/j.patcog.2021.108136_bib0021
  article-title: Human trajectory prediction in crowded scene using social-affinity long short-term memory
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.04.025
– volume: 51
  year: 1998
  ident: 10.1016/j.patcog.2021.108136_bib0005
  article-title: Social force model for pedestrian dynamics
  publication-title: Phys. Rev. E
– volume: 31
  start-page: 66
  issue: 7
  year: 2020
  ident: 10.1016/j.patcog.2021.108136_bib0029
  article-title: Deep understanding of shopper behaviours and interactions using RGB-D vision
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-020-01118-w
– start-page: 935
  year: 2009
  ident: 10.1016/j.patcog.2021.108136_bib0004
  article-title: Abnormal crowd behavior detection using social force model
– volume: 40
  start-page: 1639
  issue: 7
  year: 2017
  ident: 10.1016/j.patcog.2021.108136_bib0016
  article-title: Learning and inferring “dark matter” and predicting human intents and trajectories in videos
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2728788
– ident: 10.1016/j.patcog.2021.108136_bib0017
– start-page: 201
  year: 2012
  ident: 10.1016/j.patcog.2021.108136_bib0014
  article-title: Activity forecasting
– start-page: 961
  year: 2016
  ident: 10.1016/j.patcog.2021.108136_bib0006
  article-title: Social LSTM: human trajectory prediction in crowded spaces
– volume: 122
  start-page: 334
  year: 2019
  ident: 10.1016/j.patcog.2021.108136_bib0011
  article-title: Mining place-matching patterns from spatio-temporal trajectories using complex real-world places
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.01.027
– start-page: 2672
  year: 2014
  ident: 10.1016/j.patcog.2021.108136_bib0002
  article-title: Generative adversarial nets
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.patcog.2021.108136_bib0001
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 2255
  year: 2018
  ident: 10.1016/j.patcog.2021.108136_bib0007
  article-title: Social GAN: socially acceptable trajectories with generative adversarial networks
– volume: 91
  start-page: 165
  issue: 2
  year: 2018
  ident: 10.1016/j.patcog.2021.108136_bib0013
  article-title: Modelling and forecasting customer navigation in intelligent retail environments
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-017-0674-7
– volume: 47
  start-page: 184
  year: 2019
  ident: 10.1016/j.patcog.2021.108136_bib0012
  article-title: A business application of rtls technology in intelligent retail environment: defining the shopper’s preferred path and its segmentation
  publication-title: J. Retail. Consum. Serv.
  doi: 10.1016/j.jretconser.2018.11.005
– start-page: 697
  year: 2016
  ident: 10.1016/j.patcog.2021.108136_bib0015
  article-title: Knowledge transfer for scene-specific motion prediction
– volume: 138
  start-page: 112753
  year: 2019
  ident: 10.1016/j.patcog.2021.108136_bib0010
  article-title: A novel sparse representation model for pedestrian abnormal trajectory understanding
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.06.041
SSID ssj0017142
Score 2.6207364
Snippet •New deep neural network models are proposed for trajectory prediction.•LSTM and GAN1 models are used for unimodal predictions, GAN3 model for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108136
SubjectTerms GANs
LSTM
Trajectory generation
Trajectory prediction
Title Human trajectory prediction and generation using LSTM models and GANs
URI https://dx.doi.org/10.1016/j.patcog.2021.108136
Volume 120
WOSCitedRecordID wos000691531800018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cAFyksUCvKBG3KVxMnaPq7QUora1Upd0N4iP1FXVXa1D1T-PeNHkqVFvCQu1sqJ85j5Mh57v5lB6A13KiuVUMTw0pIyVyWRvNLEUGtzJq1kgU34-YyNx3w2E5NEt12HcgKsafj1tVj-V1VDHyjbh87-hbq7i0IH_AalQwtqh_aPFB-35TcrOQ8b8t98GgBzmSqCN8bXTLZJ7duwUXB2MT2PFXFivuaT4Xi967NOQgpOH_aSuEaLnegx-KTC0n7bU34mEpbLTaQJnMNSvOmPwBwMj6Jlz-ledAAKmRRCgam3I3iDrU2vlbYkivwGvaOLlemJScH20pzQIovmzEZzyxkl4LL9aI9DdNxt2x63GebHS5ijFl-O_Y09QzKnN1Jph8n5IialzHyIEjR0dhftF6wSYPj2h6ej2cfuryaWlzGlfHq8Nr4ykABv3-vn_suOTzI9QA_SYgIPIwgeoTu2eYwetoU6cLLbT9AoYAL3mMA9JjCoHPeYwAET2GMCR0yEEzwmnqJP70fTdx9Iqp9BNLjVGzJw3DgrB7nLdCGc8YtHNRBgsXUlq0Iwq6QWzpncZjJTDtwlNfBR6lYVTpuSPkN7zaKxzxFWzGacgX3nDvq1kZor4UC4ldDUVPQQ0VYqtU7J5X2Nk6u6ZRHO6yjL2suyjrI8RKQbtYzJVX5zPmsFXicHMTp-NWDklyNf_PPIl-h-D_EjtLdZbe0rdE9_3VyuV68TmL4DzQ6N9w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+trajectory+prediction+and+generation+using+LSTM+models+and+GANs&rft.jtitle=Pattern+recognition&rft.au=Rossi%2C+Luca&rft.au=Paolanti%2C+Marina&rft.au=Pierdicca%2C+Roberto&rft.au=Frontoni%2C+Emanuele&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=120&rft_id=info:doi/10.1016%2Fj.patcog.2021.108136&rft.externalDocID=S003132032100323X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon