Constrained-Cost Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems

For discrete-time nonlinear systems, this research is concerned with optimal control problems (OCPs) with constrained cost, and a novel value iteration with constrained cost (VICC) method is developed to solve the optimal control law with the constrained cost functions. The VICC method is initialize...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transaction on neural networks and learning systems Ročník 35; číslo 3; s. 1 - 14
Hlavní autoři: Wei, Qinglai, Li, Tao
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2162-237X, 2162-2388, 2162-2388
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract For discrete-time nonlinear systems, this research is concerned with optimal control problems (OCPs) with constrained cost, and a novel value iteration with constrained cost (VICC) method is developed to solve the optimal control law with the constrained cost functions. The VICC method is initialized through a value function constructed by a feasible control law. It is proven that the iterative value function is nonincreasing and converges to the solution of the Bellman equation with constrained cost. The feasibility of the iterative control law is proven. The method to find the initial feasible control law is given. Implementation using neural networks (NNs) is introduced, and the convergence is proven by considering the approximation error. Finally, the property of the present VICC method is shown by two simulation examples.
AbstractList For discrete-time nonlinear systems, this research is concerned with optimal control problems (OCPs) with constrained cost, and a novel value iteration with constrained cost (VICC) method is developed to solve the optimal control law with the constrained cost functions. The VICC method is initialized through a value function constructed by a feasible control law. It is proven that the iterative value function is nonincreasing and converges to the solution of the Bellman equation with constrained cost. The feasibility of the iterative control law is proven. The method to find the initial feasible control law is given. Implementation using neural networks (NNs) is introduced, and the convergence is proven by considering the approximation error. Finally, the property of the present VICC method is shown by two simulation examples.
For discrete-time nonlinear systems, this research is concerned with optimal control problems (OCPs) with constrained cost, and a novel value iteration with constrained cost (VICC) method is developed to solve the optimal control law with the constrained cost functions. The VICC method is initialized through a value function constructed by a feasible control law. It is proven that the iterative value function is nonincreasing and converges to the solution of the Bellman equation with constrained cost. The feasibility of the iterative control law is proven. The method to find the initial feasible control law is given. Implementation using neural networks (NNs) is introduced, and the convergence is proven by considering the approximation error. Finally, the property of the present VICC method is shown by two simulation examples.For discrete-time nonlinear systems, this research is concerned with optimal control problems (OCPs) with constrained cost, and a novel value iteration with constrained cost (VICC) method is developed to solve the optimal control law with the constrained cost functions. The VICC method is initialized through a value function constructed by a feasible control law. It is proven that the iterative value function is nonincreasing and converges to the solution of the Bellman equation with constrained cost. The feasibility of the iterative control law is proven. The method to find the initial feasible control law is given. Implementation using neural networks (NNs) is introduced, and the convergence is proven by considering the approximation error. Finally, the property of the present VICC method is shown by two simulation examples.
Author Wei, Qinglai
Li, Tao
Author_xml – sequence: 1
  givenname: Qinglai
  orcidid: 0000-0001-7002-9800
  surname: Wei
  fullname: Wei, Qinglai
  organization: Institute of Automation, State Key Laboratory for Management and Control of Complex Systems, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Tao
  surname: Li
  fullname: Li, Tao
  organization: Institute of Automation, State Key Laboratory for Management and Control of Complex Systems, Chinese Academy of Sciences, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37022391$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9rHCEUxaWkNGmaL1BKEfrSl9mOOur4GDb9B8umkC30TRznGgwzulW3sN--bndTSh7qi4K_czj3npfoLMQACL0m7YKQVn3YrNeruwVtKVswyiTvxTN0QYmgDWV9f_b3LX-co6ucH9p6RMtFp16gcyZbSpkiF2hcxpBLMj7A2CxjLvh6NNvifwG-2Qcze4u_pXifzDz7cI9dTPi2fs9mwlVZUpxwdPjGZ5ugQLPxM-B1DFP1Mwnf7XOBOb9Cz52ZMlyd7kv0_dPHzfJLs7r9_HV5vWos47Q0wkji6MAEsUqM0khq6CAMAWHZAIMdKDDn1Gg6J_hg2diznjNruLMKOAC7RO-PvtsUf-4gFz3XYDBNJkDcZU2lkqTrleQVffcEfYi7FGo6TRWrEQiholJvT9RumGHU21QnT3v9uL8K9EfApphzAqetL6b4w2qMnzRp9aEt_actfWhLn9qqUvpE-uj-X9Gbo8gDwD-ClvGu4-w3faihMg
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_JAS_2024_124773
crossref_primary_10_1109_TCYB_2024_3462718
crossref_primary_10_1007_s11071_025_11608_z
crossref_primary_10_1007_s11071_024_10173_1
crossref_primary_10_1109_TCYB_2024_3403690
crossref_primary_10_1007_s11432_024_4209_9
crossref_primary_10_1002_oca_3202
crossref_primary_10_1016_j_neucom_2024_128837
crossref_primary_10_1109_TASE_2024_3427771
crossref_primary_10_1109_TCYB_2024_3443522
crossref_primary_10_1007_s11071_024_10574_2
crossref_primary_10_1109_TCYB_2024_3519140
crossref_primary_10_1109_TCYB_2025_3530951
crossref_primary_10_1016_j_ins_2025_122453
crossref_primary_10_1109_ACCESS_2025_3551883
crossref_primary_10_3390_s25020314
crossref_primary_10_1109_TSMC_2025_3548319
crossref_primary_10_1109_TSMC_2024_3392756
crossref_primary_10_1016_j_neucom_2025_130821
Cites_doi 10.1109/tnnls.2022.3140478
10.1109/TCYB.2015.2492242
10.1017/CBO9780511804441
10.1109/TNNLS.2020.3027301
10.1007/BF01580735
10.1109/TSMCB.2008.926614
10.1109/TNNLS.2020.3045087
10.1109/TNNLS.2021.3051030
10.1016/j.automatica.2019.108582
10.1007/978-3-319-50815-3
10.1109/5.58337
10.1109/TNNLS.2016.2593743
10.1109/MCI.2009.932261
10.1016/0167-6911(87)90070-3
10.1109/tnnls.2022.3142501
10.1109/tcyb.2021.3128231
10.1016/S0006-3495(61)86902-6
10.1002/(SICI)1099-1514(199903/04)20:2<79::AID-OCA647>3.0.CO;2-3
10.7551/mitpress/4939.003.0007
10.1109/TNNLS.2021.3054685
10.1007/s001860000071
10.1109/tnnls.2022.3172572
10.1007/s00245-018-9532-7
10.1109/TNNLS.2020.3030127
10.1109/TNNLS.2021.3085781
10.2514/1.G001154
10.1016/j.automatica.2016.05.008
10.1137/S0363012999361627
10.1109/TNNLS.2017.2755501
10.1109/TNNLS.2021.3090570
10.1109/TAC.2021.3087452
10.1109/tsmc.2022.3223910
10.1109/TSMC.2020.2995646
10.1109/TNNLS.2021.3087796
10.1109/CDC45484.2021.9683474
10.1109/TNNLS.2015.2503980
10.1109/TCYB.2016.2623859
10.1109/TAC.1959.1104895
10.1109/TAC.2007.899040
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2023.3237586
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 14
ExternalDocumentID 37022391
10_1109_TNNLS_2023_3237586
10035445
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Science and Technology Development Fund, Macau, SAR
  grantid: FDCT-22-009-MISE; 0060/2021/A2; 0015/2020/AMJ
– fundername: National Key Research and Development Program of China
  grantid: 2021YFE0206100
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 62073321
  funderid: 10.13039/501100001809
– fundername: National Defense Basic Scientific Research Program
  grantid: JCKY2019203C029
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
AGSQL
CITATION
EJD
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c352t-6a71f2b361c96d7a72a2b6a1e6c3bebcb2e3ff9da4f65bc3d83853ca5fc9e5ee3
IEDL.DBID RIE
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000935660400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sat Sep 27 19:17:15 EDT 2025
Sun Nov 30 04:04:20 EST 2025
Thu Jul 24 03:25:39 EDT 2025
Tue Nov 18 22:13:15 EST 2025
Sat Nov 29 01:40:24 EST 2025
Wed Aug 27 02:17:13 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-6a71f2b361c96d7a72a2b6a1e6c3bebcb2e3ff9da4f65bc3d83853ca5fc9e5ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7002-9800
0000-0002-6239-969X
PMID 37022391
PQID 2933611126
PQPubID 85436
PageCount 14
ParticipantIDs proquest_miscellaneous_2797148975
crossref_citationtrail_10_1109_TNNLS_2023_3237586
ieee_primary_10035445
proquest_journals_2933611126
pubmed_primary_37022391
crossref_primary_10_1109_TNNLS_2023_3237586
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
Werbos (ref12) 1977
ref10
Paternain (ref38)
Nocedal (ref43) 2006
ref17
ref16
ref19
ref18
ref50
Chen (ref49) 1999
ref46
ref45
ref48
ref47
ref42
ref44
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Piunovskiy (ref36) 2006; 35
ref34
ref37
ref30
ref33
ref2
ref1
ref39
Altman (ref32) 1999
Zhao (ref31)
ref24
ref23
ref26
ref25
ref20
ref22
Bertsekas (ref41) 2005
ref21
ref28
ref29
Bellman (ref11) 1957
López-Martínez (ref35) 2003; 7
Bertsekas (ref27) 2005
References_xml – ident: ref8
  doi: 10.1109/tnnls.2022.3140478
– ident: ref19
  doi: 10.1109/TCYB.2015.2492242
– ident: ref42
  doi: 10.1017/CBO9780511804441
– ident: ref3
  doi: 10.1109/TNNLS.2020.3027301
– ident: ref44
  doi: 10.1007/BF01580735
– volume-title: Dynamic Programming and Optimal Control
  year: 2005
  ident: ref41
– ident: ref21
  doi: 10.1109/TSMCB.2008.926614
– ident: ref9
  doi: 10.1109/TNNLS.2020.3045087
– ident: ref24
  doi: 10.1109/TNNLS.2021.3051030
– ident: ref37
  doi: 10.1016/j.automatica.2019.108582
– year: 2005
  ident: ref27
  article-title: Rollout algorithms for constrained dynamic programming
– volume: 7
  start-page: 1
  issue: 1
  year: 2003
  ident: ref35
  article-title: The Lagrange approach to constrained Markov control processes: A survey and extension of results
  publication-title: Morfismos
– ident: ref16
  doi: 10.1007/978-3-319-50815-3
– ident: ref47
  doi: 10.1109/5.58337
– ident: ref26
  doi: 10.1109/TNNLS.2016.2593743
– volume-title: Constrained Markov Decision Processes
  year: 1999
  ident: ref32
– ident: ref6
  doi: 10.1109/MCI.2009.932261
– start-page: 25
  volume-title: General System Yearbook
  year: 1977
  ident: ref12
  article-title: Advanced forecasting methods for global crisis warning and models of intelligence
– ident: ref46
  doi: 10.1016/0167-6911(87)90070-3
– ident: ref14
  doi: 10.1109/tnnls.2022.3142501
– ident: ref5
  doi: 10.1109/tcyb.2021.3128231
– ident: ref50
  doi: 10.1016/S0006-3495(61)86902-6
– start-page: 702
  volume-title: Proc. 3rd Conf. Learn. Dyn. Control
  ident: ref31
  article-title: Primal-dual learning for the model-free risk-constrained linear quadratic regulator
– ident: ref28
  doi: 10.1002/(SICI)1099-1514(199903/04)20:2<79::AID-OCA647>3.0.CO;2-3
– ident: ref13
  doi: 10.7551/mitpress/4939.003.0007
– ident: ref1
  doi: 10.1109/TNNLS.2021.3054685
– ident: ref33
  doi: 10.1007/s001860000071
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref38
  article-title: Constrained reinforcement learning has zero duality gap
– ident: ref10
  doi: 10.1109/tnnls.2022.3172572
– ident: ref29
  doi: 10.1007/s00245-018-9532-7
– ident: ref7
  doi: 10.1109/TNNLS.2020.3030127
– ident: ref17
  doi: 10.1109/TNNLS.2021.3085781
– ident: ref48
  doi: 10.2514/1.G001154
– ident: ref15
  doi: 10.1016/j.automatica.2016.05.008
– ident: ref34
  doi: 10.1137/S0363012999361627
– ident: ref23
  doi: 10.1109/TNNLS.2017.2755501
– volume-title: Linear System Theory and Design
  year: 1999
  ident: ref49
– ident: ref2
  doi: 10.1109/TNNLS.2021.3090570
– ident: ref18
  doi: 10.1109/TAC.2021.3087452
– ident: ref20
  doi: 10.1109/tsmc.2022.3223910
– volume-title: Dynamic Programming
  year: 1957
  ident: ref11
– ident: ref4
  doi: 10.1109/TSMC.2020.2995646
– ident: ref25
  doi: 10.1109/TNNLS.2021.3087796
– volume: 35
  start-page: 645
  issue: 3
  year: 2006
  ident: ref36
  article-title: Dynamic programming in constrained Markov decision
  publication-title: Control Cybern.
– ident: ref30
  doi: 10.1109/CDC45484.2021.9683474
– ident: ref22
  doi: 10.1109/TNNLS.2015.2503980
– ident: ref40
  doi: 10.1109/TCYB.2016.2623859
– volume-title: Numerical Optimization
  year: 2006
  ident: ref43
– ident: ref45
  doi: 10.1109/TAC.1959.1104895
– ident: ref39
  doi: 10.1109/TAC.2007.899040
SSID ssj0000605649
Score 2.5353236
Snippet For discrete-time nonlinear systems, this research is concerned with optimal control problems (OCPs) with constrained cost, and a novel value iteration with...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Adaptive control
Adaptive dynamic programming (ADP)
approximate dynamic programming
constrained cost
Control theory
Convergence
Cost function
Costs
Discrete time systems
Dynamic programming
Feasibility
Neural networks
Nonlinear control
Nonlinear systems
Optimal control
Performance analysis
reinforcement learning
value iteration (VI)
Title Constrained-Cost Adaptive Dynamic Programming for Optimal Control of Discrete-Time Nonlinear Systems
URI https://ieeexplore.ieee.org/document/10035445
https://www.ncbi.nlm.nih.gov/pubmed/37022391
https://www.proquest.com/docview/2933611126
https://www.proquest.com/docview/2797148975
Volume 35
WOSCitedRecordID wos000935660400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXaqgculEKBhbYyEjfkJbETT3ystlQcqlCJIu0tcuyxVIluqu4uv5-xnazgUCRukezYcWbG8_wx8xj7KEEiNNYICI0RVdOTSekAwjsnK6iM6m3Krn8Nbdssl-ZmDFZPsTCImC6f4Tw-prN8P7ht3CojCy9UTB6zz_YBdA7W2m2oFATMdYK7stRSSAXLKUimMJ9v2_b6-zxyhc8VFdVN5C5SQB5MmfIvn5RIVp7Gm8nvXB395xe_YM9HgMkvskYcsz1cvWRHE3kDH235FfORqjMRRKAXi2G94RfePsTJj19mlnp-k-9u3ZN344Rt-Tcqvqe2F_l6Ox8Cv7yjaYdwt4ihJLzNeTcsdZMToZ-wH1dfbhdfxUi5IBwhsY3QFsoge6VLZ7QHC9LKXtsStVM99q6XqEIw3lZB171TvlHk752tgzNYI6rX7GA1rPAt4zr0ofGelKEuKoTSoK58xJMBgRxEPWPl9NM7N-Yjj6P-2aV1SWG6JLMuyqwbZTZjn3bvPORsHP-sfRIl8kfNLIwZO52E240Wu-4I9tCoY0DVjH3YFZOtxQMUu8JhS3XAAC0fDVATb7JS7BqfdOndE52-Z8_o26p8fe2UHWwet3jGDt2vzd368ZwUetmcJ4X-DWPm8AY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagIMGF8ih0oYCRuCFvEzux42O1pSpiCZVYpL1FfoylSnRTdXf7-xnbyQoOReKUSHb8yMx4PtvzIOQjVxxUYzRTodGsaiyKlAyKeed4pSotrEnR9eeqbZvlUl8MzurJFwYAkvEZTONrusv3vdvGozKU8ELE4DH3yQN88CK7a-2OVAqE5jIBXl5KzrhQy9FNptDHi7ad_5jGbOFTgUV1E7MXCYU6TOjyL62U0qzcjTiT5jnb_88xPyVPBohJTzJPPCP3YPWc7I_pG-ggzS-Ij8k6U4oI8GzWrzf0xJvruPzR05ynnl5k660r1G8U0S39jsVX2PYsG7jTPtDTS1x4EHmz6ExC2xx5w2A3ORT6Afl59nkxO2dD0gXmEIttmDSqDNwKWTotvTKKG26lKUE6YcE6y0GEoL2pgqytE74RqPGdqYPTUAOIl2Rv1a_gkFAZbGi8R3aoiwpUqUFWPiLKAApVRD0h5fjTOzdEJI-z_tWlnUmhu0SzLtKsG2g2IZ9231zneBz_rH0QKfJHzUyMCTkaidsNMrvuEPjgrKNL1YR82BWjtMUrFLOCfot1lFa4gdQKm3iVmWLX-MhLr-_o9D15dL74Nu_mX9qvb8hjHGeVjdmOyN7mZgtvyUN3u7lc37xLbP0bWzvyZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained-Cost+Adaptive+Dynamic+Programming+for+Optimal+Control+of+Discrete-Time+Nonlinear+Systems&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Wei%2C+Qinglai&rft.au=Li%2C+Tao&rft.date=2024-03-01&rft.pub=IEEE&rft.issn=2162-237X&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTNNLS.2023.3237586&rft_id=info%3Apmid%2F37022391&rft.externalDocID=10035445
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon