Federated Learning Via Inexact ADMM
One of the crucial issues in federated learning is how to develop efficient optimization algorithms. Most of the current ones require full device participation and/or impose strong assumptions for convergence. Different from the widely-used gradient descent-based algorithms, in this article, we deve...
Saved in:
| Published in: | IEEE transactions on pattern analysis and machine intelligence Vol. 45; no. 8; pp. 9699 - 9708 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | One of the crucial issues in federated learning is how to develop efficient optimization algorithms. Most of the current ones require full device participation and/or impose strong assumptions for convergence. Different from the widely-used gradient descent-based algorithms, in this article, we develop an inexact alternating direction method of multipliers (ADMM), which is both computation- and communication-efficient, capable of combating the stragglers' effect, and convergent under mild conditions. Furthermore, it has high numerical performance compared with several state-of-the-art algorithms for federated learning. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0162-8828 1939-3539 2160-9292 1939-3539 |
| DOI: | 10.1109/TPAMI.2023.3243080 |