Predictive maintenance using digital twins: A systematic literature review
•The first SLR in predictive maintenance using Digital Twins.•42 primary studies were analyzed.•Key questions for designing a predictive maintance model were answered.•Key challenges were presented in the study. Predictive maintenance is a technique for creating a more sustainable, safe, and profita...
Saved in:
| Published in: | Information and software technology Vol. 151; p. 107008 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.11.2022
|
| Subjects: | |
| ISSN: | 0950-5849, 1873-6025 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •The first SLR in predictive maintenance using Digital Twins.•42 primary studies were analyzed.•Key questions for designing a predictive maintance model were answered.•Key challenges were presented in the study.
Predictive maintenance is a technique for creating a more sustainable, safe, and profitable industry. One of the key challenges for creating predictive maintenance systems is the lack of failure data, as the machine is frequently repaired before failure. Digital Twins provide a real-time representation of the physical machine and generate data, such as asset degradation, which the predictive maintenance algorithm can use. Since 2018, scientific literature on the utilization of Digital Twins for predictive maintenance has accelerated, indicating the need for a thorough review.
This research aims to gather and synthesize the studies that focus on predictive maintenance using Digital Twins to pave the way for further research.
A systematic literature review (SLR) using an active learning tool is conducted on published primary studies on predictive maintenance using Digital Twins, in which 42 primary studies have been analyzed.
This SLR identifies several aspects of predictive maintenance using Digital Twins, including the objectives, application domains, Digital Twin platforms, Digital Twin representation types, approaches, abstraction levels, design patterns, communication protocols, twinning parameters, and challenges and solution directions. These results contribute to a Software Engineering approach for developing predictive maintenance using Digital Twins in academics and the industry.
This study is the first SLR in predictive maintenance using Digital Twins. We answer key questions for designing a successful predictive maintenance model leveraging Digital Twins. We found that to this day, computational burden, data variety, and complexity of models, assets, or components are the key challenges in designing these models. |
|---|---|
| AbstractList | •The first SLR in predictive maintenance using Digital Twins.•42 primary studies were analyzed.•Key questions for designing a predictive maintance model were answered.•Key challenges were presented in the study.
Predictive maintenance is a technique for creating a more sustainable, safe, and profitable industry. One of the key challenges for creating predictive maintenance systems is the lack of failure data, as the machine is frequently repaired before failure. Digital Twins provide a real-time representation of the physical machine and generate data, such as asset degradation, which the predictive maintenance algorithm can use. Since 2018, scientific literature on the utilization of Digital Twins for predictive maintenance has accelerated, indicating the need for a thorough review.
This research aims to gather and synthesize the studies that focus on predictive maintenance using Digital Twins to pave the way for further research.
A systematic literature review (SLR) using an active learning tool is conducted on published primary studies on predictive maintenance using Digital Twins, in which 42 primary studies have been analyzed.
This SLR identifies several aspects of predictive maintenance using Digital Twins, including the objectives, application domains, Digital Twin platforms, Digital Twin representation types, approaches, abstraction levels, design patterns, communication protocols, twinning parameters, and challenges and solution directions. These results contribute to a Software Engineering approach for developing predictive maintenance using Digital Twins in academics and the industry.
This study is the first SLR in predictive maintenance using Digital Twins. We answer key questions for designing a successful predictive maintenance model leveraging Digital Twins. We found that to this day, computational burden, data variety, and complexity of models, assets, or components are the key challenges in designing these models. |
| ArticleNumber | 107008 |
| Author | van Dinter, Raymon Catal, Cagatay Tekinerdogan, Bedir |
| Author_xml | – sequence: 1 givenname: Raymon surname: van Dinter fullname: van Dinter, Raymon organization: Sioux Technologies, Apeldoorn, The Netherlands – sequence: 2 givenname: Bedir orcidid: 0000-0002-8538-7261 surname: Tekinerdogan fullname: Tekinerdogan, Bedir email: bedir.tekinerdogan@wur.nl organization: Information Technology Group Wageningen University & Research, Wageningen, The Netherlands – sequence: 3 givenname: Cagatay surname: Catal fullname: Catal, Cagatay organization: Department of Computer Science and Engineering, Qatar University, Doha, Qatar |
| BookMark | eNqFkMtqwzAQRUVJoUnaP-hCP-B0JFt-ZFEIoU8C7aJdC0UehwmOXCQlIX9fB3fVRbsaGDiXe8-EjVznkLFbATMBIr_bzsg1oWtmEqTsXwVAecHGoizSJAepRmwMlYJElVl1xSYhbAFEASmM2eu7x5pspAPynSEX0Rlnke8DuQ2vaUPRtDweyYU5X_BwChF3JpLlLUX0Ju49co8HwuM1u2xMG_Dm507Z5-PDx_I5Wb09vSwXq8SmSsa-RA15XqTQoKnXErAsG7VWUpaNzMFksspVJiBT0K-wQhmp6gJzlBKrtUibdMrmQ671XQgeG237kpE6F72hVgvQZyt6qwcr-mxFD1Z6OPsFf3naGX_6D7sfMOyH9WO9DpawF1WTRxt13dHfAd8lhYBh |
| CitedBy_id | crossref_primary_10_29216_ueip_1614573 crossref_primary_10_1088_1361_665X_adadcd crossref_primary_10_3390_encyclopedia5030087 crossref_primary_10_1108_JQME_05_2024_0047 crossref_primary_10_1007_s10749_024_01788_w crossref_primary_10_1061_JCEMD4_COENG_16149 crossref_primary_10_1016_j_ymssp_2024_111778 crossref_primary_10_1002_sd_3270 crossref_primary_10_3390_eng6020022 crossref_primary_10_1016_j_jmsy_2024_05_012 crossref_primary_10_3390_math12192979 crossref_primary_10_31818_JKNST_2025_6_8_2_207 crossref_primary_10_3389_fbuil_2024_1381813 crossref_primary_10_1109_JRFID_2024_3387996 crossref_primary_10_1007_s43674_023_00058_y crossref_primary_10_1016_j_jmsy_2025_07_006 crossref_primary_10_1016_j_jai_2024_12_001 crossref_primary_10_3390_app14030977 crossref_primary_10_1007_s00170_024_14097_3 crossref_primary_10_1016_j_csi_2023_103794 crossref_primary_10_3390_bdcc8050045 crossref_primary_10_1007_s10664_024_10458_4 crossref_primary_10_1016_j_ijpvp_2025_105451 crossref_primary_10_1049_hve2_12465 crossref_primary_10_1016_j_aei_2024_102800 crossref_primary_10_3389_fdgth_2023_1253050 crossref_primary_10_1016_j_iot_2024_101477 crossref_primary_10_1109_ACCESS_2025_3572563 crossref_primary_10_7717_peerj_cs_1943 crossref_primary_10_1016_j_heliyon_2023_e23152 crossref_primary_10_1007_s00170_024_14200_8 crossref_primary_10_3390_machines12040261 crossref_primary_10_1088_1361_6501_acf8e8 crossref_primary_10_1088_1361_6501_ada462 crossref_primary_10_1109_TITS_2025_3526204 crossref_primary_10_1515_zwf_2025_1082 crossref_primary_10_1177_00202940241236088 crossref_primary_10_1515_phys_2022_0239 crossref_primary_10_1016_j_cie_2024_110607 crossref_primary_10_1007_s43621_025_01190_0 crossref_primary_10_1515_zwf_2025_0155 crossref_primary_10_1177_00375497241228281 crossref_primary_10_1016_j_simpat_2025_103160 crossref_primary_10_3390_buildings15050690 crossref_primary_10_1049_pel2_70013 crossref_primary_10_1109_TPEL_2025_3570638 crossref_primary_10_23919_CHAIN_2025_000003 crossref_primary_10_1016_j_epsr_2023_109958 crossref_primary_10_1016_j_nucengdes_2024_113013 crossref_primary_10_3390_aerospace11090708 crossref_primary_10_3390_civileng6010002 crossref_primary_10_3390_s25113513 crossref_primary_10_70401_bmeh_2024_135 crossref_primary_10_1016_j_mechmachtheory_2023_105552 crossref_primary_10_1051_e3sconf_202560805004 crossref_primary_10_1016_j_jii_2025_100918 crossref_primary_10_1111_ijcs_70036 crossref_primary_10_1049_cim2_70041 crossref_primary_10_1016_j_aei_2024_102450 crossref_primary_10_1080_15623599_2025_2544913 crossref_primary_10_1016_j_rineng_2025_107260 crossref_primary_10_1080_08982112_2024_2331140 crossref_primary_10_1007_s11042_023_17041_x crossref_primary_10_1016_j_procir_2023_03_087 crossref_primary_10_1007_s10696_024_09579_1 crossref_primary_10_1080_21693277_2025_2544981 crossref_primary_10_3390_buildings13020447 crossref_primary_10_1109_ACCESS_2025_3559502 crossref_primary_10_3390_app15084228 crossref_primary_10_1016_j_rineng_2025_106858 crossref_primary_10_3390_designs8010008 crossref_primary_10_3390_app132212374 crossref_primary_10_1016_j_engappai_2025_111070 crossref_primary_10_1016_j_knosys_2025_114114 crossref_primary_10_1088_1742_6596_2837_1_012059 crossref_primary_10_3389_fmech_2025_1655565 crossref_primary_10_1007_s10207_023_00784_x crossref_primary_10_3389_fenrg_2023_1272967 crossref_primary_10_3390_en16124590 crossref_primary_10_1016_j_jai_2023_07_002 crossref_primary_10_1080_0305215X_2024_2434201 crossref_primary_10_3390_app13148297 crossref_primary_10_1007_s10845_023_02289_9 crossref_primary_10_1016_j_future_2023_11_033 crossref_primary_10_3390_app13021052 crossref_primary_10_1016_j_infsof_2025_107742 crossref_primary_10_1016_j_tust_2025_106508 crossref_primary_10_1007_s11277_024_11108_0 crossref_primary_10_1016_j_ymssp_2025_112770 crossref_primary_10_1016_j_ress_2024_110040 crossref_primary_10_1016_j_ssci_2024_106590 crossref_primary_10_1016_j_ress_2025_111496 crossref_primary_10_1016_j_compind_2023_103980 crossref_primary_10_1038_s43588_024_00603_w crossref_primary_10_1007_s42417_024_01608_5 crossref_primary_10_1080_00207543_2024_2329324 crossref_primary_10_3390_en18030535 crossref_primary_10_3390_s25010059 crossref_primary_10_1016_j_infsof_2024_107503 crossref_primary_10_3390_s24186069 crossref_primary_10_1088_2631_8695_ad4aea crossref_primary_10_3390_drones9060394 crossref_primary_10_3390_s23031409 crossref_primary_10_3390_s24010004 crossref_primary_10_1016_j_engappai_2025_111511 crossref_primary_10_1016_j_tsep_2024_102722 crossref_primary_10_1016_j_jocs_2025_102589 crossref_primary_10_1016_j_compind_2025_104273 crossref_primary_10_1016_j_jmsy_2024_12_009 crossref_primary_10_1007_s00773_023_00963_4 crossref_primary_10_1109_ACCESS_2025_3567674 crossref_primary_10_1515_mt_2025_0100 crossref_primary_10_3390_en17112456 crossref_primary_10_1016_j_procs_2024_01_107 crossref_primary_10_1016_j_jenvman_2024_123866 crossref_primary_10_3390_app15137049 crossref_primary_10_3390_s24082663 crossref_primary_10_1007_s42791_024_00083_z crossref_primary_10_1016_j_oceaneng_2022_113479 crossref_primary_10_1109_ACCESS_2024_3518516 crossref_primary_10_1155_jece_3295799 crossref_primary_10_1016_j_engfailanal_2025_109330 crossref_primary_10_1177_09721509251374805 crossref_primary_10_1007_s11804_025_00649_w crossref_primary_10_1016_j_ress_2023_109859 crossref_primary_10_47172_2965_730X_SDGsReview_v5_n04_pe06107 crossref_primary_10_1080_00207543_2024_2366997 crossref_primary_10_1186_s42162_024_00373_9 crossref_primary_10_3389_fdgth_2025_1611225 crossref_primary_10_3390_en15218284 crossref_primary_10_1016_j_mfglet_2023_08_142 crossref_primary_10_1109_JIOT_2023_3246100 crossref_primary_10_3390_en17030700 crossref_primary_10_1016_j_iintel_2023_100050 crossref_primary_10_3390_buildings15071030 crossref_primary_10_3390_electronics13101984 crossref_primary_10_1109_ACCESS_2023_3349379 crossref_primary_10_3390_electronics13030587 crossref_primary_10_2196_50204 crossref_primary_10_53518_mjavl_1599535 crossref_primary_10_1016_j_iot_2023_100991 crossref_primary_10_1016_j_aei_2024_102773 crossref_primary_10_1080_27525783_2025_2533848 crossref_primary_10_1038_s41598_023_38887_z crossref_primary_10_3390_ijgi14040140 crossref_primary_10_3390_ma18133146 crossref_primary_10_1007_s40436_023_00450_4 crossref_primary_10_1007_s10270_025_01264_7 crossref_primary_10_3390_w15112106 crossref_primary_10_1109_ACCESS_2025_3585362 crossref_primary_10_1016_j_enconman_2025_119995 crossref_primary_10_1038_s41598_025_99488_6 crossref_primary_10_1080_10447318_2023_2254607 crossref_primary_10_3390_fi16120477 crossref_primary_10_3390_forecast6020014 crossref_primary_10_1007_s40860_023_00208_6 crossref_primary_10_1016_j_inffus_2025_103534 crossref_primary_10_3390_infrastructures10030064 crossref_primary_10_1080_0951192X_2024_2322981 crossref_primary_10_1109_ACCESS_2025_3578686 crossref_primary_10_1142_S0218126625430066 crossref_primary_10_1007_s10462_024_11002_y crossref_primary_10_3390_app15020700 crossref_primary_10_1109_ACCESS_2024_3514175 crossref_primary_10_1080_02286203_2024_2395899 crossref_primary_10_1007_s40171_025_00437_z crossref_primary_10_1016_j_oceaneng_2024_119187 crossref_primary_10_23939_cds2022_01_049 crossref_primary_10_1016_j_matdes_2024_113086 crossref_primary_10_3390_pr11020558 crossref_primary_10_3390_jcs8040131 crossref_primary_10_1016_j_jmsy_2023_07_016 crossref_primary_10_3390_drones9010040 |
| Cites_doi | 10.1016/j.procir.2019.04.049 10.1016/j.enbuild.2022.111988 10.1080/00207543.2020.1824085 10.1007/s00170-021-06976-w 10.1016/j.promfg.2020.06.015 10.1016/j.procs.2022.01.348 10.1007/s12206-018-0201-1 10.1016/j.promfg.2020.02.084 10.3390/pr9060922 10.1109/BigData50022.2020.9378433 10.3390/s21030932 10.1016/j.infsof.2010.05.003 10.1016/j.ifacol.2019.10.016 10.1016/j.ifacol.2018.08.391 10.1007/s11219-017-9386-2 10.1109/TETC.2022.3143346 10.3390/s20185103 10.1016/j.ifacol.2022.04.182 10.1016/j.procs.2020.01.061 10.1007/978-3-319-38756-7_4 10.1016/j.infsof.2021.106589 10.1016/j.procs.2022.01.276 10.1016/j.compag.2018.12.044 10.1080/0951192X.2019.1686173 10.1016/j.ifacol.2021.08.124 10.1016/j.ifacol.2022.04.183 10.1016/j.jmsy.2020.07.005 10.1016/j.cirp.2017.04.040 10.1016/j.promfg.2020.01.265 10.1016/j.cirp.2017.04.007 10.1016/j.promfg.2021.10.020 10.1016/j.compind.2020.103316 10.1080/00207543.2020.1859636 10.1007/978-3-030-85577-2_54 10.1080/0951192X.2021.1911003 10.1016/j.jmsy.2020.08.001 10.1115/1.4049537 10.1007/s10010-021-00468-9 10.1007/978-3-319-91334-6_40 10.1109/ACCESS.2018.2890566 10.1016/j.procir.2019.03.072 10.1080/24725854.2018.1555383 10.1016/j.cirp.2018.04.055 10.1016/j.ifacol.2020.11.052 10.1016/j.ijhydene.2020.10.108 10.1007/s40436-020-00302-5 10.1016/j.net.2020.03.028 10.3390/machines6020023 |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.infsof.2022.107008 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business |
| EISSN | 1873-6025 |
| ExternalDocumentID | 10_1016_j_infsof_2022_107008 S0950584922001331 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABFNM ABFRF ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACGOD ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TWZ UHS UNMZH WH7 WUQ XFK ZY4 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c352t-58d066730feadb20e88f5b5228f260a42965410450008c15a25d7e6e22e9b13f3 |
| ISICitedReferencesCount | 203 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000859493100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-5849 |
| IngestDate | Sat Nov 29 07:07:38 EST 2025 Tue Nov 18 22:18:50 EST 2025 Fri Feb 23 02:38:18 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Digital twin Active learning Systematic literature review Predictive maintenance |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c352t-58d066730feadb20e88f5b5228f260a42965410450008c15a25d7e6e22e9b13f3 |
| ORCID | 0000-0002-8538-7261 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.infsof.2022.107008 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_infsof_2022_107008 crossref_primary_10_1016_j_infsof_2022_107008 elsevier_sciencedirect_doi_10_1016_j_infsof_2022_107008 |
| PublicationCentury | 2000 |
| PublicationDate | November 2022 2022-11-00 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Information and software technology |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | M. Ulusoy, Predictive maintenance, part 3: remaining useful life estimation, in, n.d. S.R. Toolbox, Search, in, 2014. Ali, Babar, Chen, Stol (bib0031) 2010; 52 Wang, Liu, Liao, Mrad (bib0065) 2020 Zhang, Du, Zhang, Wang (bib0110) 2021 L. Cattaneo, M. MacChi, A Digital Twin Proof of Concept to Support Machine Prognostics with Low Availability of Run-To-Failure Data, in: IFAC-PapersOnLine, 2019, pp. 37–42. Aivaliotis, Georgoulias, Arkouli, Makris (bib0068) 2019; 81 Rossini, Conzon, Prato, Pastrone, Reis, Gonçalves (bib0073) 2020 Heim, Clemens, Steck, Basic, Timmons, Zwiener, Aircraft, Twin (bib0072) 2020 Panagou, Fruggiero, Lerra, Vecchio, Menchetti, Piedimonte, Natale, Passariello (bib0106) 2022; 55 Liu, Zhang, Xu, Jin, Lee (bib0053) 2018 Dhada, Hernández, Palau, Parlikad (bib0050) 2021 Melesse, Pasquale, Riemma (bib0020) 2020; 42 Werner, Zimmermann, Lentes (bib0049) 2019; 39 Hosamo, Svennevig, Svidt, Han, Nielsen (bib0102) 2022; 261 Moi, Cibicik, Rølvåg (bib0054) 2020 Zenisek, Wolfartsberger, Sievi, Affenzeller (bib0076) 2018; 51 Johansen, Nejad (bib0069) 2019 Centomo, Dall'ora, Fummi (bib0078) 2020 Xu, Sun, Liu, Zheng (bib0042) 2019; 7 Rúbio, Dionísio, Torres (bib0025) 2019 Oluwasegun, Jung (bib0077) 2020; 52 Gurbuz, Tekinerdogan (bib0036) 2018; 26 R. van de Schoot, D. Oberski, J. de Bruin, R. Schram, P. Zahedi, Automated systematic review v0.1.1, in: zenodo (Ed.), 2019. Tekinerdogan, Verdouw (bib0015) 2020; 20 Lee, Kim, Quan, Kim, Kim, Yoon, Min, Kim, Mun, Oh, Choi, Kim, Chu, Yang, Bhandari, Lee, Ihn, Ahn (bib0024) 2018; 32 Papachatzakis, Papakostas, Chryssolouris (bib0010) 2007 Kang, Catal, Tekinerdogan (bib0011) 2021; 21 Zhao, Wu, Li, Sun, Yan, Chen (bib0016) 2021; 34 Hallaji, Fang, Winfrey (bib0113) 2021 HiveMQ, 15 frequently asked MQTT questions, in, 2019. A.S.M. Al-Azzawi, Two-Degree-of-Freedom Systems, in, University of Babylon, n.d. K. Shanmugam, The perfect pair: digital twins and predictive maintenance, in, 2021. P. Aivaliotis, E. Xanthakis, A. Sardelis, Machines' Behaviour Prediction Tool (BPT) For Maintenance Applications, in: IFAC-PapersOnLine, 2020, pp. 325–329. Xiong, Wang, Fu, Xu (bib0061) 2021; 114 Tzanis, Andriopoulos, Magklaras, Mylonas, Birbas, Birbas (bib0043) 2020 Desai, Granja, Higgs (bib0066) 2021; 9 Qiao, Wang, Ye, Gao (bib0056) 2019; 81 Kaul, Bender, Sextro (bib0058) 2019 Meraghni, Terrissa, Yue, Ma, Jemei, Zerhouni (bib0039) 2021; 46 Wang, Zhao, Addepalli (bib0017) 2020; 49 Zhang, Huo, Zheng, Li (bib0046) 2020 Bondoc, Tayefeh, Barari (bib0104) 2022; 55 Wago, Snelle communicatie tussen automatiserings- en veldapparaten: MODBUS, in, n.d. Kaji, Parvizian, van de Venn (bib0088) 2020; 10 A. Ng, Machine learning yearning, in: URL Wang, Liu, Zhao (bib0101) 2021 Semeraro, Lezoche, Panetto, Dassisti (bib0021) 2021; 130 J. Brownlee, Master machine learning algorithms: discover how they work and implement them from scratch, 2016. Booyse, Wilke, Heyns (bib0051) 2020 Rajesh, Manikandan, Ramshankar, Vishwanathan, Sathishkumar (bib0060) 2019; 165 Kibira, Shao, Weiss (bib0099) 2021 Aivaliotis, Arkouli, Georgoulias, Makris (bib0052) 2021 Moghadam, Rebouças, Nejad (bib0059) 2021; 85 Brownlee (bib0087) 2017 Key digital technologies joint undertaking, key digital technologies joint undertaking, in, n.d. Yang, Kumara, Bukkapatnam, Tsung (bib0028) 2019; 51 Tummers, Kassahun, Tekinerdogan (bib0037) 2019; 157 Sahu, Young, Rai (bib0030) 2021; 59 Anis, Taghipour, Lee (bib0071) 2020 Wu, Li (bib0107) 2021; 55 Priyanka, Thangavel, Gao, Sivakumar (bib0057) 2021 Barkalov, Dorofeev, Fedorova, Polovinkina (bib0048) 2021 Schleich, Anwer, Mathieu, Wartzack (bib0006) 2017; 66 Nota, Postiglione, Carvello (bib0114) 2022; 200 Sivalingam, Sepulveda, Spring, Davies (bib0023) 2018 B. Kitchenham, S. Charters, Guidelines For Performing Systematic Literature Reviews in Software Engineering, in, Keele University, 2007. Matyas, Nemeth, Kovacs, Glawar (bib0014) 2017; 66 Deebak, Al-Turjman (bib0062) 2021 Lattanzi, Raffaeli, Peruzzini, Pellicciari (bib0019) 2021; 34 R. van Dinter, B. Tekinerdogan, C. Catal, Automation of systematic literature reviews: a systematic literature review, Inf. Softw. Technol., (2021) 106589. Consilvio, Sanetti, Anguìta, Crovetto, Dambra, Oneto, Papa, Sacco (bib0012) 2019 Egger, Masood (bib0029) 2020 Saxena, Goebel (bib0081) 2008 Short, Twiddle (bib0047) 2019 You, Chen, Hu, Liu, Ji (bib0096) 2022; 200 Rüßmann, Lorenz, Gerbert, Waldner, Justus, Engel, Harnisch (bib0001) 2015; 9 Cohen, Singer (bib0045) 2021 Rossini, Prato, Conzon, Pastrone, Pereira, Reis, Gonçalves, Henriques, Santiago, Ferreira (bib0097) 2021 Errandonea, Beltrán, Arrizabalaga (bib0003) 2020; 123 Brownlee (bib0085) 2017 J. Brownlee, Autoencoder Feature Extraction for Classification, in, 2020. He, Liu, Zhang (bib0022) 2021; 21 Yu, Song, Tang, Dai (bib0040) 2021; 58 Tao, Zhang, Liu, Nee (bib0038) 2018; 67 Mi, Feng, Zheng, Wang, Gao, Tan (bib0111) 2021; 58 Wang, Lee, Angelica (bib0055) 2020 Zheng, Ardolino, Bacchetti, Perona (bib0026) 2021; 59 Hu, Hu, Luo, Yang (bib0105) 2021 Lee, Qiu, Yu, Lin (bib0080) 2007 Nixon, Pena (bib0008) 2019 Zhen, Dunbing, Changchun, Xin, Linqi, Zhuocheng, Xuan (bib0098) 2021 M. Grieves, J. Vickers, Digital twin: Mitigating unpredictable, Undesirable Emergent Behavior in Complex systems, in: Transdisciplinary perspectives On Complex Systems, Springer, 2017, pp. 85–113. Malek, Tayefeh, Bender, Barari (bib0108) 2021; 54 Shao, Cai, Fan, Liu (bib0100) 2021 van Dinter (bib115) 2022 Liu, Jin, Jin, Lee, Zhang, Peng, Xu (bib0064) 2018 S. Miller, Mathworks, predictive maintenance using a digital twin, in, 2019. Khoshafian, Rostetter (bib0013) 2015 Ren, Wan, Deng (bib0109) 2022; 10 (bib0089) 2017 Tygesen, Worden, Rogers, Manson, Cross (bib0075) 2019 Semeraro, Lezoche, Panetto, Dassisti, Cafagna (bib0083) 2019 Süve, Gezer, İnce (bib0112) 2022 Liu, Mauricio, Qi, Peng, Gryllias (bib0063) 2020 Liu, Zheng, Xu (bib0027) 2021 org/(96), 2017. Mabkhot, Al-Ahmari, Salah, Alkhalefah (bib0009) 2018; 6 Aivaliotis, Georgoulias, Chryssolouris (bib0079) 2019; 32 Moghadam, Nejad (bib0070) 2022 OpenModelica, Introduction, in, n.d. Classens, Heemels, Oomen (bib0103) 2021 Schwab (bib0002) 2017 Luo, Hu, Ye, Zhang, Wei (bib0044) 2020 He, Bai (bib0018) 2021; 9 Altun, Tavli (bib0074) 2019 Kang (10.1016/j.infsof.2022.107008_bib0011) 2021; 21 Hallaji (10.1016/j.infsof.2022.107008_bib0113) 2021 Schleich (10.1016/j.infsof.2022.107008_bib0006) 2017; 66 Errandonea (10.1016/j.infsof.2022.107008_bib0003) 2020; 123 Liu (10.1016/j.infsof.2022.107008_bib0064) 2018 Aivaliotis (10.1016/j.infsof.2022.107008_bib0079) 2019; 32 Lattanzi (10.1016/j.infsof.2022.107008_bib0019) 2021; 34 Classens (10.1016/j.infsof.2022.107008_bib0103) 2021 Papachatzakis (10.1016/j.infsof.2022.107008_bib0010) 2007 Qiao (10.1016/j.infsof.2022.107008_bib0056) 2019; 81 10.1016/j.infsof.2022.107008_bib0041 Hu (10.1016/j.infsof.2022.107008_bib0105) 2021 Wang (10.1016/j.infsof.2022.107008_bib0065) 2020 Aivaliotis (10.1016/j.infsof.2022.107008_bib0068) 2019; 81 Ren (10.1016/j.infsof.2022.107008_bib0109) 2022; 10 Melesse (10.1016/j.infsof.2022.107008_bib0020) 2020; 42 Sahu (10.1016/j.infsof.2022.107008_bib0030) 2021; 59 Johansen (10.1016/j.infsof.2022.107008_bib0069) 2019 Zhang (10.1016/j.infsof.2022.107008_bib0046) 2020 Yang (10.1016/j.infsof.2022.107008_bib0028) 2019; 51 Barkalov (10.1016/j.infsof.2022.107008_bib0048) 2021 Egger (10.1016/j.infsof.2022.107008_bib0029) 2020 Wu (10.1016/j.infsof.2022.107008_bib0107) 2021; 55 10.1016/j.infsof.2022.107008_bib0035 10.1016/j.infsof.2022.107008_bib0034 Rüßmann (10.1016/j.infsof.2022.107008_bib0001) 2015; 9 10.1016/j.infsof.2022.107008_bib0033 10.1016/j.infsof.2022.107008_bib0032 Brownlee (10.1016/j.infsof.2022.107008_bib0087) 2017 Semeraro (10.1016/j.infsof.2022.107008_bib0083) 2019 Consilvio (10.1016/j.infsof.2022.107008_bib0012) 2019 Desai (10.1016/j.infsof.2022.107008_bib0066) 2021; 9 Shao (10.1016/j.infsof.2022.107008_bib0100) 2021 Moi (10.1016/j.infsof.2022.107008_bib0054) 2020 Saxena (10.1016/j.infsof.2022.107008_bib0081) 2008 Bondoc (10.1016/j.infsof.2022.107008_bib0104) 2022; 55 Brownlee (10.1016/j.infsof.2022.107008_bib0085) 2017 Schwab (10.1016/j.infsof.2022.107008_bib0002) 2017 Mabkhot (10.1016/j.infsof.2022.107008_bib0009) 2018; 6 Tekinerdogan (10.1016/j.infsof.2022.107008_bib0015) 2020; 20 Kibira (10.1016/j.infsof.2022.107008_bib0099) 2021 Zheng (10.1016/j.infsof.2022.107008_bib0026) 2021; 59 10.1016/j.infsof.2022.107008_bib0067 Kaji (10.1016/j.infsof.2022.107008_bib0088) 2020; 10 Anis (10.1016/j.infsof.2022.107008_bib0071) 2020 Wang (10.1016/j.infsof.2022.107008_bib0017) 2020; 49 Short (10.1016/j.infsof.2022.107008_bib0047) 2019 Moghadam (10.1016/j.infsof.2022.107008_bib0070) 2022 Lee (10.1016/j.infsof.2022.107008_bib0080) 2007 You (10.1016/j.infsof.2022.107008_bib0096) 2022; 200 Wang (10.1016/j.infsof.2022.107008_bib0055) 2020 Sivalingam (10.1016/j.infsof.2022.107008_bib0023) 2018 Liu (10.1016/j.infsof.2022.107008_bib0053) 2018 Centomo (10.1016/j.infsof.2022.107008_bib0078) 2020 Moghadam (10.1016/j.infsof.2022.107008_bib0059) 2021; 85 Nota (10.1016/j.infsof.2022.107008_bib0114) 2022; 200 Meraghni (10.1016/j.infsof.2022.107008_bib0039) 2021; 46 van Dinter (10.1016/j.infsof.2022.107008_bib115) 2022 Ali (10.1016/j.infsof.2022.107008_bib0031) 2010; 52 Tzanis (10.1016/j.infsof.2022.107008_bib0043) 2020 Werner (10.1016/j.infsof.2022.107008_bib0049) 2019; 39 Wang (10.1016/j.infsof.2022.107008_bib0101) 2021 10.1016/j.infsof.2022.107008_bib0091 10.1016/j.infsof.2022.107008_bib0090 Cohen (10.1016/j.infsof.2022.107008_bib0045) 2021 Tummers (10.1016/j.infsof.2022.107008_bib0037) 2019; 157 Zenisek (10.1016/j.infsof.2022.107008_bib0076) 2018; 51 Aivaliotis (10.1016/j.infsof.2022.107008_bib0052) 2021 10.1016/j.infsof.2022.107008_bib0005 10.1016/j.infsof.2022.107008_bib0007 10.1016/j.infsof.2022.107008_bib0004 Zhang (10.1016/j.infsof.2022.107008_bib0110) 2021 10.1016/j.infsof.2022.107008_bib0086 He (10.1016/j.infsof.2022.107008_bib0018) 2021; 9 He (10.1016/j.infsof.2022.107008_bib0022) 2021; 21 Zhen (10.1016/j.infsof.2022.107008_bib0098) 2021 Malek (10.1016/j.infsof.2022.107008_bib0108) 2021; 54 10.1016/j.infsof.2022.107008_bib0082 10.1016/j.infsof.2022.107008_bib0084 Priyanka (10.1016/j.infsof.2022.107008_bib0057) 2021 Khoshafian (10.1016/j.infsof.2022.107008_bib0013) 2015 Altun (10.1016/j.infsof.2022.107008_bib0074) 2019 Mi (10.1016/j.infsof.2022.107008_bib0111) 2021; 58 Süve (10.1016/j.infsof.2022.107008_bib0112) 2022 Luo (10.1016/j.infsof.2022.107008_bib0044) 2020 Xiong (10.1016/j.infsof.2022.107008_bib0061) 2021; 114 Oluwasegun (10.1016/j.infsof.2022.107008_bib0077) 2020; 52 Heim (10.1016/j.infsof.2022.107008_bib0072) 2020 Semeraro (10.1016/j.infsof.2022.107008_bib0021) 2021; 130 Liu (10.1016/j.infsof.2022.107008_bib0063) 2020 Booyse (10.1016/j.infsof.2022.107008_bib0051) 2020 Panagou (10.1016/j.infsof.2022.107008_bib0106) 2022; 55 Lee (10.1016/j.infsof.2022.107008_bib0024) 2018; 32 Matyas (10.1016/j.infsof.2022.107008_bib0014) 2017; 66 Xu (10.1016/j.infsof.2022.107008_bib0042) 2019; 7 Rossini (10.1016/j.infsof.2022.107008_bib0097) 2021 Deebak (10.1016/j.infsof.2022.107008_bib0062) 2021 Rúbio (10.1016/j.infsof.2022.107008_bib0025) 2019 Gurbuz (10.1016/j.infsof.2022.107008_bib0036) 2018; 26 Tao (10.1016/j.infsof.2022.107008_bib0038) 2018; 67 Yu (10.1016/j.infsof.2022.107008_bib0040) 2021; 58 Liu (10.1016/j.infsof.2022.107008_bib0027) 2021 Rossini (10.1016/j.infsof.2022.107008_bib0073) 2020 Nixon (10.1016/j.infsof.2022.107008_bib0008) 2019 Kaul (10.1016/j.infsof.2022.107008_bib0058) 2019 Hosamo (10.1016/j.infsof.2022.107008_bib0102) 2022; 261 (10.1016/j.infsof.2022.107008_bib0089) 2017 Dhada (10.1016/j.infsof.2022.107008_bib0050) 2021 Zhao (10.1016/j.infsof.2022.107008_bib0016) 2021; 34 Tygesen (10.1016/j.infsof.2022.107008_bib0075) 2019 10.1016/j.infsof.2022.107008_bib0093 10.1016/j.infsof.2022.107008_bib0092 Rajesh (10.1016/j.infsof.2022.107008_bib0060) 2019; 165 10.1016/j.infsof.2022.107008_bib0095 10.1016/j.infsof.2022.107008_bib0094 |
| References_xml | – year: 2021 ident: bib0057 article-title: Digital twin for oil pipeline risk estimation using prognostic and machine learning techniques publication-title: J. Ind. Inf. Integration – start-page: 121 year: 2007 end-page: 126 ident: bib0010 article-title: Condition based operational risk assessment an innovative approach to improve fleet and aircraft operability: maintenance planning publication-title: 1st European Air and Space Conference, Berlin, Germany – start-page: 393 year: 2020 end-page: 397 ident: bib0043 article-title: A hybrid cyber physical digital twin approach for smart grid fault prediction publication-title: 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS) – volume: 34 start-page: 567 year: 2021 end-page: 597 ident: bib0019 article-title: Digital twin for smart manufacturing: a review of concepts towards a practical industrial implementation publication-title: Int. J. Comput. Integrated Manuf. – reference: S.R. Toolbox, Search, in, 2014. – reference: S. Miller, Mathworks, predictive maintenance using a digital twin, in, 2019. – volume: 130 year: 2021 ident: bib0021 article-title: Digital twin paradigm: a systematic literature review publication-title: Comput. Ind.y – volume: 157 start-page: 189 year: 2019 end-page: 204 ident: bib0037 article-title: Obstacles and features of Farm Management Information Systems: a systematic literature review publication-title: Comput. Electron. Agriculture – start-page: 507 year: 2019 end-page: 515 ident: bib0083 article-title: Data-driven pattern-based constructs definition for the digital transformation modelling of collaborative networked manufacturing enterprises publication-title: Working Conference on Virtual Enterprises, Springer – start-page: 336 year: 2021 end-page: 339 ident: bib0103 article-title: Digital twins in mechatronics: from model-based control to predictive maintenance publication-title: 2021 IEEE 1st Int. Conference on Digital Twins and Parallel Intelligence (DTPI) – year: 2007 ident: bib0080 article-title: Bearing Data Set publication-title: NASA Ames Prognostics Data Repository – year: 2021 ident: bib0045 article-title: A smart process controller framework for industry 4.0 settings publication-title: J. Intell. Manuf. – reference: Key digital technologies joint undertaking, key digital technologies joint undertaking, in, n.d. – reference: B. Kitchenham, S. Charters, Guidelines For Performing Systematic Literature Reviews in Software Engineering, in, Keele University, 2007. – volume: 52 start-page: 871 year: 2010 end-page: 887 ident: bib0031 article-title: A systematic review of comparative evidence of aspect-oriented programming publication-title: Inf. Softw. Technol. – start-page: 162 year: 2022 ident: bib0070 article-title: Online condition monitoring of floating wind turbines drivetrain by means of digital twin publication-title: Mech. Syst. Signal Process. – reference: HiveMQ, 15 frequently asked MQTT questions, in, 2019. – reference: L. Cattaneo, M. MacChi, A Digital Twin Proof of Concept to Support Machine Prognostics with Low Availability of Run-To-Failure Data, in: IFAC-PapersOnLine, 2019, pp. 37–42. – start-page: 878 year: 2008 end-page: 887 ident: bib0081 article-title: Turbofan engine degradation simulation data set publication-title: NASA Ames Prognostics Data Repository – volume: 55 start-page: 132 year: 2022 end-page: 137 ident: bib0106 article-title: Feature investigation with digital twin for predictive maintenance following a machine learning approach publication-title: IFAC-PapersOnLine – start-page: 1 year: 2021 end-page: 6 ident: bib0098 article-title: Augmented-reality-assisted bearing fault diagnosis in intelligent manufacturing workshop using deep transfer learning publication-title: 2021 Global Reliability and Prognostics and Health Manag. (PHM-Nanjing) – start-page: 19 year: 2019 ident: bib0047 article-title: An industrial digitalization platform for condition monitoring and predictive maintenance of pumping equipment publication-title: Sensors (Switzerland) – start-page: 30 year: 2021 end-page: 34 ident: bib0105 article-title: Fault diagnosis of gearbox based on digital twin concept model publication-title: 2021 4th Int. Conference on Intelligent Robotics and Control Eng. (IRCE) – volume: 123 year: 2020 ident: bib0003 article-title: Digital Twin for maintenance: a literature review publication-title: Comput. Ind. – start-page: 186 year: 2021 end-page: 193 ident: bib0101 article-title: Deep transfer fault diagnosis using digital twin and generative adversarial network publication-title: 2021 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC) – volume: 55 start-page: 138 year: 2022 end-page: 143 ident: bib0104 article-title: Employing LIVE digital twin in prognostic and health management: identifying location of the sensors publication-title: IFAC-PapersOnLine – volume: 39 start-page: 1743 year: 2019 end-page: 1751 ident: bib0049 article-title: Approach for a holistic predictive maintenance strategy by incorporating a digital twin publication-title: Procedia Manuf. – year: 2021 ident: bib0048 article-title: Application of digital twins in the management of socio-economic systems publication-title: E3S Web of Conferences – start-page: 1 year: 2021 end-page: 8 ident: bib0097 article-title: AI environment for predictive maintenance in a manufacturing scenario publication-title: 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) – volume: 52 start-page: 2262 year: 2020 end-page: 2273 ident: bib0077 article-title: The application of machine learning for the prognostics and health management of control element drive system publication-title: Nuclear Eng. Technol. – reference: J. Brownlee, Master machine learning algorithms: discover how they work and implement them from scratch, 2016. – reference: A. Ng, Machine learning yearning, in: URL: – volume: 10 start-page: 9 year: 2022 end-page: 22 ident: bib0109 article-title: Machine-learning-driven digital twin for lifecycle management of complex equipment publication-title: IEEE Trans Emerg Top Comput – start-page: 1781 year: 2020 end-page: 1788 ident: bib0078 article-title: The design of a digital-twin for predictive maintenance publication-title: IEEE Symposium on Emerging Technologies and Factory Automation, ETFA – reference: K. Shanmugam, The perfect pair: digital twins and predictive maintenance, in, 2021. – year: 2019 ident: bib0069 article-title: On digital twin condition monitoring approach for drivetrains in marine applications publication-title: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE – volume: 54 start-page: 1047 year: 2021 end-page: 1052 ident: bib0108 article-title: LIVE digital twin for smart maintenance in structural systems publication-title: IFAC-PapersOnLine – start-page: 197 year: 2018 end-page: 204 ident: bib0023 article-title: A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective publication-title: 2nd International Conference on Green Energy and Applications (ICGEA) – year: 2017 ident: bib0085 article-title: Deep learning for natural language processing: develop deep learning models for your natural language problems publication-title: Machine Learn. Mastery – volume: 66 start-page: 461 year: 2017 end-page: 464 ident: bib0014 article-title: A procedural approach for realizing prescriptive maintenance planning in manufacturing industries publication-title: CIRP Ann. – year: 2020 ident: bib0063 article-title: Domain adaptation digital twin for rolling element bearing prognostics publication-title: Proceedings of the Annual Conference of the Prognostics and Health Management Society, PHM – start-page: 2340 year: 2019 end-page: 2347 ident: bib0058 article-title: Digital twin for reliability analysis during design and operation of mechatronic systems publication-title: Proceedings of the 29th European Safety and Reliability Conference, ESREL – volume: 200 start-page: 778 year: 2022 end-page: 792 ident: bib0114 article-title: Text mining techniques for the management of predictive maintenance publication-title: Procedia Comput. Sci. – start-page: 65 year: 2020 ident: bib0044 article-title: A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin publication-title: Robot Comput. Integr. Manuf. – volume: 7 start-page: 19990 year: 2019 end-page: 19999 ident: bib0042 article-title: A digital-twin-assisted fault diagnosis using deep transfer learning publication-title: IEEE Access – reference: A.S.M. Al-Azzawi, Two-Degree-of-Freedom Systems, in, University of Babylon, n.d. – year: 2020 ident: bib0065 article-title: Life prediction for aircraft structure based on Bayesian inference: towards a digital twin ecosystem publication-title: Proceedings of the Annual Conference of the Prognostics and Health Management Society – start-page: 292 year: 2019 end-page: 298 ident: bib0025 article-title: Industrial IoT devices and cyber-physical production systems: review and use case publication-title: Lecture Notes in Electr. Eng. – year: 2022 ident: bib115 publication-title: Mendeley Data – volume: 42 start-page: 267 year: 2020 end-page: 272 ident: bib0020 article-title: Digital twin models in industrial operations: a systematic literature review publication-title: Procedia Manuf. – start-page: 223 year: 2019 end-page: 233 ident: bib0075 article-title: State-of-the-art and future directions for predictive modelling of offshore structure dynamics using machine learning publication-title: Conference Proceedings of the Society for Experimental Mechanics Series – start-page: 1 year: 2019 end-page: 10 ident: bib0012 article-title: Prescriptive maintenance of railway infrastructure: from data analytics to decision support publication-title: 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), IEEE – reference: J. Brownlee, Autoencoder Feature Extraction for Classification, in, 2020. – volume: 261 year: 2022 ident: bib0102 article-title: A Digital Twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics publication-title: Energy Build. – volume: 9 start-page: 54 year: 2015 end-page: 89 ident: bib0001 article-title: Industry 4.0: the future of productivity and growth in manufacturing industries publication-title: Boston Consulting Group – reference: R. van Dinter, B. Tekinerdogan, C. Catal, Automation of systematic literature reviews: a systematic literature review, Inf. Softw. Technol., (2021) 106589. – start-page: 1 year: 2020 end-page: 15 ident: bib0055 article-title: Digital twin design for real-time monitoring – a case study of die cutting machine publication-title: Int. J. Prod. Res. – reference: OpenModelica, Introduction, in, n.d. – start-page: 112 year: 2020 ident: bib0054 article-title: Digital twin based condition monitoring of a knuckle boom crane: an experimental study publication-title: Eng. Fail. Anal. – reference: . org/(96), 2017. – volume: 59 start-page: 4903 year: 2021 end-page: 4959 ident: bib0030 article-title: Artificial intelligence (AI) in augmented reality (AR)-assisted manufacturing applications: a review publication-title: Int. J. Prod. Res. – year: 2019 ident: bib0008 article-title: The evolution of asset management: harnessing digitalization and data analytics publication-title: Offshore Technology Conference, OnePetro – reference: P. Aivaliotis, E. Xanthakis, A. Sardelis, Machines' Behaviour Prediction Tool (BPT) For Maintenance Applications, in: IFAC-PapersOnLine, 2020, pp. 325–329. – start-page: 1 year: 2020 end-page: 7 ident: bib0071 article-title: Optimal RUL estimation: a state-of-art digital twin application publication-title: 2020 Annual Reliability and Maintainability Symposium (RAMS) – year: 2017 ident: bib0087 article-title: Long short-term memory networks with python: develop sequence prediction models with deep learning publication-title: Machine Learn. Mastery – volume: 32 start-page: 987 year: 2018 end-page: 1009 ident: bib0024 article-title: Machine health management in smart factory: a review publication-title: J. Mech. Sci. Technol. – start-page: 1 year: 2021 end-page: 8 ident: bib0050 article-title: Comparison of agent deployment strategies for collaborative prognosis publication-title: 2021 IEEE International Conference on Prognostics and Health Management (ICPHM) – start-page: 55 year: 2020 end-page: 62 ident: bib0073 article-title: REPLICA: a solution for next generation iot and digital twin based fault diagnosis and predictive maintenance publication-title: CEUR Workshop Proceedings – year: 2021 ident: bib0062 article-title: Digital-twin assisted: fault diagnosis using deep transfer learning for machining tool condition publication-title: Int. J. Intelligent Syst. n/a – volume: 58 start-page: 293 year: 2021 end-page: 304 ident: bib0040 article-title: A Digital Twin approach based on nonparametric Bayesian network for complex system health monitoring publication-title: J. Manuf. Syst. – volume: 59 start-page: 1922 year: 2021 end-page: 1954 ident: bib0026 article-title: The applications of Industry 4.0 technologies in manufacturing context: a systematic literature review publication-title: Int. J. Prod. Res. – start-page: 1 year: 2018 end-page: 8 ident: bib0064 article-title: Industrial AI enabled prognostics for high-speed railway systems publication-title: 2018 IEEE International Conference on Prognostics and Health Management (ICPHM) – volume: 9 start-page: 1 year: 2021 end-page: 21 ident: bib0018 article-title: Digital twin-based sustainable intelligent manufacturing: a review publication-title: Adv. Manuf. – volume: 21 year: 2021 ident: bib0022 article-title: Digital twin-driven remaining useful life prediction for gear performance degradation: a review publication-title: J. Comput. Inf. Sci. Eng. – reference: Wago, Snelle communicatie tussen automatiserings- en veldapparaten: MODBUS, in, n.d. – volume: 67 start-page: 169 year: 2018 end-page: 172 ident: bib0038 article-title: Digital twin driven prognostics and health management for complex equipment publication-title: CIRP Ann. – volume: 66 start-page: 141 year: 2017 end-page: 144 ident: bib0006 article-title: Shaping the digital twin for design and production engineering publication-title: CIRP Ann. – start-page: 9 year: 2018 ident: bib0053 article-title: Design of cyber-physical systems architecture for prognostics and health management of high-speed railway transportation systems publication-title: Int. J. Prognostics and Health Manag. – volume: 10 start-page: 1 year: 2020 end-page: 21 ident: bib0088 article-title: Constructing a reliable health indicator for bearings using convolutional autoencoder and continuous wavelet transform publication-title: Appl. Sci. (Switzerland) – volume: 51 start-page: 1190 year: 2019 end-page: 1216 ident: bib0028 article-title: The internet of things for smart manufacturing: a review publication-title: IISE Trans. – start-page: 1 year: 2021 end-page: 7 ident: bib0100 article-title: A data-driven remaining useful life prediction methodology: optimization based on digital twin publication-title: 2021 Global Reliability and Prognostics and Health Manag. (PHM-Nanjing) – volume: 20 start-page: 5103 year: 2020 ident: bib0015 article-title: Systems architecture design pattern catalog for developing digital twins publication-title: Sensors – start-page: 1 year: 2015 end-page: 20 ident: bib0013 article-title: Digital prescriptive maintenance, internet of things, process of everything publication-title: BPM Everywhere – year: 2017 ident: bib0089 article-title: Understanding Kalman Filters – volume: 21 start-page: 932 year: 2021 ident: bib0011 article-title: Remaining useful life (Rul) prediction of equipment in production lines using artificial neural networks publication-title: Sensors – start-page: 140 year: 2020 ident: bib0051 article-title: Deep digital twins for detection, diagnostics and prognostics publication-title: Mech. Syst. Signal Process. – start-page: 1 year: 2019 end-page: 4 ident: bib0074 article-title: Social internet of digital twins via distributed ledger technologies: application of predictive maintenance publication-title: 2019 27th Telecommun. Forum (TELFOR) – volume: 51 start-page: 643 year: 2018 end-page: 648 ident: bib0076 article-title: Streaming synthetic time series for simulated condition monitoring publication-title: IFAC-PapersOnLine – start-page: 1 year: 2021 end-page: 5 ident: bib0110 article-title: PHM of rail vehicle based on digital twin publication-title: 2021 Global Reliability and Prognostics and Health Manag. (PHM-Nanjing) – volume: 32 start-page: 1067 year: 2019 end-page: 1080 ident: bib0079 article-title: The use of Digital Twin for predictive maintenance in manufacturing publication-title: Int. J. Comput. Integrated Manuf. – volume: 200 start-page: 1471 year: 2022 end-page: 1480 ident: bib0096 article-title: Advances of digital twins for predictive maintenance publication-title: Procedia Comput. Sci. – start-page: 140 year: 2020 ident: bib0029 article-title: Augmented reality in support of intelligent manufacturing – A systematic literature review publication-title: Comput. Ind. Eng. – start-page: 4122 year: 2020 end-page: 4127 ident: bib0072 publication-title: 2020 IEEE Int. Conference on Big Data (Big Data) – start-page: 29 year: 2020 end-page: 33 ident: bib0046 article-title: An architecture based on digital twins for smart power distribution system publication-title: 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD) – volume: 6 start-page: 23 year: 2018 ident: bib0009 article-title: Requirements of the smart factory system: a survey and perspective publication-title: Machines – year: 2021 ident: bib0113 article-title: Predictive maintenance of pumps in civil infrastructure: state-of-the-art, challenges and future directions publication-title: Automation in Construction – volume: 26 start-page: 1327 year: 2018 end-page: 1372 ident: bib0036 article-title: Model-based testing for software safety: a systematic mapping study publication-title: Software Quality J. – reference: M. Grieves, J. Vickers, Digital twin: Mitigating unpredictable, Undesirable Emergent Behavior in Complex systems, in: Transdisciplinary perspectives On Complex Systems, Springer, 2017, pp. 85–113. – start-page: 455 year: 2022 end-page: 462 ident: bib0112 article-title: Predictive Maintenance Framework for Production Environments Using Digital Twin publication-title: Lecture Notes in Networks and Syst. – start-page: 1 year: 2021 end-page: 33 ident: bib0027 article-title: Digitalisation and servitisation of machine tools in the era of industry 4.0: a review publication-title: Int. J. Prod. Res. – volume: 49 start-page: 81 year: 2020 end-page: 88 ident: bib0017 article-title: Remaining useful life prediction using deep learning approaches: a review publication-title: Procedia Manuf. – volume: 9 year: 2021 ident: bib0066 article-title: Lifetime prediction using a tribology-aware, deep learning-based digital twin of ball bearing-like tribosystems in oil and gas publication-title: Processes – start-page: 142 year: 2021 ident: bib0099 article-title: Buiding a digital twin for robot workcell prognostics and health management publication-title: Proceedings of the Winter Simulation Conference, IEEE Press, Phoenix, Arizona – reference: M. Ulusoy, Predictive maintenance, part 3: remaining useful life estimation, in, n.d. – volume: 81 start-page: 417 year: 2019 end-page: 422 ident: bib0068 article-title: Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance publication-title: Procedia CIRP – volume: 58 start-page: 329 year: 2021 end-page: 345 ident: bib0111 article-title: Prediction maintenance integrated decision-making approach supported by digital twin-driven cooperative awareness and interconnection framework publication-title: J. Manuf. Syst. – volume: 114 start-page: 3751 year: 2021 end-page: 3761 ident: bib0061 article-title: Digital twin–driven aero-engine intelligent predictive maintenance publication-title: Inte. J. Adv. Manuf. Technol. – reference: R. van de Schoot, D. Oberski, J. de Bruin, R. Schram, P. Zahedi, Automated systematic review v0.1.1, in: zenodo (Ed.), 2019. – volume: 85 start-page: 273 year: 2021 end-page: 286 ident: bib0059 article-title: Digital twin modeling for predictive maintenance of gearboxes in floating offshore wind turbine drivetrains publication-title: Forschung im Ingenieurwesen/Eng. Res. – volume: 81 start-page: 1388 year: 2019 end-page: 1393 ident: bib0056 article-title: Digital twin for machining tool condition prediction publication-title: Procedia CIRP – volume: 165 start-page: 18 year: 2019 end-page: 24 ident: bib0060 article-title: Digital twin of an automotive brake pad for predictive maintenance publication-title: Procedia Comput. Sci. – year: 2017 ident: bib0002 article-title: The fourth industrial revolution publication-title: Currency – volume: 46 start-page: 2555 year: 2021 end-page: 2564 ident: bib0039 article-title: A data-driven digital-twin prognostics method for proton exchange membrane fuel cell remaining useful life prediction publication-title: Int. J. Hydrogen Energy – start-page: 71 year: 2021 ident: bib0052 article-title: Degradation curves integration in physics-based models: towards the predictive maintenance of industrial robots publication-title: Robot. Comput. Integr. Manuf. – volume: 34 start-page: 1 year: 2021 end-page: 29 ident: bib0016 article-title: Challenges and Opportunities of AI-Enabled Monitoring publication-title: Diagnosis & Prognosis: A Rev. Chinese J. Mech. Eng. – volume: 55 start-page: 139 year: 2021 end-page: 146 ident: bib0107 article-title: A framework of dynamic data driven digital twin for complex engineering products: the example of aircraft engine health management publication-title: Procedia Manuf. – ident: 10.1016/j.infsof.2022.107008_bib0091 – volume: 81 start-page: 1388 year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0056 article-title: Digital twin for machining tool condition prediction publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.04.049 – year: 2007 ident: 10.1016/j.infsof.2022.107008_bib0080 article-title: Bearing Data Set publication-title: NASA Ames Prognostics Data Repository – start-page: 507 year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0083 article-title: Data-driven pattern-based constructs definition for the digital transformation modelling of collaborative networked manufacturing enterprises – start-page: 9 year: 2018 ident: 10.1016/j.infsof.2022.107008_bib0053 article-title: Design of cyber-physical systems architecture for prognostics and health management of high-speed railway transportation systems publication-title: Int. J. Prognostics and Health Manag. – ident: 10.1016/j.infsof.2022.107008_bib0082 – volume: 261 year: 2022 ident: 10.1016/j.infsof.2022.107008_bib0102 article-title: A Digital Twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics publication-title: Energy Build. doi: 10.1016/j.enbuild.2022.111988 – volume: 59 start-page: 1922 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0026 article-title: The applications of Industry 4.0 technologies in manufacturing context: a systematic literature review publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2020.1824085 – volume: 114 start-page: 3751 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0061 article-title: Digital twin–driven aero-engine intelligent predictive maintenance publication-title: Inte. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-06976-w – volume: 49 start-page: 81 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0017 article-title: Remaining useful life prediction using deep learning approaches: a review publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2020.06.015 – volume: 200 start-page: 1471 year: 2022 ident: 10.1016/j.infsof.2022.107008_bib0096 article-title: Advances of digital twins for predictive maintenance publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2022.01.348 – start-page: 1 year: 2018 ident: 10.1016/j.infsof.2022.107008_bib0064 article-title: Industrial AI enabled prognostics for high-speed railway systems – volume: 32 start-page: 987 year: 2018 ident: 10.1016/j.infsof.2022.107008_bib0024 article-title: Machine health management in smart factory: a review publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-018-0201-1 – volume: 42 start-page: 267 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0020 article-title: Digital twin models in industrial operations: a systematic literature review publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2020.02.084 – volume: 9 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0066 article-title: Lifetime prediction using a tribology-aware, deep learning-based digital twin of ball bearing-like tribosystems in oil and gas publication-title: Processes doi: 10.3390/pr9060922 – start-page: 4122 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0072 publication-title: 2020 IEEE Int. Conference on Big Data (Big Data) doi: 10.1109/BigData50022.2020.9378433 – volume: 21 start-page: 932 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0011 article-title: Remaining useful life (Rul) prediction of equipment in production lines using artificial neural networks publication-title: Sensors doi: 10.3390/s21030932 – volume: 52 start-page: 871 year: 2010 ident: 10.1016/j.infsof.2022.107008_bib0031 article-title: A systematic review of comparative evidence of aspect-oriented programming publication-title: Inf. Softw. Technol. doi: 10.1016/j.infsof.2010.05.003 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0088 article-title: Constructing a reliable health indicator for bearings using convolutional autoencoder and continuous wavelet transform publication-title: Appl. Sci. (Switzerland) – ident: 10.1016/j.infsof.2022.107008_bib0094 – ident: 10.1016/j.infsof.2022.107008_bib0041 doi: 10.1016/j.ifacol.2019.10.016 – year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0048 article-title: Application of digital twins in the management of socio-economic systems – ident: 10.1016/j.infsof.2022.107008_bib0004 – ident: 10.1016/j.infsof.2022.107008_bib0007 – start-page: 197 year: 2018 ident: 10.1016/j.infsof.2022.107008_bib0023 article-title: A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective – start-page: 1 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0110 article-title: PHM of rail vehicle based on digital twin publication-title: 2021 Global Reliability and Prognostics and Health Manag. (PHM-Nanjing) – volume: 51 start-page: 643 year: 2018 ident: 10.1016/j.infsof.2022.107008_bib0076 article-title: Streaming synthetic time series for simulated condition monitoring publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.08.391 – volume: 26 start-page: 1327 year: 2018 ident: 10.1016/j.infsof.2022.107008_bib0036 article-title: Model-based testing for software safety: a systematic mapping study publication-title: Software Quality J. doi: 10.1007/s11219-017-9386-2 – ident: 10.1016/j.infsof.2022.107008_bib0035 – year: 2017 ident: 10.1016/j.infsof.2022.107008_bib0085 article-title: Deep learning for natural language processing: develop deep learning models for your natural language problems publication-title: Machine Learn. Mastery – start-page: 19 year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0047 article-title: An industrial digitalization platform for condition monitoring and predictive maintenance of pumping equipment publication-title: Sensors (Switzerland) – volume: 10 start-page: 9 year: 2022 ident: 10.1016/j.infsof.2022.107008_bib0109 article-title: Machine-learning-driven digital twin for lifecycle management of complex equipment publication-title: IEEE Trans Emerg Top Comput doi: 10.1109/TETC.2022.3143346 – year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0008 article-title: The evolution of asset management: harnessing digitalization and data analytics – volume: 20 start-page: 5103 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0015 article-title: Systems architecture design pattern catalog for developing digital twins publication-title: Sensors doi: 10.3390/s20185103 – year: 2022 ident: 10.1016/j.infsof.2022.107008_bib115 publication-title: Mendeley Data – year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0113 article-title: Predictive maintenance of pumps in civil infrastructure: state-of-the-art, challenges and future directions publication-title: Automation in Construction – start-page: 1 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0098 article-title: Augmented-reality-assisted bearing fault diagnosis in intelligent manufacturing workshop using deep transfer learning publication-title: 2021 Global Reliability and Prognostics and Health Manag. (PHM-Nanjing) – start-page: 1 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0071 article-title: Optimal RUL estimation: a state-of-art digital twin application – start-page: 65 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0044 article-title: A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin publication-title: Robot Comput. Integr. Manuf. – volume: 55 start-page: 132 year: 2022 ident: 10.1016/j.infsof.2022.107008_bib0106 article-title: Feature investigation with digital twin for predictive maintenance following a machine learning approach publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2022.04.182 – volume: 165 start-page: 18 year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0060 article-title: Digital twin of an automotive brake pad for predictive maintenance publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.01.061 – volume: 130 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0021 article-title: Digital twin paradigm: a systematic literature review publication-title: Comput. Ind.y – start-page: 121 year: 2007 ident: 10.1016/j.infsof.2022.107008_bib0010 article-title: Condition based operational risk assessment an innovative approach to improve fleet and aircraft operability: maintenance planning – ident: 10.1016/j.infsof.2022.107008_bib0084 – ident: 10.1016/j.infsof.2022.107008_bib0033 doi: 10.1007/978-3-319-38756-7_4 – ident: 10.1016/j.infsof.2022.107008_bib0032 doi: 10.1016/j.infsof.2021.106589 – year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0063 article-title: Domain adaptation digital twin for rolling element bearing prognostics – start-page: 878 year: 2008 ident: 10.1016/j.infsof.2022.107008_bib0081 article-title: Turbofan engine degradation simulation data set publication-title: NASA Ames Prognostics Data Repository – volume: 200 start-page: 778 year: 2022 ident: 10.1016/j.infsof.2022.107008_bib0114 article-title: Text mining techniques for the management of predictive maintenance publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2022.01.276 – volume: 157 start-page: 189 year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0037 article-title: Obstacles and features of Farm Management Information Systems: a systematic literature review publication-title: Comput. Electron. Agriculture doi: 10.1016/j.compag.2018.12.044 – ident: 10.1016/j.infsof.2022.107008_bib0092 – year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0045 article-title: A smart process controller framework for industry 4.0 settings publication-title: J. Intell. Manuf. – start-page: 1 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0097 article-title: AI environment for predictive maintenance in a manufacturing scenario – start-page: 2340 year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0058 article-title: Digital twin for reliability analysis during design and operation of mechatronic systems – start-page: 55 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0073 article-title: REPLICA: a solution for next generation iot and digital twin based fault diagnosis and predictive maintenance – volume: 32 start-page: 1067 year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0079 article-title: The use of Digital Twin for predictive maintenance in manufacturing publication-title: Int. J. Comput. Integrated Manuf. doi: 10.1080/0951192X.2019.1686173 – volume: 54 start-page: 1047 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0108 article-title: LIVE digital twin for smart maintenance in structural systems publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2021.08.124 – volume: 55 start-page: 138 year: 2022 ident: 10.1016/j.infsof.2022.107008_bib0104 article-title: Employing LIVE digital twin in prognostic and health management: identifying location of the sensors publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2022.04.183 – volume: 58 start-page: 293 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0040 article-title: A Digital Twin approach based on nonparametric Bayesian network for complex system health monitoring publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.07.005 – start-page: 1781 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0078 article-title: The design of a digital-twin for predictive maintenance – volume: 66 start-page: 141 year: 2017 ident: 10.1016/j.infsof.2022.107008_bib0006 article-title: Shaping the digital twin for design and production engineering publication-title: CIRP Ann. doi: 10.1016/j.cirp.2017.04.040 – ident: 10.1016/j.infsof.2022.107008_bib0095 – start-page: 1 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0050 article-title: Comparison of agent deployment strategies for collaborative prognosis – ident: 10.1016/j.infsof.2022.107008_bib0005 – start-page: 336 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0103 article-title: Digital twins in mechatronics: from model-based control to predictive maintenance publication-title: 2021 IEEE 1st Int. Conference on Digital Twins and Parallel Intelligence (DTPI) – volume: 39 start-page: 1743 year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0049 article-title: Approach for a holistic predictive maintenance strategy by incorporating a digital twin publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2020.01.265 – ident: 10.1016/j.infsof.2022.107008_bib0034 – ident: 10.1016/j.infsof.2022.107008_bib0086 – year: 2017 ident: 10.1016/j.infsof.2022.107008_bib0089 – volume: 66 start-page: 461 year: 2017 ident: 10.1016/j.infsof.2022.107008_bib0014 article-title: A procedural approach for realizing prescriptive maintenance planning in manufacturing industries publication-title: CIRP Ann. doi: 10.1016/j.cirp.2017.04.007 – year: 2017 ident: 10.1016/j.infsof.2022.107008_bib0087 article-title: Long short-term memory networks with python: develop sequence prediction models with deep learning publication-title: Machine Learn. Mastery – start-page: 140 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0029 article-title: Augmented reality in support of intelligent manufacturing – A systematic literature review publication-title: Comput. Ind. Eng. – start-page: 1 year: 2015 ident: 10.1016/j.infsof.2022.107008_bib0013 article-title: Digital prescriptive maintenance, internet of things, process of everything publication-title: BPM Everywhere – volume: 55 start-page: 139 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0107 article-title: A framework of dynamic data driven digital twin for complex engineering products: the example of aircraft engine health management publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2021.10.020 – volume: 123 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0003 article-title: Digital Twin for maintenance: a literature review publication-title: Comput. Ind. doi: 10.1016/j.compind.2020.103316 – ident: 10.1016/j.infsof.2022.107008_bib0090 – year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0057 article-title: Digital twin for oil pipeline risk estimation using prognostic and machine learning techniques publication-title: J. Ind. Inf. Integration – start-page: 1 year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0074 article-title: Social internet of digital twins via distributed ledger technologies: application of predictive maintenance publication-title: 2019 27th Telecommun. Forum (TELFOR) – volume: 59 start-page: 4903 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0030 article-title: Artificial intelligence (AI) in augmented reality (AR)-assisted manufacturing applications: a review publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2020.1859636 – start-page: 112 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0054 article-title: Digital twin based condition monitoring of a knuckle boom crane: an experimental study publication-title: Eng. Fail. Anal. – start-page: 455 year: 2022 ident: 10.1016/j.infsof.2022.107008_bib0112 article-title: Predictive Maintenance Framework for Production Environments Using Digital Twin publication-title: Lecture Notes in Networks and Syst. doi: 10.1007/978-3-030-85577-2_54 – volume: 34 start-page: 567 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0019 article-title: Digital twin for smart manufacturing: a review of concepts towards a practical industrial implementation publication-title: Int. J. Comput. Integrated Manuf. doi: 10.1080/0951192X.2021.1911003 – volume: 58 start-page: 329 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0111 article-title: Prediction maintenance integrated decision-making approach supported by digital twin-driven cooperative awareness and interconnection framework publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.08.001 – start-page: 1 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0027 article-title: Digitalisation and servitisation of machine tools in the era of industry 4.0: a review publication-title: Int. J. Prod. Res. – volume: 21 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0022 article-title: Digital twin-driven remaining useful life prediction for gear performance degradation: a review publication-title: J. Comput. Inf. Sci. Eng. doi: 10.1115/1.4049537 – year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0069 article-title: On digital twin condition monitoring approach for drivetrains in marine applications – start-page: 223 year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0075 article-title: State-of-the-art and future directions for predictive modelling of offshore structure dynamics using machine learning – volume: 85 start-page: 273 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0059 article-title: Digital twin modeling for predictive maintenance of gearboxes in floating offshore wind turbine drivetrains publication-title: Forschung im Ingenieurwesen/Eng. Res. doi: 10.1007/s10010-021-00468-9 – ident: 10.1016/j.infsof.2022.107008_bib0093 – volume: 9 start-page: 54 year: 2015 ident: 10.1016/j.infsof.2022.107008_bib0001 article-title: Industry 4.0: the future of productivity and growth in manufacturing industries publication-title: Boston Consulting Group – year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0065 article-title: Life prediction for aircraft structure based on Bayesian inference: towards a digital twin ecosystem – start-page: 29 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0046 article-title: An architecture based on digital twins for smart power distribution system – year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0062 article-title: Digital-twin assisted: fault diagnosis using deep transfer learning for machining tool condition publication-title: Int. J. Intelligent Syst. n/a – start-page: 292 year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0025 article-title: Industrial IoT devices and cyber-physical production systems: review and use case publication-title: Lecture Notes in Electr. Eng. doi: 10.1007/978-3-319-91334-6_40 – volume: 34 start-page: 1 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0016 article-title: Challenges and Opportunities of AI-Enabled Monitoring publication-title: Diagnosis & Prognosis: A Rev. Chinese J. Mech. Eng. – start-page: 1 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0100 article-title: A data-driven remaining useful life prediction methodology: optimization based on digital twin publication-title: 2021 Global Reliability and Prognostics and Health Manag. (PHM-Nanjing) – start-page: 393 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0043 article-title: A hybrid cyber physical digital twin approach for smart grid fault prediction – start-page: 186 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0101 article-title: Deep transfer fault diagnosis using digital twin and generative adversarial network – start-page: 1 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0055 article-title: Digital twin design for real-time monitoring – a case study of die cutting machine publication-title: Int. J. Prod. Res. – start-page: 140 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0051 article-title: Deep digital twins for detection, diagnostics and prognostics publication-title: Mech. Syst. Signal Process. – year: 2017 ident: 10.1016/j.infsof.2022.107008_bib0002 article-title: The fourth industrial revolution publication-title: Currency – volume: 7 start-page: 19990 year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0042 article-title: A digital-twin-assisted fault diagnosis using deep transfer learning publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890566 – volume: 81 start-page: 417 year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0068 article-title: Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance publication-title: Procedia CIRP doi: 10.1016/j.procir.2019.03.072 – start-page: 71 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0052 article-title: Degradation curves integration in physics-based models: towards the predictive maintenance of industrial robots publication-title: Robot. Comput. Integr. Manuf. – volume: 51 start-page: 1190 year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0028 article-title: The internet of things for smart manufacturing: a review publication-title: IISE Trans. doi: 10.1080/24725854.2018.1555383 – start-page: 30 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0105 article-title: Fault diagnosis of gearbox based on digital twin concept model publication-title: 2021 4th Int. Conference on Intelligent Robotics and Control Eng. (IRCE) – start-page: 1 year: 2019 ident: 10.1016/j.infsof.2022.107008_bib0012 article-title: Prescriptive maintenance of railway infrastructure: from data analytics to decision support – volume: 67 start-page: 169 year: 2018 ident: 10.1016/j.infsof.2022.107008_bib0038 article-title: Digital twin driven prognostics and health management for complex equipment publication-title: CIRP Ann. doi: 10.1016/j.cirp.2018.04.055 – ident: 10.1016/j.infsof.2022.107008_bib0067 doi: 10.1016/j.ifacol.2020.11.052 – volume: 46 start-page: 2555 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0039 article-title: A data-driven digital-twin prognostics method for proton exchange membrane fuel cell remaining useful life prediction publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.10.108 – volume: 9 start-page: 1 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0018 article-title: Digital twin-based sustainable intelligent manufacturing: a review publication-title: Adv. Manuf. doi: 10.1007/s40436-020-00302-5 – start-page: 162 year: 2022 ident: 10.1016/j.infsof.2022.107008_bib0070 article-title: Online condition monitoring of floating wind turbines drivetrain by means of digital twin – volume: 52 start-page: 2262 year: 2020 ident: 10.1016/j.infsof.2022.107008_bib0077 article-title: The application of machine learning for the prognostics and health management of control element drive system publication-title: Nuclear Eng. Technol. doi: 10.1016/j.net.2020.03.028 – volume: 6 start-page: 23 year: 2018 ident: 10.1016/j.infsof.2022.107008_bib0009 article-title: Requirements of the smart factory system: a survey and perspective publication-title: Machines doi: 10.3390/machines6020023 – start-page: 142 year: 2021 ident: 10.1016/j.infsof.2022.107008_bib0099 article-title: Buiding a digital twin for robot workcell prognostics and health management |
| SSID | ssj0017030 |
| Score | 2.6744232 |
| SecondaryResourceType | review_article |
| Snippet | •The first SLR in predictive maintenance using Digital Twins.•42 primary studies were analyzed.•Key questions for designing a predictive maintance model were... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107008 |
| SubjectTerms | Active learning Digital twin Predictive maintenance Systematic literature review |
| Title | Predictive maintenance using digital twins: A systematic literature review |
| URI | https://dx.doi.org/10.1016/j.infsof.2022.107008 |
| Volume | 151 |
| WOSCitedRecordID | wos000859493100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6025 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017030 issn: 0950-5849 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fS9xAEF5ES-lLqdZSay374FtZyW3MZde3q1qsFBF6wr2FZLN7aDXKXaz633dmZ_OjXKltwZcQQvY2mfluMjs73wxj2y5J4twqJ_Ii12JXylIU8NUSg6RIChPlkSOi8Nf05ERNJvo0JGTOfTuBtKrU_b2-eVJVwzVQNlJn_0Hd7Y_CBTgHpcMR1A7Hv1L86Qz3XnxG0FWO1SAqzwq49UGB8nyKXUI-1ncYZ_as9F4t58u2xnKgtPRd10Bcqpv85TkY8DvMG6sXovPIiTrAqSl5O3-46jb7x_Y78g3L6ymFXj_B07YJwvsYTKI8lCmcPvRjErCcHfwSk1gky4SIYyTA3yELacneqjQWw4i4z61BphK0C8ad4gwXuCKBV9zBieFiGkWq-5i1KYbfcDqcTWLWWIxU-xWZJhos38roy-HkuN1rQptHFRnp8RqCpc8CXJzr9w5MzykZv2Ivw2qCjwgFq2zJVmvseUNmeM2OOzDwHhi4BwMPYOAeDHt8xDso8A4KnKCwzs4-H473j0ToniEMONU1vErpe7pGDoxFISOrlIM_oJTKwRo2Bz8EW8CDR49uoBkkuUzK1A6tlFYXg9jFb9hydV3Zt4xbcKSM1qkeGrNrhoVyRrvYgWyVhBW22WBxI5LMhNLy2OHkMmtyCC8yEmSGgsxIkBtMtKNuqLTKI_enjbSz4B6S25cBQP448t1_j9xkLzp8v2fL9ezWbrFn5kd9Pp99CEj6CSfnjbY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+maintenance+using+digital+twins%3A+A+systematic+literature+review&rft.jtitle=Information+and+software+technology&rft.au=van+Dinter%2C+Raymon&rft.au=Tekinerdogan%2C+Bedir&rft.au=Catal%2C+Cagatay&rft.date=2022-11-01&rft.pub=Elsevier+B.V&rft.issn=0950-5849&rft.eissn=1873-6025&rft.volume=151&rft_id=info:doi/10.1016%2Fj.infsof.2022.107008&rft.externalDocID=S0950584922001331 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-5849&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-5849&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-5849&client=summon |