Predictive maintenance using digital twins: A systematic literature review

•The first SLR in predictive maintenance using Digital Twins.•42 primary studies were analyzed.•Key questions for designing a predictive maintance model were answered.•Key challenges were presented in the study. Predictive maintenance is a technique for creating a more sustainable, safe, and profita...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information and software technology Ročník 151; s. 107008
Hlavní autoři: van Dinter, Raymon, Tekinerdogan, Bedir, Catal, Cagatay
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2022
Témata:
ISSN:0950-5849, 1873-6025
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The first SLR in predictive maintenance using Digital Twins.•42 primary studies were analyzed.•Key questions for designing a predictive maintance model were answered.•Key challenges were presented in the study. Predictive maintenance is a technique for creating a more sustainable, safe, and profitable industry. One of the key challenges for creating predictive maintenance systems is the lack of failure data, as the machine is frequently repaired before failure. Digital Twins provide a real-time representation of the physical machine and generate data, such as asset degradation, which the predictive maintenance algorithm can use. Since 2018, scientific literature on the utilization of Digital Twins for predictive maintenance has accelerated, indicating the need for a thorough review. This research aims to gather and synthesize the studies that focus on predictive maintenance using Digital Twins to pave the way for further research. A systematic literature review (SLR) using an active learning tool is conducted on published primary studies on predictive maintenance using Digital Twins, in which 42 primary studies have been analyzed. This SLR identifies several aspects of predictive maintenance using Digital Twins, including the objectives, application domains, Digital Twin platforms, Digital Twin representation types, approaches, abstraction levels, design patterns, communication protocols, twinning parameters, and challenges and solution directions. These results contribute to a Software Engineering approach for developing predictive maintenance using Digital Twins in academics and the industry. This study is the first SLR in predictive maintenance using Digital Twins. We answer key questions for designing a successful predictive maintenance model leveraging Digital Twins. We found that to this day, computational burden, data variety, and complexity of models, assets, or components are the key challenges in designing these models.
AbstractList •The first SLR in predictive maintenance using Digital Twins.•42 primary studies were analyzed.•Key questions for designing a predictive maintance model were answered.•Key challenges were presented in the study. Predictive maintenance is a technique for creating a more sustainable, safe, and profitable industry. One of the key challenges for creating predictive maintenance systems is the lack of failure data, as the machine is frequently repaired before failure. Digital Twins provide a real-time representation of the physical machine and generate data, such as asset degradation, which the predictive maintenance algorithm can use. Since 2018, scientific literature on the utilization of Digital Twins for predictive maintenance has accelerated, indicating the need for a thorough review. This research aims to gather and synthesize the studies that focus on predictive maintenance using Digital Twins to pave the way for further research. A systematic literature review (SLR) using an active learning tool is conducted on published primary studies on predictive maintenance using Digital Twins, in which 42 primary studies have been analyzed. This SLR identifies several aspects of predictive maintenance using Digital Twins, including the objectives, application domains, Digital Twin platforms, Digital Twin representation types, approaches, abstraction levels, design patterns, communication protocols, twinning parameters, and challenges and solution directions. These results contribute to a Software Engineering approach for developing predictive maintenance using Digital Twins in academics and the industry. This study is the first SLR in predictive maintenance using Digital Twins. We answer key questions for designing a successful predictive maintenance model leveraging Digital Twins. We found that to this day, computational burden, data variety, and complexity of models, assets, or components are the key challenges in designing these models.
ArticleNumber 107008
Author van Dinter, Raymon
Catal, Cagatay
Tekinerdogan, Bedir
Author_xml – sequence: 1
  givenname: Raymon
  surname: van Dinter
  fullname: van Dinter, Raymon
  organization: Sioux Technologies, Apeldoorn, The Netherlands
– sequence: 2
  givenname: Bedir
  orcidid: 0000-0002-8538-7261
  surname: Tekinerdogan
  fullname: Tekinerdogan, Bedir
  email: bedir.tekinerdogan@wur.nl
  organization: Information Technology Group Wageningen University & Research, Wageningen, The Netherlands
– sequence: 3
  givenname: Cagatay
  surname: Catal
  fullname: Catal, Cagatay
  organization: Department of Computer Science and Engineering, Qatar University, Doha, Qatar
BookMark eNqFkMtqwzAQRUVJoUnaP-hCP-B0JFt-ZFEIoU8C7aJdC0UehwmOXCQlIX9fB3fVRbsaGDiXe8-EjVznkLFbATMBIr_bzsg1oWtmEqTsXwVAecHGoizSJAepRmwMlYJElVl1xSYhbAFEASmM2eu7x5pspAPynSEX0Rlnke8DuQ2vaUPRtDweyYU5X_BwChF3JpLlLUX0Ju49co8HwuM1u2xMG_Dm507Z5-PDx_I5Wb09vSwXq8SmSsa-RA15XqTQoKnXErAsG7VWUpaNzMFksspVJiBT0K-wQhmp6gJzlBKrtUibdMrmQ671XQgeG237kpE6F72hVgvQZyt6qwcr-mxFD1Z6OPsFf3naGX_6D7sfMOyH9WO9DpawF1WTRxt13dHfAd8lhYBh
CitedBy_id crossref_primary_10_29216_ueip_1614573
crossref_primary_10_1088_1361_665X_adadcd
crossref_primary_10_3390_encyclopedia5030087
crossref_primary_10_1108_JQME_05_2024_0047
crossref_primary_10_1007_s10749_024_01788_w
crossref_primary_10_1061_JCEMD4_COENG_16149
crossref_primary_10_1016_j_ymssp_2024_111778
crossref_primary_10_1002_sd_3270
crossref_primary_10_3390_eng6020022
crossref_primary_10_1016_j_jmsy_2024_05_012
crossref_primary_10_3390_math12192979
crossref_primary_10_31818_JKNST_2025_6_8_2_207
crossref_primary_10_3389_fbuil_2024_1381813
crossref_primary_10_1109_JRFID_2024_3387996
crossref_primary_10_1007_s43674_023_00058_y
crossref_primary_10_1016_j_jmsy_2025_07_006
crossref_primary_10_1016_j_jai_2024_12_001
crossref_primary_10_3390_app14030977
crossref_primary_10_1007_s00170_024_14097_3
crossref_primary_10_1016_j_csi_2023_103794
crossref_primary_10_3390_bdcc8050045
crossref_primary_10_1007_s10664_024_10458_4
crossref_primary_10_1016_j_ijpvp_2025_105451
crossref_primary_10_1049_hve2_12465
crossref_primary_10_1016_j_aei_2024_102800
crossref_primary_10_3389_fdgth_2023_1253050
crossref_primary_10_1016_j_iot_2024_101477
crossref_primary_10_1109_ACCESS_2025_3572563
crossref_primary_10_7717_peerj_cs_1943
crossref_primary_10_1016_j_heliyon_2023_e23152
crossref_primary_10_1007_s00170_024_14200_8
crossref_primary_10_3390_machines12040261
crossref_primary_10_1088_1361_6501_acf8e8
crossref_primary_10_1088_1361_6501_ada462
crossref_primary_10_1109_TITS_2025_3526204
crossref_primary_10_1515_zwf_2025_1082
crossref_primary_10_1177_00202940241236088
crossref_primary_10_1515_phys_2022_0239
crossref_primary_10_1016_j_cie_2024_110607
crossref_primary_10_1007_s43621_025_01190_0
crossref_primary_10_1515_zwf_2025_0155
crossref_primary_10_1177_00375497241228281
crossref_primary_10_1016_j_simpat_2025_103160
crossref_primary_10_3390_buildings15050690
crossref_primary_10_1049_pel2_70013
crossref_primary_10_1109_TPEL_2025_3570638
crossref_primary_10_23919_CHAIN_2025_000003
crossref_primary_10_1016_j_epsr_2023_109958
crossref_primary_10_1016_j_nucengdes_2024_113013
crossref_primary_10_3390_aerospace11090708
crossref_primary_10_3390_civileng6010002
crossref_primary_10_3390_s25113513
crossref_primary_10_70401_bmeh_2024_135
crossref_primary_10_1016_j_mechmachtheory_2023_105552
crossref_primary_10_1051_e3sconf_202560805004
crossref_primary_10_1016_j_jii_2025_100918
crossref_primary_10_1111_ijcs_70036
crossref_primary_10_1049_cim2_70041
crossref_primary_10_1016_j_aei_2024_102450
crossref_primary_10_1080_15623599_2025_2544913
crossref_primary_10_1016_j_rineng_2025_107260
crossref_primary_10_1080_08982112_2024_2331140
crossref_primary_10_1007_s11042_023_17041_x
crossref_primary_10_1016_j_procir_2023_03_087
crossref_primary_10_1007_s10696_024_09579_1
crossref_primary_10_1080_21693277_2025_2544981
crossref_primary_10_3390_buildings13020447
crossref_primary_10_1109_ACCESS_2025_3559502
crossref_primary_10_3390_app15084228
crossref_primary_10_1016_j_rineng_2025_106858
crossref_primary_10_3390_designs8010008
crossref_primary_10_3390_app132212374
crossref_primary_10_1016_j_engappai_2025_111070
crossref_primary_10_1016_j_knosys_2025_114114
crossref_primary_10_1088_1742_6596_2837_1_012059
crossref_primary_10_3389_fmech_2025_1655565
crossref_primary_10_1007_s10207_023_00784_x
crossref_primary_10_3389_fenrg_2023_1272967
crossref_primary_10_3390_en16124590
crossref_primary_10_1016_j_jai_2023_07_002
crossref_primary_10_1080_0305215X_2024_2434201
crossref_primary_10_3390_app13148297
crossref_primary_10_1007_s10845_023_02289_9
crossref_primary_10_1016_j_future_2023_11_033
crossref_primary_10_3390_app13021052
crossref_primary_10_1016_j_infsof_2025_107742
crossref_primary_10_1016_j_tust_2025_106508
crossref_primary_10_1007_s11277_024_11108_0
crossref_primary_10_1016_j_ymssp_2025_112770
crossref_primary_10_1016_j_ress_2024_110040
crossref_primary_10_1016_j_ssci_2024_106590
crossref_primary_10_1016_j_ress_2025_111496
crossref_primary_10_1016_j_compind_2023_103980
crossref_primary_10_1038_s43588_024_00603_w
crossref_primary_10_1007_s42417_024_01608_5
crossref_primary_10_1080_00207543_2024_2329324
crossref_primary_10_3390_en18030535
crossref_primary_10_3390_s25010059
crossref_primary_10_1016_j_infsof_2024_107503
crossref_primary_10_3390_s24186069
crossref_primary_10_1088_2631_8695_ad4aea
crossref_primary_10_3390_drones9060394
crossref_primary_10_3390_s23031409
crossref_primary_10_3390_s24010004
crossref_primary_10_1016_j_engappai_2025_111511
crossref_primary_10_1016_j_tsep_2024_102722
crossref_primary_10_1016_j_jocs_2025_102589
crossref_primary_10_1016_j_compind_2025_104273
crossref_primary_10_1016_j_jmsy_2024_12_009
crossref_primary_10_1007_s00773_023_00963_4
crossref_primary_10_1109_ACCESS_2025_3567674
crossref_primary_10_1515_mt_2025_0100
crossref_primary_10_3390_en17112456
crossref_primary_10_1016_j_procs_2024_01_107
crossref_primary_10_1016_j_jenvman_2024_123866
crossref_primary_10_3390_app15137049
crossref_primary_10_3390_s24082663
crossref_primary_10_1007_s42791_024_00083_z
crossref_primary_10_1016_j_oceaneng_2022_113479
crossref_primary_10_1109_ACCESS_2024_3518516
crossref_primary_10_1155_jece_3295799
crossref_primary_10_1016_j_engfailanal_2025_109330
crossref_primary_10_1177_09721509251374805
crossref_primary_10_1007_s11804_025_00649_w
crossref_primary_10_1016_j_ress_2023_109859
crossref_primary_10_47172_2965_730X_SDGsReview_v5_n04_pe06107
crossref_primary_10_1080_00207543_2024_2366997
crossref_primary_10_1186_s42162_024_00373_9
crossref_primary_10_3389_fdgth_2025_1611225
crossref_primary_10_3390_en15218284
crossref_primary_10_1016_j_mfglet_2023_08_142
crossref_primary_10_1109_JIOT_2023_3246100
crossref_primary_10_3390_en17030700
crossref_primary_10_1016_j_iintel_2023_100050
crossref_primary_10_3390_buildings15071030
crossref_primary_10_3390_electronics13101984
crossref_primary_10_1109_ACCESS_2023_3349379
crossref_primary_10_3390_electronics13030587
crossref_primary_10_2196_50204
crossref_primary_10_53518_mjavl_1599535
crossref_primary_10_1016_j_iot_2023_100991
crossref_primary_10_1016_j_aei_2024_102773
crossref_primary_10_1080_27525783_2025_2533848
crossref_primary_10_1038_s41598_023_38887_z
crossref_primary_10_3390_ijgi14040140
crossref_primary_10_3390_ma18133146
crossref_primary_10_1007_s40436_023_00450_4
crossref_primary_10_1007_s10270_025_01264_7
crossref_primary_10_3390_w15112106
crossref_primary_10_1109_ACCESS_2025_3585362
crossref_primary_10_1016_j_enconman_2025_119995
crossref_primary_10_1038_s41598_025_99488_6
crossref_primary_10_1080_10447318_2023_2254607
crossref_primary_10_3390_fi16120477
crossref_primary_10_3390_forecast6020014
crossref_primary_10_1007_s40860_023_00208_6
crossref_primary_10_1016_j_inffus_2025_103534
crossref_primary_10_3390_infrastructures10030064
crossref_primary_10_1080_0951192X_2024_2322981
crossref_primary_10_1109_ACCESS_2025_3578686
crossref_primary_10_1142_S0218126625430066
crossref_primary_10_1007_s10462_024_11002_y
crossref_primary_10_3390_app15020700
crossref_primary_10_1109_ACCESS_2024_3514175
crossref_primary_10_1080_02286203_2024_2395899
crossref_primary_10_1007_s40171_025_00437_z
crossref_primary_10_1016_j_oceaneng_2024_119187
crossref_primary_10_23939_cds2022_01_049
crossref_primary_10_1016_j_matdes_2024_113086
crossref_primary_10_3390_pr11020558
crossref_primary_10_3390_jcs8040131
crossref_primary_10_1016_j_jmsy_2023_07_016
crossref_primary_10_3390_drones9010040
Cites_doi 10.1016/j.procir.2019.04.049
10.1016/j.enbuild.2022.111988
10.1080/00207543.2020.1824085
10.1007/s00170-021-06976-w
10.1016/j.promfg.2020.06.015
10.1016/j.procs.2022.01.348
10.1007/s12206-018-0201-1
10.1016/j.promfg.2020.02.084
10.3390/pr9060922
10.1109/BigData50022.2020.9378433
10.3390/s21030932
10.1016/j.infsof.2010.05.003
10.1016/j.ifacol.2019.10.016
10.1016/j.ifacol.2018.08.391
10.1007/s11219-017-9386-2
10.1109/TETC.2022.3143346
10.3390/s20185103
10.1016/j.ifacol.2022.04.182
10.1016/j.procs.2020.01.061
10.1007/978-3-319-38756-7_4
10.1016/j.infsof.2021.106589
10.1016/j.procs.2022.01.276
10.1016/j.compag.2018.12.044
10.1080/0951192X.2019.1686173
10.1016/j.ifacol.2021.08.124
10.1016/j.ifacol.2022.04.183
10.1016/j.jmsy.2020.07.005
10.1016/j.cirp.2017.04.040
10.1016/j.promfg.2020.01.265
10.1016/j.cirp.2017.04.007
10.1016/j.promfg.2021.10.020
10.1016/j.compind.2020.103316
10.1080/00207543.2020.1859636
10.1007/978-3-030-85577-2_54
10.1080/0951192X.2021.1911003
10.1016/j.jmsy.2020.08.001
10.1115/1.4049537
10.1007/s10010-021-00468-9
10.1007/978-3-319-91334-6_40
10.1109/ACCESS.2018.2890566
10.1016/j.procir.2019.03.072
10.1080/24725854.2018.1555383
10.1016/j.cirp.2018.04.055
10.1016/j.ifacol.2020.11.052
10.1016/j.ijhydene.2020.10.108
10.1007/s40436-020-00302-5
10.1016/j.net.2020.03.028
10.3390/machines6020023
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.infsof.2022.107008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1873-6025
ExternalDocumentID 10_1016_j_infsof_2022_107008
S0950584922001331
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TWZ
UHS
UNMZH
WH7
WUQ
XFK
ZY4
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c352t-58d066730feadb20e88f5b5228f260a42965410450008c15a25d7e6e22e9b13f3
ISICitedReferencesCount 203
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000859493100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-5849
IngestDate Sat Nov 29 07:07:38 EST 2025
Tue Nov 18 22:18:50 EST 2025
Fri Feb 23 02:38:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Digital twin
Active learning
Systematic literature review
Predictive maintenance
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-58d066730feadb20e88f5b5228f260a42965410450008c15a25d7e6e22e9b13f3
ORCID 0000-0002-8538-7261
OpenAccessLink https://dx.doi.org/10.1016/j.infsof.2022.107008
ParticipantIDs crossref_citationtrail_10_1016_j_infsof_2022_107008
crossref_primary_10_1016_j_infsof_2022_107008
elsevier_sciencedirect_doi_10_1016_j_infsof_2022_107008
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Information and software technology
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References M. Ulusoy, Predictive maintenance, part 3: remaining useful life estimation, in, n.d.
S.R. Toolbox, Search, in, 2014.
Ali, Babar, Chen, Stol (bib0031) 2010; 52
Wang, Liu, Liao, Mrad (bib0065) 2020
Zhang, Du, Zhang, Wang (bib0110) 2021
L. Cattaneo, M. MacChi, A Digital Twin Proof of Concept to Support Machine Prognostics with Low Availability of Run-To-Failure Data, in: IFAC-PapersOnLine, 2019, pp. 37–42.
Aivaliotis, Georgoulias, Arkouli, Makris (bib0068) 2019; 81
Rossini, Conzon, Prato, Pastrone, Reis, Gonçalves (bib0073) 2020
Heim, Clemens, Steck, Basic, Timmons, Zwiener, Aircraft, Twin (bib0072) 2020
Panagou, Fruggiero, Lerra, Vecchio, Menchetti, Piedimonte, Natale, Passariello (bib0106) 2022; 55
Liu, Zhang, Xu, Jin, Lee (bib0053) 2018
Dhada, Hernández, Palau, Parlikad (bib0050) 2021
Melesse, Pasquale, Riemma (bib0020) 2020; 42
Werner, Zimmermann, Lentes (bib0049) 2019; 39
Hosamo, Svennevig, Svidt, Han, Nielsen (bib0102) 2022; 261
Moi, Cibicik, Rølvåg (bib0054) 2020
Zenisek, Wolfartsberger, Sievi, Affenzeller (bib0076) 2018; 51
Johansen, Nejad (bib0069) 2019
Centomo, Dall'ora, Fummi (bib0078) 2020
Xu, Sun, Liu, Zheng (bib0042) 2019; 7
Rúbio, Dionísio, Torres (bib0025) 2019
Oluwasegun, Jung (bib0077) 2020; 52
Gurbuz, Tekinerdogan (bib0036) 2018; 26
R. van de Schoot, D. Oberski, J. de Bruin, R. Schram, P. Zahedi, Automated systematic review v0.1.1, in: zenodo (Ed.), 2019.
Tekinerdogan, Verdouw (bib0015) 2020; 20
Lee, Kim, Quan, Kim, Kim, Yoon, Min, Kim, Mun, Oh, Choi, Kim, Chu, Yang, Bhandari, Lee, Ihn, Ahn (bib0024) 2018; 32
Papachatzakis, Papakostas, Chryssolouris (bib0010) 2007
Kang, Catal, Tekinerdogan (bib0011) 2021; 21
Zhao, Wu, Li, Sun, Yan, Chen (bib0016) 2021; 34
Hallaji, Fang, Winfrey (bib0113) 2021
HiveMQ, 15 frequently asked MQTT questions, in, 2019.
A.S.M. Al-Azzawi, Two-Degree-of-Freedom Systems, in, University of Babylon, n.d.
K. Shanmugam, The perfect pair: digital twins and predictive maintenance, in, 2021.
P. Aivaliotis, E. Xanthakis, A. Sardelis, Machines' Behaviour Prediction Tool (BPT) For Maintenance Applications, in: IFAC-PapersOnLine, 2020, pp. 325–329.
Xiong, Wang, Fu, Xu (bib0061) 2021; 114
Tzanis, Andriopoulos, Magklaras, Mylonas, Birbas, Birbas (bib0043) 2020
Desai, Granja, Higgs (bib0066) 2021; 9
Qiao, Wang, Ye, Gao (bib0056) 2019; 81
Kaul, Bender, Sextro (bib0058) 2019
Meraghni, Terrissa, Yue, Ma, Jemei, Zerhouni (bib0039) 2021; 46
Wang, Zhao, Addepalli (bib0017) 2020; 49
Zhang, Huo, Zheng, Li (bib0046) 2020
Bondoc, Tayefeh, Barari (bib0104) 2022; 55
Wago, Snelle communicatie tussen automatiserings- en veldapparaten: MODBUS, in, n.d.
Kaji, Parvizian, van de Venn (bib0088) 2020; 10
A. Ng, Machine learning yearning, in: URL
Wang, Liu, Zhao (bib0101) 2021
Semeraro, Lezoche, Panetto, Dassisti (bib0021) 2021; 130
J. Brownlee, Master machine learning algorithms: discover how they work and implement them from scratch, 2016.
Booyse, Wilke, Heyns (bib0051) 2020
Rajesh, Manikandan, Ramshankar, Vishwanathan, Sathishkumar (bib0060) 2019; 165
Kibira, Shao, Weiss (bib0099) 2021
Aivaliotis, Arkouli, Georgoulias, Makris (bib0052) 2021
Moghadam, Rebouças, Nejad (bib0059) 2021; 85
Brownlee (bib0087) 2017
Key digital technologies joint undertaking, key digital technologies joint undertaking, in, n.d.
Yang, Kumara, Bukkapatnam, Tsung (bib0028) 2019; 51
Tummers, Kassahun, Tekinerdogan (bib0037) 2019; 157
Sahu, Young, Rai (bib0030) 2021; 59
Anis, Taghipour, Lee (bib0071) 2020
Wu, Li (bib0107) 2021; 55
Priyanka, Thangavel, Gao, Sivakumar (bib0057) 2021
Barkalov, Dorofeev, Fedorova, Polovinkina (bib0048) 2021
Schleich, Anwer, Mathieu, Wartzack (bib0006) 2017; 66
Nota, Postiglione, Carvello (bib0114) 2022; 200
Sivalingam, Sepulveda, Spring, Davies (bib0023) 2018
B. Kitchenham, S. Charters, Guidelines For Performing Systematic Literature Reviews in Software Engineering, in, Keele University, 2007.
Matyas, Nemeth, Kovacs, Glawar (bib0014) 2017; 66
Deebak, Al-Turjman (bib0062) 2021
Lattanzi, Raffaeli, Peruzzini, Pellicciari (bib0019) 2021; 34
R. van Dinter, B. Tekinerdogan, C. Catal, Automation of systematic literature reviews: a systematic literature review, Inf. Softw. Technol., (2021) 106589.
Consilvio, Sanetti, Anguìta, Crovetto, Dambra, Oneto, Papa, Sacco (bib0012) 2019
Egger, Masood (bib0029) 2020
Saxena, Goebel (bib0081) 2008
Short, Twiddle (bib0047) 2019
You, Chen, Hu, Liu, Ji (bib0096) 2022; 200
Rüßmann, Lorenz, Gerbert, Waldner, Justus, Engel, Harnisch (bib0001) 2015; 9
Cohen, Singer (bib0045) 2021
Rossini, Prato, Conzon, Pastrone, Pereira, Reis, Gonçalves, Henriques, Santiago, Ferreira (bib0097) 2021
Errandonea, Beltrán, Arrizabalaga (bib0003) 2020; 123
Brownlee (bib0085) 2017
J. Brownlee, Autoencoder Feature Extraction for Classification, in, 2020.
He, Liu, Zhang (bib0022) 2021; 21
Yu, Song, Tang, Dai (bib0040) 2021; 58
Tao, Zhang, Liu, Nee (bib0038) 2018; 67
Mi, Feng, Zheng, Wang, Gao, Tan (bib0111) 2021; 58
Wang, Lee, Angelica (bib0055) 2020
Zheng, Ardolino, Bacchetti, Perona (bib0026) 2021; 59
Hu, Hu, Luo, Yang (bib0105) 2021
Lee, Qiu, Yu, Lin (bib0080) 2007
Nixon, Pena (bib0008) 2019
Zhen, Dunbing, Changchun, Xin, Linqi, Zhuocheng, Xuan (bib0098) 2021
M. Grieves, J. Vickers, Digital twin: Mitigating unpredictable, Undesirable Emergent Behavior in Complex systems, in: Transdisciplinary perspectives On Complex Systems, Springer, 2017, pp. 85–113.
Malek, Tayefeh, Bender, Barari (bib0108) 2021; 54
Shao, Cai, Fan, Liu (bib0100) 2021
van Dinter (bib115) 2022
Liu, Jin, Jin, Lee, Zhang, Peng, Xu (bib0064) 2018
S. Miller, Mathworks, predictive maintenance using a digital twin, in, 2019.
Khoshafian, Rostetter (bib0013) 2015
Ren, Wan, Deng (bib0109) 2022; 10
(bib0089) 2017
Tygesen, Worden, Rogers, Manson, Cross (bib0075) 2019
Semeraro, Lezoche, Panetto, Dassisti, Cafagna (bib0083) 2019
Süve, Gezer, İnce (bib0112) 2022
Liu, Mauricio, Qi, Peng, Gryllias (bib0063) 2020
Liu, Zheng, Xu (bib0027) 2021
org/(96), 2017.
Mabkhot, Al-Ahmari, Salah, Alkhalefah (bib0009) 2018; 6
Aivaliotis, Georgoulias, Chryssolouris (bib0079) 2019; 32
Moghadam, Nejad (bib0070) 2022
OpenModelica, Introduction, in, n.d.
Classens, Heemels, Oomen (bib0103) 2021
Schwab (bib0002) 2017
Luo, Hu, Ye, Zhang, Wei (bib0044) 2020
He, Bai (bib0018) 2021; 9
Altun, Tavli (bib0074) 2019
Kang (10.1016/j.infsof.2022.107008_bib0011) 2021; 21
Hallaji (10.1016/j.infsof.2022.107008_bib0113) 2021
Schleich (10.1016/j.infsof.2022.107008_bib0006) 2017; 66
Errandonea (10.1016/j.infsof.2022.107008_bib0003) 2020; 123
Liu (10.1016/j.infsof.2022.107008_bib0064) 2018
Aivaliotis (10.1016/j.infsof.2022.107008_bib0079) 2019; 32
Lattanzi (10.1016/j.infsof.2022.107008_bib0019) 2021; 34
Classens (10.1016/j.infsof.2022.107008_bib0103) 2021
Papachatzakis (10.1016/j.infsof.2022.107008_bib0010) 2007
Qiao (10.1016/j.infsof.2022.107008_bib0056) 2019; 81
10.1016/j.infsof.2022.107008_bib0041
Hu (10.1016/j.infsof.2022.107008_bib0105) 2021
Wang (10.1016/j.infsof.2022.107008_bib0065) 2020
Aivaliotis (10.1016/j.infsof.2022.107008_bib0068) 2019; 81
Ren (10.1016/j.infsof.2022.107008_bib0109) 2022; 10
Melesse (10.1016/j.infsof.2022.107008_bib0020) 2020; 42
Sahu (10.1016/j.infsof.2022.107008_bib0030) 2021; 59
Johansen (10.1016/j.infsof.2022.107008_bib0069) 2019
Zhang (10.1016/j.infsof.2022.107008_bib0046) 2020
Yang (10.1016/j.infsof.2022.107008_bib0028) 2019; 51
Barkalov (10.1016/j.infsof.2022.107008_bib0048) 2021
Egger (10.1016/j.infsof.2022.107008_bib0029) 2020
Wu (10.1016/j.infsof.2022.107008_bib0107) 2021; 55
10.1016/j.infsof.2022.107008_bib0035
10.1016/j.infsof.2022.107008_bib0034
Rüßmann (10.1016/j.infsof.2022.107008_bib0001) 2015; 9
10.1016/j.infsof.2022.107008_bib0033
10.1016/j.infsof.2022.107008_bib0032
Brownlee (10.1016/j.infsof.2022.107008_bib0087) 2017
Semeraro (10.1016/j.infsof.2022.107008_bib0083) 2019
Consilvio (10.1016/j.infsof.2022.107008_bib0012) 2019
Desai (10.1016/j.infsof.2022.107008_bib0066) 2021; 9
Shao (10.1016/j.infsof.2022.107008_bib0100) 2021
Moi (10.1016/j.infsof.2022.107008_bib0054) 2020
Saxena (10.1016/j.infsof.2022.107008_bib0081) 2008
Bondoc (10.1016/j.infsof.2022.107008_bib0104) 2022; 55
Brownlee (10.1016/j.infsof.2022.107008_bib0085) 2017
Schwab (10.1016/j.infsof.2022.107008_bib0002) 2017
Mabkhot (10.1016/j.infsof.2022.107008_bib0009) 2018; 6
Tekinerdogan (10.1016/j.infsof.2022.107008_bib0015) 2020; 20
Kibira (10.1016/j.infsof.2022.107008_bib0099) 2021
Zheng (10.1016/j.infsof.2022.107008_bib0026) 2021; 59
10.1016/j.infsof.2022.107008_bib0067
Kaji (10.1016/j.infsof.2022.107008_bib0088) 2020; 10
Anis (10.1016/j.infsof.2022.107008_bib0071) 2020
Wang (10.1016/j.infsof.2022.107008_bib0017) 2020; 49
Short (10.1016/j.infsof.2022.107008_bib0047) 2019
Moghadam (10.1016/j.infsof.2022.107008_bib0070) 2022
Lee (10.1016/j.infsof.2022.107008_bib0080) 2007
You (10.1016/j.infsof.2022.107008_bib0096) 2022; 200
Wang (10.1016/j.infsof.2022.107008_bib0055) 2020
Sivalingam (10.1016/j.infsof.2022.107008_bib0023) 2018
Liu (10.1016/j.infsof.2022.107008_bib0053) 2018
Centomo (10.1016/j.infsof.2022.107008_bib0078) 2020
Moghadam (10.1016/j.infsof.2022.107008_bib0059) 2021; 85
Nota (10.1016/j.infsof.2022.107008_bib0114) 2022; 200
Meraghni (10.1016/j.infsof.2022.107008_bib0039) 2021; 46
van Dinter (10.1016/j.infsof.2022.107008_bib115) 2022
Ali (10.1016/j.infsof.2022.107008_bib0031) 2010; 52
Tzanis (10.1016/j.infsof.2022.107008_bib0043) 2020
Werner (10.1016/j.infsof.2022.107008_bib0049) 2019; 39
Wang (10.1016/j.infsof.2022.107008_bib0101) 2021
10.1016/j.infsof.2022.107008_bib0091
10.1016/j.infsof.2022.107008_bib0090
Cohen (10.1016/j.infsof.2022.107008_bib0045) 2021
Tummers (10.1016/j.infsof.2022.107008_bib0037) 2019; 157
Zenisek (10.1016/j.infsof.2022.107008_bib0076) 2018; 51
Aivaliotis (10.1016/j.infsof.2022.107008_bib0052) 2021
10.1016/j.infsof.2022.107008_bib0005
10.1016/j.infsof.2022.107008_bib0007
10.1016/j.infsof.2022.107008_bib0004
Zhang (10.1016/j.infsof.2022.107008_bib0110) 2021
10.1016/j.infsof.2022.107008_bib0086
He (10.1016/j.infsof.2022.107008_bib0018) 2021; 9
He (10.1016/j.infsof.2022.107008_bib0022) 2021; 21
Zhen (10.1016/j.infsof.2022.107008_bib0098) 2021
Malek (10.1016/j.infsof.2022.107008_bib0108) 2021; 54
10.1016/j.infsof.2022.107008_bib0082
10.1016/j.infsof.2022.107008_bib0084
Priyanka (10.1016/j.infsof.2022.107008_bib0057) 2021
Khoshafian (10.1016/j.infsof.2022.107008_bib0013) 2015
Altun (10.1016/j.infsof.2022.107008_bib0074) 2019
Mi (10.1016/j.infsof.2022.107008_bib0111) 2021; 58
Süve (10.1016/j.infsof.2022.107008_bib0112) 2022
Luo (10.1016/j.infsof.2022.107008_bib0044) 2020
Xiong (10.1016/j.infsof.2022.107008_bib0061) 2021; 114
Oluwasegun (10.1016/j.infsof.2022.107008_bib0077) 2020; 52
Heim (10.1016/j.infsof.2022.107008_bib0072) 2020
Semeraro (10.1016/j.infsof.2022.107008_bib0021) 2021; 130
Liu (10.1016/j.infsof.2022.107008_bib0063) 2020
Booyse (10.1016/j.infsof.2022.107008_bib0051) 2020
Panagou (10.1016/j.infsof.2022.107008_bib0106) 2022; 55
Lee (10.1016/j.infsof.2022.107008_bib0024) 2018; 32
Matyas (10.1016/j.infsof.2022.107008_bib0014) 2017; 66
Xu (10.1016/j.infsof.2022.107008_bib0042) 2019; 7
Rossini (10.1016/j.infsof.2022.107008_bib0097) 2021
Deebak (10.1016/j.infsof.2022.107008_bib0062) 2021
Rúbio (10.1016/j.infsof.2022.107008_bib0025) 2019
Gurbuz (10.1016/j.infsof.2022.107008_bib0036) 2018; 26
Tao (10.1016/j.infsof.2022.107008_bib0038) 2018; 67
Yu (10.1016/j.infsof.2022.107008_bib0040) 2021; 58
Liu (10.1016/j.infsof.2022.107008_bib0027) 2021
Rossini (10.1016/j.infsof.2022.107008_bib0073) 2020
Nixon (10.1016/j.infsof.2022.107008_bib0008) 2019
Kaul (10.1016/j.infsof.2022.107008_bib0058) 2019
Hosamo (10.1016/j.infsof.2022.107008_bib0102) 2022; 261
(10.1016/j.infsof.2022.107008_bib0089) 2017
Dhada (10.1016/j.infsof.2022.107008_bib0050) 2021
Zhao (10.1016/j.infsof.2022.107008_bib0016) 2021; 34
Tygesen (10.1016/j.infsof.2022.107008_bib0075) 2019
10.1016/j.infsof.2022.107008_bib0093
10.1016/j.infsof.2022.107008_bib0092
Rajesh (10.1016/j.infsof.2022.107008_bib0060) 2019; 165
10.1016/j.infsof.2022.107008_bib0095
10.1016/j.infsof.2022.107008_bib0094
References_xml – year: 2021
  ident: bib0057
  article-title: Digital twin for oil pipeline risk estimation using prognostic and machine learning techniques
  publication-title: J. Ind. Inf. Integration
– start-page: 121
  year: 2007
  end-page: 126
  ident: bib0010
  article-title: Condition based operational risk assessment an innovative approach to improve fleet and aircraft operability: maintenance planning
  publication-title: 1st European Air and Space Conference, Berlin, Germany
– start-page: 393
  year: 2020
  end-page: 397
  ident: bib0043
  article-title: A hybrid cyber physical digital twin approach for smart grid fault prediction
  publication-title: 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS)
– volume: 34
  start-page: 567
  year: 2021
  end-page: 597
  ident: bib0019
  article-title: Digital twin for smart manufacturing: a review of concepts towards a practical industrial implementation
  publication-title: Int. J. Comput. Integrated Manuf.
– reference: S.R. Toolbox, Search, in, 2014.
– reference: S. Miller, Mathworks, predictive maintenance using a digital twin, in, 2019.
– volume: 130
  year: 2021
  ident: bib0021
  article-title: Digital twin paradigm: a systematic literature review
  publication-title: Comput. Ind.y
– volume: 157
  start-page: 189
  year: 2019
  end-page: 204
  ident: bib0037
  article-title: Obstacles and features of Farm Management Information Systems: a systematic literature review
  publication-title: Comput. Electron. Agriculture
– start-page: 507
  year: 2019
  end-page: 515
  ident: bib0083
  article-title: Data-driven pattern-based constructs definition for the digital transformation modelling of collaborative networked manufacturing enterprises
  publication-title: Working Conference on Virtual Enterprises, Springer
– start-page: 336
  year: 2021
  end-page: 339
  ident: bib0103
  article-title: Digital twins in mechatronics: from model-based control to predictive maintenance
  publication-title: 2021 IEEE 1st Int. Conference on Digital Twins and Parallel Intelligence (DTPI)
– year: 2007
  ident: bib0080
  article-title: Bearing Data Set
  publication-title: NASA Ames Prognostics Data Repository
– year: 2021
  ident: bib0045
  article-title: A smart process controller framework for industry 4.0 settings
  publication-title: J. Intell. Manuf.
– reference: Key digital technologies joint undertaking, key digital technologies joint undertaking, in, n.d.
– reference: B. Kitchenham, S. Charters, Guidelines For Performing Systematic Literature Reviews in Software Engineering, in, Keele University, 2007.
– volume: 52
  start-page: 871
  year: 2010
  end-page: 887
  ident: bib0031
  article-title: A systematic review of comparative evidence of aspect-oriented programming
  publication-title: Inf. Softw. Technol.
– start-page: 162
  year: 2022
  ident: bib0070
  article-title: Online condition monitoring of floating wind turbines drivetrain by means of digital twin
  publication-title: Mech. Syst. Signal Process.
– reference: HiveMQ, 15 frequently asked MQTT questions, in, 2019.
– reference: L. Cattaneo, M. MacChi, A Digital Twin Proof of Concept to Support Machine Prognostics with Low Availability of Run-To-Failure Data, in: IFAC-PapersOnLine, 2019, pp. 37–42.
– start-page: 878
  year: 2008
  end-page: 887
  ident: bib0081
  article-title: Turbofan engine degradation simulation data set
  publication-title: NASA Ames Prognostics Data Repository
– volume: 55
  start-page: 132
  year: 2022
  end-page: 137
  ident: bib0106
  article-title: Feature investigation with digital twin for predictive maintenance following a machine learning approach
  publication-title: IFAC-PapersOnLine
– start-page: 1
  year: 2021
  end-page: 6
  ident: bib0098
  article-title: Augmented-reality-assisted bearing fault diagnosis in intelligent manufacturing workshop using deep transfer learning
  publication-title: 2021 Global Reliability and Prognostics and Health Manag. (PHM-Nanjing)
– start-page: 19
  year: 2019
  ident: bib0047
  article-title: An industrial digitalization platform for condition monitoring and predictive maintenance of pumping equipment
  publication-title: Sensors (Switzerland)
– start-page: 30
  year: 2021
  end-page: 34
  ident: bib0105
  article-title: Fault diagnosis of gearbox based on digital twin concept model
  publication-title: 2021 4th Int. Conference on Intelligent Robotics and Control Eng. (IRCE)
– volume: 123
  year: 2020
  ident: bib0003
  article-title: Digital Twin for maintenance: a literature review
  publication-title: Comput. Ind.
– start-page: 186
  year: 2021
  end-page: 193
  ident: bib0101
  article-title: Deep transfer fault diagnosis using digital twin and generative adversarial network
  publication-title: 2021 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC)
– volume: 55
  start-page: 138
  year: 2022
  end-page: 143
  ident: bib0104
  article-title: Employing LIVE digital twin in prognostic and health management: identifying location of the sensors
  publication-title: IFAC-PapersOnLine
– volume: 39
  start-page: 1743
  year: 2019
  end-page: 1751
  ident: bib0049
  article-title: Approach for a holistic predictive maintenance strategy by incorporating a digital twin
  publication-title: Procedia Manuf.
– year: 2021
  ident: bib0048
  article-title: Application of digital twins in the management of socio-economic systems
  publication-title: E3S Web of Conferences
– start-page: 1
  year: 2021
  end-page: 8
  ident: bib0097
  article-title: AI environment for predictive maintenance in a manufacturing scenario
  publication-title: 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
– volume: 52
  start-page: 2262
  year: 2020
  end-page: 2273
  ident: bib0077
  article-title: The application of machine learning for the prognostics and health management of control element drive system
  publication-title: Nuclear Eng. Technol.
– reference: J. Brownlee, Master machine learning algorithms: discover how they work and implement them from scratch, 2016.
– reference: A. Ng, Machine learning yearning, in: URL:
– volume: 10
  start-page: 9
  year: 2022
  end-page: 22
  ident: bib0109
  article-title: Machine-learning-driven digital twin for lifecycle management of complex equipment
  publication-title: IEEE Trans Emerg Top Comput
– start-page: 1781
  year: 2020
  end-page: 1788
  ident: bib0078
  article-title: The design of a digital-twin for predictive maintenance
  publication-title: IEEE Symposium on Emerging Technologies and Factory Automation, ETFA
– reference: K. Shanmugam, The perfect pair: digital twins and predictive maintenance, in, 2021.
– year: 2019
  ident: bib0069
  article-title: On digital twin condition monitoring approach for drivetrains in marine applications
  publication-title: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE
– volume: 54
  start-page: 1047
  year: 2021
  end-page: 1052
  ident: bib0108
  article-title: LIVE digital twin for smart maintenance in structural systems
  publication-title: IFAC-PapersOnLine
– start-page: 197
  year: 2018
  end-page: 204
  ident: bib0023
  article-title: A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective
  publication-title: 2nd International Conference on Green Energy and Applications (ICGEA)
– year: 2017
  ident: bib0085
  article-title: Deep learning for natural language processing: develop deep learning models for your natural language problems
  publication-title: Machine Learn. Mastery
– volume: 66
  start-page: 461
  year: 2017
  end-page: 464
  ident: bib0014
  article-title: A procedural approach for realizing prescriptive maintenance planning in manufacturing industries
  publication-title: CIRP Ann.
– year: 2020
  ident: bib0063
  article-title: Domain adaptation digital twin for rolling element bearing prognostics
  publication-title: Proceedings of the Annual Conference of the Prognostics and Health Management Society, PHM
– start-page: 2340
  year: 2019
  end-page: 2347
  ident: bib0058
  article-title: Digital twin for reliability analysis during design and operation of mechatronic systems
  publication-title: Proceedings of the 29th European Safety and Reliability Conference, ESREL
– volume: 200
  start-page: 778
  year: 2022
  end-page: 792
  ident: bib0114
  article-title: Text mining techniques for the management of predictive maintenance
  publication-title: Procedia Comput. Sci.
– start-page: 65
  year: 2020
  ident: bib0044
  article-title: A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin
  publication-title: Robot Comput. Integr. Manuf.
– volume: 7
  start-page: 19990
  year: 2019
  end-page: 19999
  ident: bib0042
  article-title: A digital-twin-assisted fault diagnosis using deep transfer learning
  publication-title: IEEE Access
– reference: A.S.M. Al-Azzawi, Two-Degree-of-Freedom Systems, in, University of Babylon, n.d.
– year: 2020
  ident: bib0065
  article-title: Life prediction for aircraft structure based on Bayesian inference: towards a digital twin ecosystem
  publication-title: Proceedings of the Annual Conference of the Prognostics and Health Management Society
– start-page: 292
  year: 2019
  end-page: 298
  ident: bib0025
  article-title: Industrial IoT devices and cyber-physical production systems: review and use case
  publication-title: Lecture Notes in Electr. Eng.
– year: 2022
  ident: bib115
  publication-title: Mendeley Data
– volume: 42
  start-page: 267
  year: 2020
  end-page: 272
  ident: bib0020
  article-title: Digital twin models in industrial operations: a systematic literature review
  publication-title: Procedia Manuf.
– start-page: 223
  year: 2019
  end-page: 233
  ident: bib0075
  article-title: State-of-the-art and future directions for predictive modelling of offshore structure dynamics using machine learning
  publication-title: Conference Proceedings of the Society for Experimental Mechanics Series
– start-page: 1
  year: 2019
  end-page: 10
  ident: bib0012
  article-title: Prescriptive maintenance of railway infrastructure: from data analytics to decision support
  publication-title: 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), IEEE
– reference: J. Brownlee, Autoencoder Feature Extraction for Classification, in, 2020.
– volume: 261
  year: 2022
  ident: bib0102
  article-title: A Digital Twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics
  publication-title: Energy Build.
– volume: 9
  start-page: 54
  year: 2015
  end-page: 89
  ident: bib0001
  article-title: Industry 4.0: the future of productivity and growth in manufacturing industries
  publication-title: Boston Consulting Group
– reference: R. van Dinter, B. Tekinerdogan, C. Catal, Automation of systematic literature reviews: a systematic literature review, Inf. Softw. Technol., (2021) 106589.
– start-page: 1
  year: 2020
  end-page: 15
  ident: bib0055
  article-title: Digital twin design for real-time monitoring – a case study of die cutting machine
  publication-title: Int. J. Prod. Res.
– reference: OpenModelica, Introduction, in, n.d.
– start-page: 112
  year: 2020
  ident: bib0054
  article-title: Digital twin based condition monitoring of a knuckle boom crane: an experimental study
  publication-title: Eng. Fail. Anal.
– reference: . org/(96), 2017.
– volume: 59
  start-page: 4903
  year: 2021
  end-page: 4959
  ident: bib0030
  article-title: Artificial intelligence (AI) in augmented reality (AR)-assisted manufacturing applications: a review
  publication-title: Int. J. Prod. Res.
– year: 2019
  ident: bib0008
  article-title: The evolution of asset management: harnessing digitalization and data analytics
  publication-title: Offshore Technology Conference, OnePetro
– reference: P. Aivaliotis, E. Xanthakis, A. Sardelis, Machines' Behaviour Prediction Tool (BPT) For Maintenance Applications, in: IFAC-PapersOnLine, 2020, pp. 325–329.
– start-page: 1
  year: 2020
  end-page: 7
  ident: bib0071
  article-title: Optimal RUL estimation: a state-of-art digital twin application
  publication-title: 2020 Annual Reliability and Maintainability Symposium (RAMS)
– year: 2017
  ident: bib0087
  article-title: Long short-term memory networks with python: develop sequence prediction models with deep learning
  publication-title: Machine Learn. Mastery
– volume: 32
  start-page: 987
  year: 2018
  end-page: 1009
  ident: bib0024
  article-title: Machine health management in smart factory: a review
  publication-title: J. Mech. Sci. Technol.
– start-page: 1
  year: 2021
  end-page: 8
  ident: bib0050
  article-title: Comparison of agent deployment strategies for collaborative prognosis
  publication-title: 2021 IEEE International Conference on Prognostics and Health Management (ICPHM)
– start-page: 55
  year: 2020
  end-page: 62
  ident: bib0073
  article-title: REPLICA: a solution for next generation iot and digital twin based fault diagnosis and predictive maintenance
  publication-title: CEUR Workshop Proceedings
– year: 2021
  ident: bib0062
  article-title: Digital-twin assisted: fault diagnosis using deep transfer learning for machining tool condition
  publication-title: Int. J. Intelligent Syst. n/a
– volume: 58
  start-page: 293
  year: 2021
  end-page: 304
  ident: bib0040
  article-title: A Digital Twin approach based on nonparametric Bayesian network for complex system health monitoring
  publication-title: J. Manuf. Syst.
– volume: 59
  start-page: 1922
  year: 2021
  end-page: 1954
  ident: bib0026
  article-title: The applications of Industry 4.0 technologies in manufacturing context: a systematic literature review
  publication-title: Int. J. Prod. Res.
– start-page: 1
  year: 2018
  end-page: 8
  ident: bib0064
  article-title: Industrial AI enabled prognostics for high-speed railway systems
  publication-title: 2018 IEEE International Conference on Prognostics and Health Management (ICPHM)
– volume: 9
  start-page: 1
  year: 2021
  end-page: 21
  ident: bib0018
  article-title: Digital twin-based sustainable intelligent manufacturing: a review
  publication-title: Adv. Manuf.
– volume: 21
  year: 2021
  ident: bib0022
  article-title: Digital twin-driven remaining useful life prediction for gear performance degradation: a review
  publication-title: J. Comput. Inf. Sci. Eng.
– reference: Wago, Snelle communicatie tussen automatiserings- en veldapparaten: MODBUS, in, n.d.
– volume: 67
  start-page: 169
  year: 2018
  end-page: 172
  ident: bib0038
  article-title: Digital twin driven prognostics and health management for complex equipment
  publication-title: CIRP Ann.
– volume: 66
  start-page: 141
  year: 2017
  end-page: 144
  ident: bib0006
  article-title: Shaping the digital twin for design and production engineering
  publication-title: CIRP Ann.
– start-page: 9
  year: 2018
  ident: bib0053
  article-title: Design of cyber-physical systems architecture for prognostics and health management of high-speed railway transportation systems
  publication-title: Int. J. Prognostics and Health Manag.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 21
  ident: bib0088
  article-title: Constructing a reliable health indicator for bearings using convolutional autoencoder and continuous wavelet transform
  publication-title: Appl. Sci. (Switzerland)
– volume: 51
  start-page: 1190
  year: 2019
  end-page: 1216
  ident: bib0028
  article-title: The internet of things for smart manufacturing: a review
  publication-title: IISE Trans.
– start-page: 1
  year: 2021
  end-page: 7
  ident: bib0100
  article-title: A data-driven remaining useful life prediction methodology: optimization based on digital twin
  publication-title: 2021 Global Reliability and Prognostics and Health Manag. (PHM-Nanjing)
– volume: 20
  start-page: 5103
  year: 2020
  ident: bib0015
  article-title: Systems architecture design pattern catalog for developing digital twins
  publication-title: Sensors
– start-page: 1
  year: 2015
  end-page: 20
  ident: bib0013
  article-title: Digital prescriptive maintenance, internet of things, process of everything
  publication-title: BPM Everywhere
– year: 2017
  ident: bib0089
  article-title: Understanding Kalman Filters
– volume: 21
  start-page: 932
  year: 2021
  ident: bib0011
  article-title: Remaining useful life (Rul) prediction of equipment in production lines using artificial neural networks
  publication-title: Sensors
– start-page: 140
  year: 2020
  ident: bib0051
  article-title: Deep digital twins for detection, diagnostics and prognostics
  publication-title: Mech. Syst. Signal Process.
– start-page: 1
  year: 2019
  end-page: 4
  ident: bib0074
  article-title: Social internet of digital twins via distributed ledger technologies: application of predictive maintenance
  publication-title: 2019 27th Telecommun. Forum (TELFOR)
– volume: 51
  start-page: 643
  year: 2018
  end-page: 648
  ident: bib0076
  article-title: Streaming synthetic time series for simulated condition monitoring
  publication-title: IFAC-PapersOnLine
– start-page: 1
  year: 2021
  end-page: 5
  ident: bib0110
  article-title: PHM of rail vehicle based on digital twin
  publication-title: 2021 Global Reliability and Prognostics and Health Manag. (PHM-Nanjing)
– volume: 32
  start-page: 1067
  year: 2019
  end-page: 1080
  ident: bib0079
  article-title: The use of Digital Twin for predictive maintenance in manufacturing
  publication-title: Int. J. Comput. Integrated Manuf.
– volume: 200
  start-page: 1471
  year: 2022
  end-page: 1480
  ident: bib0096
  article-title: Advances of digital twins for predictive maintenance
  publication-title: Procedia Comput. Sci.
– start-page: 140
  year: 2020
  ident: bib0029
  article-title: Augmented reality in support of intelligent manufacturing – A systematic literature review
  publication-title: Comput. Ind. Eng.
– start-page: 4122
  year: 2020
  end-page: 4127
  ident: bib0072
  publication-title: 2020 IEEE Int. Conference on Big Data (Big Data)
– start-page: 29
  year: 2020
  end-page: 33
  ident: bib0046
  article-title: An architecture based on digital twins for smart power distribution system
  publication-title: 2020 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD)
– volume: 6
  start-page: 23
  year: 2018
  ident: bib0009
  article-title: Requirements of the smart factory system: a survey and perspective
  publication-title: Machines
– year: 2021
  ident: bib0113
  article-title: Predictive maintenance of pumps in civil infrastructure: state-of-the-art, challenges and future directions
  publication-title: Automation in Construction
– volume: 26
  start-page: 1327
  year: 2018
  end-page: 1372
  ident: bib0036
  article-title: Model-based testing for software safety: a systematic mapping study
  publication-title: Software Quality J.
– reference: M. Grieves, J. Vickers, Digital twin: Mitigating unpredictable, Undesirable Emergent Behavior in Complex systems, in: Transdisciplinary perspectives On Complex Systems, Springer, 2017, pp. 85–113.
– start-page: 455
  year: 2022
  end-page: 462
  ident: bib0112
  article-title: Predictive Maintenance Framework for Production Environments Using Digital Twin
  publication-title: Lecture Notes in Networks and Syst.
– start-page: 1
  year: 2021
  end-page: 33
  ident: bib0027
  article-title: Digitalisation and servitisation of machine tools in the era of industry 4.0: a review
  publication-title: Int. J. Prod. Res.
– volume: 49
  start-page: 81
  year: 2020
  end-page: 88
  ident: bib0017
  article-title: Remaining useful life prediction using deep learning approaches: a review
  publication-title: Procedia Manuf.
– volume: 9
  year: 2021
  ident: bib0066
  article-title: Lifetime prediction using a tribology-aware, deep learning-based digital twin of ball bearing-like tribosystems in oil and gas
  publication-title: Processes
– start-page: 142
  year: 2021
  ident: bib0099
  article-title: Buiding a digital twin for robot workcell prognostics and health management
  publication-title: Proceedings of the Winter Simulation Conference, IEEE Press, Phoenix, Arizona
– reference: M. Ulusoy, Predictive maintenance, part 3: remaining useful life estimation, in, n.d.
– volume: 81
  start-page: 417
  year: 2019
  end-page: 422
  ident: bib0068
  article-title: Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance
  publication-title: Procedia CIRP
– volume: 58
  start-page: 329
  year: 2021
  end-page: 345
  ident: bib0111
  article-title: Prediction maintenance integrated decision-making approach supported by digital twin-driven cooperative awareness and interconnection framework
  publication-title: J. Manuf. Syst.
– volume: 114
  start-page: 3751
  year: 2021
  end-page: 3761
  ident: bib0061
  article-title: Digital twin–driven aero-engine intelligent predictive maintenance
  publication-title: Inte. J. Adv. Manuf. Technol.
– reference: R. van de Schoot, D. Oberski, J. de Bruin, R. Schram, P. Zahedi, Automated systematic review v0.1.1, in: zenodo (Ed.), 2019.
– volume: 85
  start-page: 273
  year: 2021
  end-page: 286
  ident: bib0059
  article-title: Digital twin modeling for predictive maintenance of gearboxes in floating offshore wind turbine drivetrains
  publication-title: Forschung im Ingenieurwesen/Eng. Res.
– volume: 81
  start-page: 1388
  year: 2019
  end-page: 1393
  ident: bib0056
  article-title: Digital twin for machining tool condition prediction
  publication-title: Procedia CIRP
– volume: 165
  start-page: 18
  year: 2019
  end-page: 24
  ident: bib0060
  article-title: Digital twin of an automotive brake pad for predictive maintenance
  publication-title: Procedia Comput. Sci.
– year: 2017
  ident: bib0002
  article-title: The fourth industrial revolution
  publication-title: Currency
– volume: 46
  start-page: 2555
  year: 2021
  end-page: 2564
  ident: bib0039
  article-title: A data-driven digital-twin prognostics method for proton exchange membrane fuel cell remaining useful life prediction
  publication-title: Int. J. Hydrogen Energy
– start-page: 71
  year: 2021
  ident: bib0052
  article-title: Degradation curves integration in physics-based models: towards the predictive maintenance of industrial robots
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 34
  start-page: 1
  year: 2021
  end-page: 29
  ident: bib0016
  article-title: Challenges and Opportunities of AI-Enabled Monitoring
  publication-title: Diagnosis & Prognosis: A Rev. Chinese J. Mech. Eng.
– volume: 55
  start-page: 139
  year: 2021
  end-page: 146
  ident: bib0107
  article-title: A framework of dynamic data driven digital twin for complex engineering products: the example of aircraft engine health management
  publication-title: Procedia Manuf.
– ident: 10.1016/j.infsof.2022.107008_bib0091
– volume: 81
  start-page: 1388
  year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0056
  article-title: Digital twin for machining tool condition prediction
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2019.04.049
– year: 2007
  ident: 10.1016/j.infsof.2022.107008_bib0080
  article-title: Bearing Data Set
  publication-title: NASA Ames Prognostics Data Repository
– start-page: 507
  year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0083
  article-title: Data-driven pattern-based constructs definition for the digital transformation modelling of collaborative networked manufacturing enterprises
– start-page: 9
  year: 2018
  ident: 10.1016/j.infsof.2022.107008_bib0053
  article-title: Design of cyber-physical systems architecture for prognostics and health management of high-speed railway transportation systems
  publication-title: Int. J. Prognostics and Health Manag.
– ident: 10.1016/j.infsof.2022.107008_bib0082
– volume: 261
  year: 2022
  ident: 10.1016/j.infsof.2022.107008_bib0102
  article-title: A Digital Twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.111988
– volume: 59
  start-page: 1922
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0026
  article-title: The applications of Industry 4.0 technologies in manufacturing context: a systematic literature review
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2020.1824085
– volume: 114
  start-page: 3751
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0061
  article-title: Digital twin–driven aero-engine intelligent predictive maintenance
  publication-title: Inte. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-021-06976-w
– volume: 49
  start-page: 81
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0017
  article-title: Remaining useful life prediction using deep learning approaches: a review
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2020.06.015
– volume: 200
  start-page: 1471
  year: 2022
  ident: 10.1016/j.infsof.2022.107008_bib0096
  article-title: Advances of digital twins for predictive maintenance
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2022.01.348
– start-page: 1
  year: 2018
  ident: 10.1016/j.infsof.2022.107008_bib0064
  article-title: Industrial AI enabled prognostics for high-speed railway systems
– volume: 32
  start-page: 987
  year: 2018
  ident: 10.1016/j.infsof.2022.107008_bib0024
  article-title: Machine health management in smart factory: a review
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-018-0201-1
– volume: 42
  start-page: 267
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0020
  article-title: Digital twin models in industrial operations: a systematic literature review
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2020.02.084
– volume: 9
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0066
  article-title: Lifetime prediction using a tribology-aware, deep learning-based digital twin of ball bearing-like tribosystems in oil and gas
  publication-title: Processes
  doi: 10.3390/pr9060922
– start-page: 4122
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0072
  publication-title: 2020 IEEE Int. Conference on Big Data (Big Data)
  doi: 10.1109/BigData50022.2020.9378433
– volume: 21
  start-page: 932
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0011
  article-title: Remaining useful life (Rul) prediction of equipment in production lines using artificial neural networks
  publication-title: Sensors
  doi: 10.3390/s21030932
– volume: 52
  start-page: 871
  year: 2010
  ident: 10.1016/j.infsof.2022.107008_bib0031
  article-title: A systematic review of comparative evidence of aspect-oriented programming
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2010.05.003
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0088
  article-title: Constructing a reliable health indicator for bearings using convolutional autoencoder and continuous wavelet transform
  publication-title: Appl. Sci. (Switzerland)
– ident: 10.1016/j.infsof.2022.107008_bib0094
– ident: 10.1016/j.infsof.2022.107008_bib0041
  doi: 10.1016/j.ifacol.2019.10.016
– year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0048
  article-title: Application of digital twins in the management of socio-economic systems
– ident: 10.1016/j.infsof.2022.107008_bib0004
– ident: 10.1016/j.infsof.2022.107008_bib0007
– start-page: 197
  year: 2018
  ident: 10.1016/j.infsof.2022.107008_bib0023
  article-title: A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective
– start-page: 1
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0110
  article-title: PHM of rail vehicle based on digital twin
  publication-title: 2021 Global Reliability and Prognostics and Health Manag. (PHM-Nanjing)
– volume: 51
  start-page: 643
  year: 2018
  ident: 10.1016/j.infsof.2022.107008_bib0076
  article-title: Streaming synthetic time series for simulated condition monitoring
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.08.391
– volume: 26
  start-page: 1327
  year: 2018
  ident: 10.1016/j.infsof.2022.107008_bib0036
  article-title: Model-based testing for software safety: a systematic mapping study
  publication-title: Software Quality J.
  doi: 10.1007/s11219-017-9386-2
– ident: 10.1016/j.infsof.2022.107008_bib0035
– year: 2017
  ident: 10.1016/j.infsof.2022.107008_bib0085
  article-title: Deep learning for natural language processing: develop deep learning models for your natural language problems
  publication-title: Machine Learn. Mastery
– start-page: 19
  year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0047
  article-title: An industrial digitalization platform for condition monitoring and predictive maintenance of pumping equipment
  publication-title: Sensors (Switzerland)
– volume: 10
  start-page: 9
  year: 2022
  ident: 10.1016/j.infsof.2022.107008_bib0109
  article-title: Machine-learning-driven digital twin for lifecycle management of complex equipment
  publication-title: IEEE Trans Emerg Top Comput
  doi: 10.1109/TETC.2022.3143346
– year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0008
  article-title: The evolution of asset management: harnessing digitalization and data analytics
– volume: 20
  start-page: 5103
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0015
  article-title: Systems architecture design pattern catalog for developing digital twins
  publication-title: Sensors
  doi: 10.3390/s20185103
– year: 2022
  ident: 10.1016/j.infsof.2022.107008_bib115
  publication-title: Mendeley Data
– year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0113
  article-title: Predictive maintenance of pumps in civil infrastructure: state-of-the-art, challenges and future directions
  publication-title: Automation in Construction
– start-page: 1
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0098
  article-title: Augmented-reality-assisted bearing fault diagnosis in intelligent manufacturing workshop using deep transfer learning
  publication-title: 2021 Global Reliability and Prognostics and Health Manag. (PHM-Nanjing)
– start-page: 1
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0071
  article-title: Optimal RUL estimation: a state-of-art digital twin application
– start-page: 65
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0044
  article-title: A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin
  publication-title: Robot Comput. Integr. Manuf.
– volume: 55
  start-page: 132
  year: 2022
  ident: 10.1016/j.infsof.2022.107008_bib0106
  article-title: Feature investigation with digital twin for predictive maintenance following a machine learning approach
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2022.04.182
– volume: 165
  start-page: 18
  year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0060
  article-title: Digital twin of an automotive brake pad for predictive maintenance
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.01.061
– volume: 130
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0021
  article-title: Digital twin paradigm: a systematic literature review
  publication-title: Comput. Ind.y
– start-page: 121
  year: 2007
  ident: 10.1016/j.infsof.2022.107008_bib0010
  article-title: Condition based operational risk assessment an innovative approach to improve fleet and aircraft operability: maintenance planning
– ident: 10.1016/j.infsof.2022.107008_bib0084
– ident: 10.1016/j.infsof.2022.107008_bib0033
  doi: 10.1007/978-3-319-38756-7_4
– ident: 10.1016/j.infsof.2022.107008_bib0032
  doi: 10.1016/j.infsof.2021.106589
– year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0063
  article-title: Domain adaptation digital twin for rolling element bearing prognostics
– start-page: 878
  year: 2008
  ident: 10.1016/j.infsof.2022.107008_bib0081
  article-title: Turbofan engine degradation simulation data set
  publication-title: NASA Ames Prognostics Data Repository
– volume: 200
  start-page: 778
  year: 2022
  ident: 10.1016/j.infsof.2022.107008_bib0114
  article-title: Text mining techniques for the management of predictive maintenance
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2022.01.276
– volume: 157
  start-page: 189
  year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0037
  article-title: Obstacles and features of Farm Management Information Systems: a systematic literature review
  publication-title: Comput. Electron. Agriculture
  doi: 10.1016/j.compag.2018.12.044
– ident: 10.1016/j.infsof.2022.107008_bib0092
– year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0045
  article-title: A smart process controller framework for industry 4.0 settings
  publication-title: J. Intell. Manuf.
– start-page: 1
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0097
  article-title: AI environment for predictive maintenance in a manufacturing scenario
– start-page: 2340
  year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0058
  article-title: Digital twin for reliability analysis during design and operation of mechatronic systems
– start-page: 55
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0073
  article-title: REPLICA: a solution for next generation iot and digital twin based fault diagnosis and predictive maintenance
– volume: 32
  start-page: 1067
  year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0079
  article-title: The use of Digital Twin for predictive maintenance in manufacturing
  publication-title: Int. J. Comput. Integrated Manuf.
  doi: 10.1080/0951192X.2019.1686173
– volume: 54
  start-page: 1047
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0108
  article-title: LIVE digital twin for smart maintenance in structural systems
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.08.124
– volume: 55
  start-page: 138
  year: 2022
  ident: 10.1016/j.infsof.2022.107008_bib0104
  article-title: Employing LIVE digital twin in prognostic and health management: identifying location of the sensors
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2022.04.183
– volume: 58
  start-page: 293
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0040
  article-title: A Digital Twin approach based on nonparametric Bayesian network for complex system health monitoring
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.07.005
– start-page: 1781
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0078
  article-title: The design of a digital-twin for predictive maintenance
– volume: 66
  start-page: 141
  year: 2017
  ident: 10.1016/j.infsof.2022.107008_bib0006
  article-title: Shaping the digital twin for design and production engineering
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2017.04.040
– ident: 10.1016/j.infsof.2022.107008_bib0095
– start-page: 1
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0050
  article-title: Comparison of agent deployment strategies for collaborative prognosis
– ident: 10.1016/j.infsof.2022.107008_bib0005
– start-page: 336
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0103
  article-title: Digital twins in mechatronics: from model-based control to predictive maintenance
  publication-title: 2021 IEEE 1st Int. Conference on Digital Twins and Parallel Intelligence (DTPI)
– volume: 39
  start-page: 1743
  year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0049
  article-title: Approach for a holistic predictive maintenance strategy by incorporating a digital twin
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2020.01.265
– ident: 10.1016/j.infsof.2022.107008_bib0034
– ident: 10.1016/j.infsof.2022.107008_bib0086
– year: 2017
  ident: 10.1016/j.infsof.2022.107008_bib0089
– volume: 66
  start-page: 461
  year: 2017
  ident: 10.1016/j.infsof.2022.107008_bib0014
  article-title: A procedural approach for realizing prescriptive maintenance planning in manufacturing industries
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2017.04.007
– year: 2017
  ident: 10.1016/j.infsof.2022.107008_bib0087
  article-title: Long short-term memory networks with python: develop sequence prediction models with deep learning
  publication-title: Machine Learn. Mastery
– start-page: 140
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0029
  article-title: Augmented reality in support of intelligent manufacturing – A systematic literature review
  publication-title: Comput. Ind. Eng.
– start-page: 1
  year: 2015
  ident: 10.1016/j.infsof.2022.107008_bib0013
  article-title: Digital prescriptive maintenance, internet of things, process of everything
  publication-title: BPM Everywhere
– volume: 55
  start-page: 139
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0107
  article-title: A framework of dynamic data driven digital twin for complex engineering products: the example of aircraft engine health management
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2021.10.020
– volume: 123
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0003
  article-title: Digital Twin for maintenance: a literature review
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2020.103316
– ident: 10.1016/j.infsof.2022.107008_bib0090
– year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0057
  article-title: Digital twin for oil pipeline risk estimation using prognostic and machine learning techniques
  publication-title: J. Ind. Inf. Integration
– start-page: 1
  year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0074
  article-title: Social internet of digital twins via distributed ledger technologies: application of predictive maintenance
  publication-title: 2019 27th Telecommun. Forum (TELFOR)
– volume: 59
  start-page: 4903
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0030
  article-title: Artificial intelligence (AI) in augmented reality (AR)-assisted manufacturing applications: a review
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2020.1859636
– start-page: 112
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0054
  article-title: Digital twin based condition monitoring of a knuckle boom crane: an experimental study
  publication-title: Eng. Fail. Anal.
– start-page: 455
  year: 2022
  ident: 10.1016/j.infsof.2022.107008_bib0112
  article-title: Predictive Maintenance Framework for Production Environments Using Digital Twin
  publication-title: Lecture Notes in Networks and Syst.
  doi: 10.1007/978-3-030-85577-2_54
– volume: 34
  start-page: 567
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0019
  article-title: Digital twin for smart manufacturing: a review of concepts towards a practical industrial implementation
  publication-title: Int. J. Comput. Integrated Manuf.
  doi: 10.1080/0951192X.2021.1911003
– volume: 58
  start-page: 329
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0111
  article-title: Prediction maintenance integrated decision-making approach supported by digital twin-driven cooperative awareness and interconnection framework
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.08.001
– start-page: 1
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0027
  article-title: Digitalisation and servitisation of machine tools in the era of industry 4.0: a review
  publication-title: Int. J. Prod. Res.
– volume: 21
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0022
  article-title: Digital twin-driven remaining useful life prediction for gear performance degradation: a review
  publication-title: J. Comput. Inf. Sci. Eng.
  doi: 10.1115/1.4049537
– year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0069
  article-title: On digital twin condition monitoring approach for drivetrains in marine applications
– start-page: 223
  year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0075
  article-title: State-of-the-art and future directions for predictive modelling of offshore structure dynamics using machine learning
– volume: 85
  start-page: 273
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0059
  article-title: Digital twin modeling for predictive maintenance of gearboxes in floating offshore wind turbine drivetrains
  publication-title: Forschung im Ingenieurwesen/Eng. Res.
  doi: 10.1007/s10010-021-00468-9
– ident: 10.1016/j.infsof.2022.107008_bib0093
– volume: 9
  start-page: 54
  year: 2015
  ident: 10.1016/j.infsof.2022.107008_bib0001
  article-title: Industry 4.0: the future of productivity and growth in manufacturing industries
  publication-title: Boston Consulting Group
– year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0065
  article-title: Life prediction for aircraft structure based on Bayesian inference: towards a digital twin ecosystem
– start-page: 29
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0046
  article-title: An architecture based on digital twins for smart power distribution system
– year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0062
  article-title: Digital-twin assisted: fault diagnosis using deep transfer learning for machining tool condition
  publication-title: Int. J. Intelligent Syst. n/a
– start-page: 292
  year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0025
  article-title: Industrial IoT devices and cyber-physical production systems: review and use case
  publication-title: Lecture Notes in Electr. Eng.
  doi: 10.1007/978-3-319-91334-6_40
– volume: 34
  start-page: 1
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0016
  article-title: Challenges and Opportunities of AI-Enabled Monitoring
  publication-title: Diagnosis & Prognosis: A Rev. Chinese J. Mech. Eng.
– start-page: 1
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0100
  article-title: A data-driven remaining useful life prediction methodology: optimization based on digital twin
  publication-title: 2021 Global Reliability and Prognostics and Health Manag. (PHM-Nanjing)
– start-page: 393
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0043
  article-title: A hybrid cyber physical digital twin approach for smart grid fault prediction
– start-page: 186
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0101
  article-title: Deep transfer fault diagnosis using digital twin and generative adversarial network
– start-page: 1
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0055
  article-title: Digital twin design for real-time monitoring – a case study of die cutting machine
  publication-title: Int. J. Prod. Res.
– start-page: 140
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0051
  article-title: Deep digital twins for detection, diagnostics and prognostics
  publication-title: Mech. Syst. Signal Process.
– year: 2017
  ident: 10.1016/j.infsof.2022.107008_bib0002
  article-title: The fourth industrial revolution
  publication-title: Currency
– volume: 7
  start-page: 19990
  year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0042
  article-title: A digital-twin-assisted fault diagnosis using deep transfer learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890566
– volume: 81
  start-page: 417
  year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0068
  article-title: Methodology for enabling digital twin using advanced physics-based modelling in predictive maintenance
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2019.03.072
– start-page: 71
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0052
  article-title: Degradation curves integration in physics-based models: towards the predictive maintenance of industrial robots
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 51
  start-page: 1190
  year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0028
  article-title: The internet of things for smart manufacturing: a review
  publication-title: IISE Trans.
  doi: 10.1080/24725854.2018.1555383
– start-page: 30
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0105
  article-title: Fault diagnosis of gearbox based on digital twin concept model
  publication-title: 2021 4th Int. Conference on Intelligent Robotics and Control Eng. (IRCE)
– start-page: 1
  year: 2019
  ident: 10.1016/j.infsof.2022.107008_bib0012
  article-title: Prescriptive maintenance of railway infrastructure: from data analytics to decision support
– volume: 67
  start-page: 169
  year: 2018
  ident: 10.1016/j.infsof.2022.107008_bib0038
  article-title: Digital twin driven prognostics and health management for complex equipment
  publication-title: CIRP Ann.
  doi: 10.1016/j.cirp.2018.04.055
– ident: 10.1016/j.infsof.2022.107008_bib0067
  doi: 10.1016/j.ifacol.2020.11.052
– volume: 46
  start-page: 2555
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0039
  article-title: A data-driven digital-twin prognostics method for proton exchange membrane fuel cell remaining useful life prediction
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.10.108
– volume: 9
  start-page: 1
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0018
  article-title: Digital twin-based sustainable intelligent manufacturing: a review
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-020-00302-5
– start-page: 162
  year: 2022
  ident: 10.1016/j.infsof.2022.107008_bib0070
  article-title: Online condition monitoring of floating wind turbines drivetrain by means of digital twin
– volume: 52
  start-page: 2262
  year: 2020
  ident: 10.1016/j.infsof.2022.107008_bib0077
  article-title: The application of machine learning for the prognostics and health management of control element drive system
  publication-title: Nuclear Eng. Technol.
  doi: 10.1016/j.net.2020.03.028
– volume: 6
  start-page: 23
  year: 2018
  ident: 10.1016/j.infsof.2022.107008_bib0009
  article-title: Requirements of the smart factory system: a survey and perspective
  publication-title: Machines
  doi: 10.3390/machines6020023
– start-page: 142
  year: 2021
  ident: 10.1016/j.infsof.2022.107008_bib0099
  article-title: Buiding a digital twin for robot workcell prognostics and health management
SSID ssj0017030
Score 2.6744668
SecondaryResourceType review_article
Snippet •The first SLR in predictive maintenance using Digital Twins.•42 primary studies were analyzed.•Key questions for designing a predictive maintance model were...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107008
SubjectTerms Active learning
Digital twin
Predictive maintenance
Systematic literature review
Title Predictive maintenance using digital twins: A systematic literature review
URI https://dx.doi.org/10.1016/j.infsof.2022.107008
Volume 151
WOSCitedRecordID wos000859493100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6025
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017030
  issn: 0950-5849
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELWgIMQFsYpdPnBDQYlDmoRb2QQIVRwK6i2yG6eiQKjasPTvmbGdBYoKHLhEUZTYTuZp8mY8CyF7jnRtaXNmMU-CgcJF3eIydiyfeYkvbc8-VEE0d9d-sxm02-GNCSsaqnYCfpoG7-9h_19FDddA2Jg6-wdxF4PCBTgHocMRxA7HXwn-ZoB7Lyoi6IljNYhUZQW8KKdAfN_FLiH72Rv6mVVWeqWW82NRY9mktFSpq0lcyvL45SEo8DeMG8vGvPOYE3WKU-vgbT56Kjf7W_IB8w3j5652vR7DaosA4RN0Juk4lC6cjqo-CTBnncInkTsXbQuoTfhJz5rKslpTgtlpq4oO40pc-xN6aHnAqxzgBAfl7Z9rZn_5lxURhnnwWi_So0Q4SqRHmSYzzPdC0IEzjcuz9lWx64TaT9dm1KvPUy1VPOD4ar6nMhV60lokC8auoA2NhyUyJdNlMpenNayQqxIWtAILqmBBDSyogsURbdASFLQEBdWgWCW352etkwvL9NGwOkCvM3iVWHV3tRNQG4LZMggSTwDxDhKwZjkwEmwGD9weCWHH8TjzYl_WJWMyFI6buGuklj6ncp1QwRMmORehg6X2DqVwgSL6iSvimAvpxhvEzT9J1DFF5rHXyWM0SSAbxCqe6usiKz_c7-dfOzJEURPACCA08cnNP860ReZLfG-TWjZ4kTtktvOa3Q8HuwY_HyHijX8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+maintenance+using+digital+twins%3A+A+systematic+literature+review&rft.jtitle=Information+and+software+technology&rft.au=van+Dinter%2C+Raymon&rft.au=Tekinerdogan%2C+Bedir&rft.au=Catal%2C+Cagatay&rft.date=2022-11-01&rft.issn=0950-5849&rft.volume=151&rft.spage=107008&rft_id=info:doi/10.1016%2Fj.infsof.2022.107008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_infsof_2022_107008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-5849&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-5849&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-5849&client=summon