Echo State Networks: Novel reservoir selection and hyperparameter optimization model for time series forecasting
The use of computational intelligence models for multi-step time series forecasting tasks has presented satisfactory results in such a way that they are considered models with an excellent future for this type of problem. From the point of view of computational cost, the current alternatives combine...
Uložené v:
| Vydané v: | Neurocomputing (Amsterdam) Ročník 545; s. 126317 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
07.08.2023
|
| Predmet: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The use of computational intelligence models for multi-step time series forecasting tasks has presented satisfactory results in such a way that they are considered models with an excellent future for this type of problem. From the point of view of computational cost, the current alternatives combined with classical models are generating hybrid models that present even better results. Within the AutoML category, the optimization of hyperparameters and the selection of network topologies has become a challenge. Reservoir Computing, which is within the area of Recurrent Neural Networks (RNN), proposes a particular model called Echo State Networks. which has been tested in different applications with excellent results; however, the difficulty in specifying the hyperparameters has been the subject of continuous study given the random nature of the set of neurons called Reservoir. Based on the Separation Ratio Graph (SRG) model for performance analysis, this paper proposes a new model, called Echo State Network - Genetic Algorithm - Separation Ratio Graph (ESN-GA-SRG), which optimizes network hyperparameters and at the same time selects the best topology for the Reservoir using the SRG coefficient, to find the reservoir that offers the most suitable dynamic behavior. The performance of this new model is evaluated on forecasting two sets of time series benchmarks with different characteristics of sampling periodicity, skewness, and stationarity. The results obtained show that the ESN-GA-SRG model was superior in predicting these time series in most cases, with statistical significance, when compared to other models that have been presented for this type of problem in the literature. |
|---|---|
| AbstractList | The use of computational intelligence models for multi-step time series forecasting tasks has presented satisfactory results in such a way that they are considered models with an excellent future for this type of problem. From the point of view of computational cost, the current alternatives combined with classical models are generating hybrid models that present even better results. Within the AutoML category, the optimization of hyperparameters and the selection of network topologies has become a challenge. Reservoir Computing, which is within the area of Recurrent Neural Networks (RNN), proposes a particular model called Echo State Networks. which has been tested in different applications with excellent results; however, the difficulty in specifying the hyperparameters has been the subject of continuous study given the random nature of the set of neurons called Reservoir. Based on the Separation Ratio Graph (SRG) model for performance analysis, this paper proposes a new model, called Echo State Network - Genetic Algorithm - Separation Ratio Graph (ESN-GA-SRG), which optimizes network hyperparameters and at the same time selects the best topology for the Reservoir using the SRG coefficient, to find the reservoir that offers the most suitable dynamic behavior. The performance of this new model is evaluated on forecasting two sets of time series benchmarks with different characteristics of sampling periodicity, skewness, and stationarity. The results obtained show that the ESN-GA-SRG model was superior in predicting these time series in most cases, with statistical significance, when compared to other models that have been presented for this type of problem in the literature. |
| ArticleNumber | 126317 |
| Author | Vellasco, Marley M.B.R. Valencia, Cesar H. Figueiredo, Karla |
| Author_xml | – sequence: 1 givenname: Cesar H. surname: Valencia fullname: Valencia, Cesar H. email: cesar.valencia@ustabuca.edu.co organization: GRAM – Mechatronics Engineering Research Group, Facultad de Ingeniería Mecatrónica, Universidad Santo Tomás – Seccional Bucaramanga, Colombia – sequence: 2 givenname: Marley M.B.R. surname: Vellasco fullname: Vellasco, Marley M.B.R. organization: Electrical Engineering Department, PUC-Rio, Rio de Janeiro 22451-900, Brazil – sequence: 3 givenname: Karla surname: Figueiredo fullname: Figueiredo, Karla organization: Electrical Engineering Department, PUC-Rio, Rio de Janeiro 22451-900, Brazil |
| BookMark | eNqFkMtOwzAQRS1UJNrCH7DwD6TYzqNxF0ioKg-pggWwthx7TF2SOLJNUfl60oYVC1iNZkZnNPdM0Kh1LSB0ScmMElpcbWctfCjXzBhh6YyyIqXzEzSm5ZwlJSuLERoTzvKEpZSdoUkIW0LonDI-Rt1KbRx-jjICfoT46fx7WOBHt4Maewjgd856HKAGFa1rsWw13uw78J30soEIHrsu2sZ-yeO-cbonjfO4H0IPegvh0IOSIdr27RydGlkHuPipU_R6u3pZ3ifrp7uH5c06UWnOYpLnspKFZExVRWkqDppIXlaUc8MLKCoFujRa68Jkhkuidc6pMlVGSmIgIzKdomy4q7wLwYMRnbeN9HtBiThYE1sxWBMHa2Kw1mOLX5iy8Rgtemnr_-DrAYY-2M6CF0FZaPtfbZ8_Cu3s3we-ATMikc8 |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2025_130084 crossref_primary_10_1016_j_energy_2024_133579 crossref_primary_10_1007_s41060_025_00797_w crossref_primary_10_1038_s44172_024_00330_0 crossref_primary_10_1007_s00521_024_10201_6 crossref_primary_10_1063_5_0272717 crossref_primary_10_1016_j_ces_2024_120397 crossref_primary_10_1007_s40313_023_01061_x crossref_primary_10_1088_2634_4386_ad1d32 crossref_primary_10_1007_s10614_024_10797_w crossref_primary_10_1088_1361_6501_ad71ea crossref_primary_10_3390_app14198686 crossref_primary_10_1088_1361_6501_ada4c9 crossref_primary_10_1016_j_ins_2024_120166 crossref_primary_10_1016_j_neunet_2024_106510 crossref_primary_10_1016_j_neucom_2023_127131 crossref_primary_10_1016_j_neunet_2025_107986 |
| Cites_doi | 10.1109/ITT48889.2019.9075065 10.1109/IJCNN.2004.1380039 10.1109/IJCNN.2005.1556095 10.1109/ICSCAN49426.2020.9262379 10.1016/j.neunet.2007.04.016 10.1016/j.cosrev.2009.03.005 10.1007/978-3-319-05582-4_38 10.1016/S0304-3975(02)00099-3 10.1109/UCET51115.2020.9205452 10.1016/j.asoc.2017.10.038 10.1109/TNNLS.2014.2316291 10.1126/science.1091277 10.1016/S0378-4371(00)00184-9 10.1142/9781848162778_0008 10.1109/TIE.2013.2253072 10.1007/s00500-019-04495-1 10.1207/s15516709cog1402_1 10.1109/I-SMAC49090.2020.9243556 10.1109/ICIEM48762.2020.9160191 10.1109/CICN.2015.129 10.1016/j.eswa.2015.07.017 10.1016/j.neunet.2007.04.003 10.1109/IJCNN.2015.7280687 10.1093/mnras/stv1617 10.1109/3477.650059 10.1016/j.rineng.2022.100847 10.1109/JSYST.2015.2409888 10.1162/jocn.1995.7.3.311 10.1016/j.energy.2019.116778 10.1109/ROBOT.2005.1570399 10.7551/mitpress/3927.001.0001 10.1016/S0166-4115(97)80111-2 10.1016/j.ipl.2005.05.019 10.1109/BIBM.2018.8621092 10.1016/0167-2789(93)90009-P 10.1109/TNN.2010.2089641 10.3390/en81012228 10.1109/SMC52423.2021.9659281 10.23919/ECC.2019.8795677 10.1073/pnas.79.8.2554 10.1016/j.matcom.2020.07.011 10.1007/s00500-020-04905-9 10.1109/TNNLS.2011.2178562 10.1109/TCYB.2019.2919648 10.1109/TNNLS.2016.2630802 10.1109/ISMSIT.2019.8932818 10.1109/ICDAR.2019.00211 10.1109/21.87054 10.1109/TSP.2004.837418 10.1109/IJCNN.2005.1556090 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s) |
| Copyright_xml | – notice: 2023 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.neucom.2023.126317 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| ExternalDocumentID | 10_1016_j_neucom_2023_126317 S092523122300440X |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c352t-55aba6a22cb68fb9ed0a98b199f96e6bced8fddd6f4f9a0dd591cfb4080fe40a3 |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001001952400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Tue Nov 18 20:40:24 EST 2025 Sat Nov 29 07:15:05 EST 2025 Fri Feb 23 02:36:39 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Separation Ratio Graph Echo State Network Genetic Algorithms Time Series Forecasting |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c352t-55aba6a22cb68fb9ed0a98b199f96e6bced8fddd6f4f9a0dd591cfb4080fe40a3 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.neucom.2023.126317 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2023_126317 crossref_citationtrail_10_1016_j_neucom_2023_126317 elsevier_sciencedirect_doi_10_1016_j_neucom_2023_126317 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-07 |
| PublicationDateYYYYMMDD | 2023-08-07 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | 10.1109/SMC52423.2021.9659281. Parthiban, R, R Ezhilarasi, and D Saravanan. 2020. “Optical Character Recognition for English Handwritten Text Using Recurrent Neural Network.” In 2020 International Conference on System, Computation, Automation and Networking (ICSCAN), , 1–5. 10.23919/ECC.2019.8795677. Lukoeviius, Jaeger (b0260) 2009; 3 Han, Xi, Shi-guo, Yin (b0110) 2004; 52 Han, Lee (b0100) 2014; 61 W. Maass Liquid State Machines: Motivation, Theory, and Applications 2010 10.1142/9781848162778_0008. Dominey, Arbib, Joseph (b0075) 1995; 7 Kosko (b0065) 1988; 18 Verstraeten, Schrauwen, Stroobandt, van Campenhout (b0135) 2005; 95 Duggento, Guerrisi, Toschi (b0175) 2019 10.1109/IJCNN.2005.1556090. 10.1109/IJCNN.2004.1380039. Steil, Jochen J. 2004. “Backpropagation-Decorrelation: Online Recurrent Learning with O(N) Complexity.” 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541) 2: 843–48 vol.2. Salmen, Matthias, and Paul-Gerhard Plöger. 2005. “Echo State Networks Used for Motor Control.” Proceedings of the 2005 IEEE International Conference on Robotics and Automation: 1953–58. Conover (b0335) 1980 Jaeger (b0255) 2002 Mitul (b0180) 2013 Lin, Boldbaatar (b0030) 2017; 11 Tan, Ning, Peng Yu, Fenglei Ni, and Zhenglong Sun. 2021. “Trajectory Tracking of Soft Continuum Robots with Unknown Models Based on Varying Parameter Recurrent Neural Networks.” In 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 1035–41. Al-Janabi, Mohammad, Al-Sultan (b0320) 2020; 24 10.1109/IJCNN.2015.7280687. Xu, Dongming, Jing Lan, and José Carlos Príncipe. 2005. “Direct Adaptive Control: An Echo State Network and Genetic Algorithm Approach.” Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. 3: 1483–86 vol. 3. Rodan, TjHo (b0165) 2011; 22 Natschläger, Maass (b0085) 2002; 287 Lacerda, E D. 2003. “Model Selection of RBF Networks via Genetic Algorithms.”. Frank, S, and Micheal erHanský. 2008. “Generalization and Systematicity in Echo State Networks.” https://hdl.handle.net/11245/1.297610. 10.1109/BIBM.2018.8621092. Wen, Xi, Hong Wang, and Weiming Zhai. 2015. “Intelligent Coordinate Registration Method for Computer-Assisted Surgery.” 2015 International Conference on Computational Intelligence and Communication Networks (CICN): 630–34. 10.1109/I-SMAC49090.2020.9243556. Usman, Muhammad et al. 2019. “Data Analytics for Short Term Price and Load Forecasting in Smart Grids Using Enhanced Recurrent Neural Network.” In 2019 Sixth HCT Information Technology Trends (ITT), , 84–88. Zhang, Miller, Wang (b0155) 2012; 23 Verstraeten, Schrauwen, D’Haene, Stroobandt (b0275) 2007; 20 Lei, Kuan-Cheok, and Xiaohua Douglas ZHANG. 2018. “An Approach on Discretizing Time Series Using Recurrent Neural Network.” In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2522–26S. Armenio, Luca Bugliari, Enrico Terzi, Marcello Farina, and Riccardo Scattolini. 2019. “Echo State Networks: Analysis, Training and Predictive Control.” In 2019 18th European Control Conference (ECC), , 799–804. Bian, Xinqian, and Chunhui Mou. 2011. “Identification of Non-Linear Dynamic Model of UUV Based on ESN Neural Network.” In Proceedings of the 30th Chinese Control Conference, , 1432–37. https://ieeexplore.ieee.org/document/6000405. Kadhuim, Al-Janabi (b0205) 2023; 17 10.1109/ICSCAN49426.2020.9262379. Jordan (b0060) 1997; 121 Jaeger, H. 2005. “Reservoir Riddles: Suggestions for Echo State Network Research.” Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. 3: 1460–62 vol. 3. 10.1109/ICDAR.2019.00211. De Aquino, Ronaldo R B et al. 2015. “Echo State Networks, Artificial Neural Networks and Fuzzy Systems Models for Improve Short-Term Wind Speed Forecasting.” In 2015 International Joint Conference on Neural Networks (IJCNN), , 1–8. Li, Li, Yu, Cheng (b0240) 2015; 8 N. Grando Máquina de Estado Líquido Para Previsão de Séries Temporais Contínuas: Aplicacão na Demanda de Energia Elétrica 2010 http://repositorio.utfpr.edu.br/jspui/handle/1/896. Bianchi, Livi, Alippi (b0220) 2018; 29 Kamanditya, Bharindra, and Benyamin Kusumoputro. 2020. “Elman Recurrent Neural Networks Based Direct Inverse Control for Quadrotor Attitude and Altitude Control.” In 2020 International Conference on Intelligent Engineering and Management (ICIEM), 39–43. Hu, Wang, Peng, Zeng (b0125) 2020; 193 Elman (b0070) 1990; 14 Ilies, Iulian et al. 2007. “Stepping Forward through Echoes of the Past : Forecasting with Echo State Networks.” http://www.neural-forecasting-competition.com/downloads/NN3/methods/27-NN3_Herbert_Jaeger_report.pdf. 10.1109/ISMSIT.2019.8932818. Lin, Leou (b0310) 1997; 27 Sage, Clément et al. 2019. “Recurrent Neural Network Approach for Table Field Extraction in Business Documents.” In 2019 International Conference on Document Analysis and Recognition (ICDAR), 1308–13. Gibbons (b0210) 2010 Soh, Demiris (b0150) 2015; 26 Bertschinger, Nils, Thomas Natschläger, and Robert A Legenstein. 2004. “At the Edge of Chaos: Real-Time Computations and Self-Organized Criticality in Recurrent Neural Networks.” In NIPS. https://dl.acm.org/doi/abs/10.5555/2976040.2976059. Jaeger, Haas (b0215) 2004; 304 Shen, Chen, Zeng, Yang, Jin (b0130) 2018; 62 Jaeger (b0080) 2001 Schrauwen, Benjamin, Lars Buesing, and Robert A Legenstein. 2008. “On Computational Power and the Order-Chaos Phase Transition in Reservoir Computing.” In NIPS. https://dl.acm.org/doi/10.5555/2981780.2981958. Jaeger, Lukoeviius, Popovici, Siewert (b0230) 2007; 20 Sasikumar, S, P N Renjith, K Ramesh, and K Sakthidasan Sankaran. 2020. “Attention Based Recurrent Neural Network for Lung Cancer Detection.” In 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 720–24. Mitchell, Melanie. 1996. “An Introduction to Genetic Algorithms.”. Al-Janabi, Alkaim, Adel (b0340) 2020; 24 Hopfield (b0055) 1982; 79 10.1109/ROBOT.2005.1570399. Mansoor, Grimaccia, Leva, Mussetta (b0120) 2021; 184 Goodman, Ventura (b0265) 2006 Rosenstein, Collins, de Luca (b0280) 1993; 65 Luque, Bartolo, and Ricard v Solé. 2000. “Lyapunov Exponents in Random Boolean Networks.” Physica A-statistical Mechanics and Its Applications 284: 33–45. https://doi.org/10.1016/S0378-4371(00)00184-9 Valencia, C.H., M.M.B.R. Vellasco, and K.T. Figueiredo. 2014. 274 Advances in Intelligent Systems and Computing Trajectory Tracking Control Using Echo State Networks for the CoroBot’s Arm. https://doi.org/10.1007/978-3-319-05582-4_38. Akdeniz, Fulya, and Yaşar Becerikli. 2019. “Performance Comparison of Support Vector Machine, K-Nearest-Neighbor, Artificial Neural Networks, and Recurrent Neural Networks in Gender Recognition from Voice Signals.” In 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1–4. Ma, Chen, Lin, Yan, Yu, Ng (b0170) 2021; 51 De Olivaes V d S R and Vellasco M B R. 2015. “Neural Expert Weighting: A NEW framework for dynamic forecast combination.”, Expert Systems with Applications, Volume 42, Issue 22, 8625-8636. https://doi.org/10.1016/j.eswa.2015.07.017 10.1109/IJCNN.2005.1556095. 10.1109/UCET51115.2020.9205452. Box, Jenkins (b0325) 1970 Ferreira, Ludermir (b0200) 2011 Magerl (b0160) 2015 Shi, Liu, Sun, Li, Lei, Wang (b0185) 2015; 453 10.1109/ITT48889.2019.9075065. 10.1109/ICIEM48762.2020.9160191. 10.1109/CICN.2015.129. Lemayian, Joel Poncha, and Jehad M Hamamreh. 2020. “Recurrent Neural Network-Based Channel Prediction in MMIMO for Enhanced Performance in Future Wireless Communication.” In 2020 International Conference on UK-China Emerging Technologies (UCET), 1–4. Lina, Zhihui, Gang (b0315) 2010 10.1016/j.neucom.2023.126317_b0225 Hopfield (10.1016/j.neucom.2023.126317_b0055) 1982; 79 10.1016/j.neucom.2023.126317_b0105 Lin (10.1016/j.neucom.2023.126317_b0310) 1997; 27 10.1016/j.neucom.2023.126317_b0305 Bianchi (10.1016/j.neucom.2023.126317_b0220) 2018; 29 Duggento (10.1016/j.neucom.2023.126317_b0175) 2019 Jaeger (10.1016/j.neucom.2023.126317_b0215) 2004; 304 Han (10.1016/j.neucom.2023.126317_b0100) 2014; 61 Verstraeten (10.1016/j.neucom.2023.126317_b0135) 2005; 95 10.1016/j.neucom.2023.126317_b0140 10.1016/j.neucom.2023.126317_b0020 Al-Janabi (10.1016/j.neucom.2023.126317_b0320) 2020; 24 Ferreira (10.1016/j.neucom.2023.126317_b0200) 2011 Jaeger (10.1016/j.neucom.2023.126317_b0255) 2002 10.1016/j.neucom.2023.126317_b0145 10.1016/j.neucom.2023.126317_b0025 Elman (10.1016/j.neucom.2023.126317_b0070) 1990; 14 10.1016/j.neucom.2023.126317_b0300 10.1016/j.neucom.2023.126317_b0115 Zhang (10.1016/j.neucom.2023.126317_b0155) 2012; 23 Lina (10.1016/j.neucom.2023.126317_b0315) 2010 Soh (10.1016/j.neucom.2023.126317_b0150) 2015; 26 Mitul (10.1016/j.neucom.2023.126317_b0180) 2013 Han (10.1016/j.neucom.2023.126317_b0110) 2004; 52 Ma (10.1016/j.neucom.2023.126317_b0170) 2021; 51 Conover (10.1016/j.neucom.2023.126317_b0335) 1980 Rosenstein (10.1016/j.neucom.2023.126317_b0280) 1993; 65 Kosko (10.1016/j.neucom.2023.126317_b0065) 1988; 18 10.1016/j.neucom.2023.126317_b0190 Jordan (10.1016/j.neucom.2023.126317_b0060) 1997; 121 10.1016/j.neucom.2023.126317_b0270 Shi (10.1016/j.neucom.2023.126317_b0185) 2015; 453 10.1016/j.neucom.2023.126317_b0195 Li (10.1016/j.neucom.2023.126317_b0240) 2015; 8 10.1016/j.neucom.2023.126317_b0035 Kadhuim (10.1016/j.neucom.2023.126317_b0205) 2023; 17 10.1016/j.neucom.2023.126317_b0235 10.1016/j.neucom.2023.126317_b0005 Magerl (10.1016/j.neucom.2023.126317_b0160) 2015 Al-Janabi (10.1016/j.neucom.2023.126317_b0340) 2020; 24 Lin (10.1016/j.neucom.2023.126317_b0030) 2017; 11 Goodman (10.1016/j.neucom.2023.126317_b0265) 2006 Mansoor (10.1016/j.neucom.2023.126317_b0120) 2021; 184 Verstraeten (10.1016/j.neucom.2023.126317_b0275) 2007; 20 Jaeger (10.1016/j.neucom.2023.126317_b0080) 2001 Box (10.1016/j.neucom.2023.126317_b0325) 1970 Natschläger (10.1016/j.neucom.2023.126317_b0085) 2002; 287 Rodan (10.1016/j.neucom.2023.126317_b0165) 2011; 22 Gibbons (10.1016/j.neucom.2023.126317_b0210) 2010 10.1016/j.neucom.2023.126317_b0040 Lukoeviius (10.1016/j.neucom.2023.126317_b0260) 2009; 3 10.1016/j.neucom.2023.126317_b0285 10.1016/j.neucom.2023.126317_b0045 10.1016/j.neucom.2023.126317_b0245 Hu (10.1016/j.neucom.2023.126317_b0125) 2020; 193 Jaeger (10.1016/j.neucom.2023.126317_b0230) 2007; 20 Shen (10.1016/j.neucom.2023.126317_b0130) 2018; 62 10.1016/j.neucom.2023.126317_b0090 10.1016/j.neucom.2023.126317_b0290 10.1016/j.neucom.2023.126317_b0050 10.1016/j.neucom.2023.126317_b0095 10.1016/j.neucom.2023.126317_b0250 10.1016/j.neucom.2023.126317_b0295 10.1016/j.neucom.2023.126317_b0010 10.1016/j.neucom.2023.126317_b0330 10.1016/j.neucom.2023.126317_b0015 Dominey (10.1016/j.neucom.2023.126317_b0075) 1995; 7 |
| References_xml | – reference: De Aquino, Ronaldo R B et al. 2015. “Echo State Networks, Artificial Neural Networks and Fuzzy Systems Models for Improve Short-Term Wind Speed Forecasting.” In 2015 International Joint Conference on Neural Networks (IJCNN), , 1–8. – reference: Ilies, Iulian et al. 2007. “Stepping Forward through Echoes of the Past : Forecasting with Echo State Networks.” http://www.neural-forecasting-competition.com/downloads/NN3/methods/27-NN3_Herbert_Jaeger_report.pdf. – volume: 20 start-page: 391 year: 2007 end-page: 403 ident: b0275 article-title: An Experimental Unification of Reservoir Computing Methods publication-title: Neural networks : the official journal of the International Neural Network Society – reference: Sage, Clément et al. 2019. “Recurrent Neural Network Approach for Table Field Extraction in Business Documents.” In 2019 International Conference on Document Analysis and Recognition (ICDAR), 1308–13. – reference: 10.1109/IJCNN.2005.1556090. – volume: 52 start-page: 3409 year: 2004 end-page: 3416 ident: b0110 article-title: Prediction of Chaotic Time Series Based on the Recurrent Predictor Neural Network publication-title: IEEE Transactions on Signal Processing – volume: 23 start-page: 175 year: 2012 end-page: 182 ident: b0155 article-title: Nonlinear System Modeling With Random Matrices: Echo State Networks Revisited publication-title: IEEE Transactions on Neural Networks and Learning Systems – reference: 10.1109/UCET51115.2020.9205452. – year: 1980 ident: b0335 article-title: Practical Nonparametric Statistics – reference: Akdeniz, Fulya, and Yaşar Becerikli. 2019. “Performance Comparison of Support Vector Machine, K-Nearest-Neighbor, Artificial Neural Networks, and Recurrent Neural Networks in Gender Recognition from Voice Signals.” In 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1–4. – volume: 29 start-page: 427 year: 2018 end-page: 439 ident: b0220 article-title: Investigating Echo-State Networks Dynamics by Means of Recurrence Analysis publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 8 start-page: 12228 year: 2015 end-page: 12241 ident: b0240 article-title: Echo State Network with Bayesian Regularization for Forecasting Short-Term Power Production of Small Hydropower Plants publication-title: Energies – reference: Mitchell, Melanie. 1996. “An Introduction to Genetic Algorithms.”. – volume: 11 start-page: 2882 year: 2017 end-page: 2893 ident: b0030 article-title: Fault Accommodation Control for a Biped Robot Using a Recurrent Wavelet Elman Neural Network publication-title: IEEE Systems Journal – volume: 184 start-page: 282 year: 2021 end-page: 293 ident: b0120 article-title: Comparison of Echo State Network and Feed-Forward Neural Networks in Electrical Load Forecasting for Demand Response Programs publication-title: Math. Comput. Simul. – reference: Tan, Ning, Peng Yu, Fenglei Ni, and Zhenglong Sun. 2021. “Trajectory Tracking of Soft Continuum Robots with Unknown Models Based on Varying Parameter Recurrent Neural Networks.” In 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 1035–41. – reference: Xu, Dongming, Jing Lan, and José Carlos Príncipe. 2005. “Direct Adaptive Control: An Echo State Network and Genetic Algorithm Approach.” Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. 3: 1483–86 vol. 3. – volume: 65 start-page: 117 year: 1993 end-page: 134 ident: b0280 article-title: A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets publication-title: Physica D: Nonlinear Phenomena – reference: Lacerda, E D. 2003. “Model Selection of RBF Networks via Genetic Algorithms.”. – volume: 24 start-page: 10943 year: 2020 end-page: 10962 ident: b0340 article-title: An Innovative synthesis of deep learning techniques (DCapsNet & DCOM) for generation electrical renewable energy from wind energy publication-title: Soft Comput – start-page: 1 year: 2010 end-page: 7 ident: b0210 article-title: Unifying Quality Metrics for Reservoir Networks publication-title: In The 2010 International Joint Conference on Neural Networks (IJCNN) – year: 2002 ident: b0255 article-title: Adaptive Nonlinear System Identification with Echo State Networks publication-title: In NIPS. – start-page: 6418 year: 2019 end-page: 6421 ident: b0175 article-title: Recurrent Neural Networks for Reconstructing Complex Directed Brain Connectivity publication-title: In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 193 start-page: 116778 year: 2020 ident: b0125 article-title: Effective Energy Consumption Forecasting Using Enhanced Bagged Echo State Network publication-title: Energy – volume: 95 start-page: 521 year: 2005 end-page: 558 ident: b0135 article-title: Isolated Word Recognition with the Liquid State Machine: A Case Study publication-title: Inf. Process. Lett. – reference: De Olivaes V d S R and Vellasco M B R. 2015. “Neural Expert Weighting: A NEW framework for dynamic forecast combination.”, Expert Systems with Applications, Volume 42, Issue 22, 8625-8636. https://doi.org/10.1016/j.eswa.2015.07.017 – reference: Parthiban, R, R Ezhilarasi, and D Saravanan. 2020. “Optical Character Recognition for English Handwritten Text Using Recurrent Neural Network.” In 2020 International Conference on System, Computation, Automation and Networking (ICSCAN), , 1–5. – reference: 10.1109/ITT48889.2019.9075065. – volume: 22 start-page: 131 year: 2011 end-page: 144 ident: b0165 article-title: Minimum Complexity Echo State Network publication-title: IEEE Transactions on Neural Networks – reference: 10.1109/SMC52423.2021.9659281. – reference: Bian, Xinqian, and Chunhui Mou. 2011. “Identification of Non-Linear Dynamic Model of UUV Based on ESN Neural Network.” In Proceedings of the 30th Chinese Control Conference, , 1432–37. https://ieeexplore.ieee.org/document/6000405. – reference: Sasikumar, S, P N Renjith, K Ramesh, and K Sakthidasan Sankaran. 2020. “Attention Based Recurrent Neural Network for Lung Cancer Detection.” In 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 720–24. – reference: Salmen, Matthias, and Paul-Gerhard Plöger. 2005. “Echo State Networks Used for Motor Control.” Proceedings of the 2005 IEEE International Conference on Robotics and Automation: 1953–58. – reference: Lei, Kuan-Cheok, and Xiaohua Douglas ZHANG. 2018. “An Approach on Discretizing Time Series Using Recurrent Neural Network.” In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2522–26S. – reference: Usman, Muhammad et al. 2019. “Data Analytics for Short Term Price and Load Forecasting in Smart Grids Using Enhanced Recurrent Neural Network.” In 2019 Sixth HCT Information Technology Trends (ITT), , 84–88. – reference: Schrauwen, Benjamin, Lars Buesing, and Robert A Legenstein. 2008. “On Computational Power and the Order-Chaos Phase Transition in Reservoir Computing.” In NIPS. https://dl.acm.org/doi/10.5555/2981780.2981958. – start-page: 556 year: 2010 end-page: 558 ident: b0315 article-title: An Improved Genetic Algorithm and Its Application publication-title: In 2010 International Conference on Intelligent Computation Technology and Automation – reference: 10.1109/ICIEM48762.2020.9160191. – reference: Frank, S, and Micheal erHanský. 2008. “Generalization and Systematicity in Echo State Networks.” https://hdl.handle.net/11245/1.297610. – reference: 10.1109/ICDAR.2019.00211. – reference: 10.1109/ROBOT.2005.1570399. – volume: 20 start-page: 335 year: 2007 end-page: 352 ident: b0230 article-title: Optimization and Applications of Echo State Networks with Leaky- Integrator Neurons publication-title: Neural networks : the official journal of the International Neural Network Society – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: b0055 article-title: Neural networks and physical systems with emergent collective computational abilities. publication-title: Proc. Natl. Acad. Sci. U.S.A. – start-page: 3848 year: 2006 end-page: 3853 ident: b0265 article-title: Spatiotemporal Pattern Recognition via Liquid State Machines publication-title: In The 2006 IEEE International Joint Conference on Neural Network Proceedings – volume: 3 start-page: 127 year: 2009 end-page: 149 ident: b0260 article-title: Reservoir Computing Approaches to Recurrent Neural Network Training publication-title: Comput. Sci. Rev. – volume: 7 start-page: 311 year: 1995 end-page: 336 ident: b0075 article-title: A Model of Corticostriatal Plasticity for Learning Oculomotor Associations and Sequences publication-title: Journal of Cognitive Neuroscience – volume: 17 start-page: 100847 year: 2023 ident: b0205 article-title: Codon -mRNA prediction using deep optimal neurocomputing technique (DLSTM-DSN-WOA) and multivariate analysis publication-title: Result in Engineering – volume: 26 start-page: 522 year: 2015 end-page: 536 ident: b0150 article-title: Spatio-Temporal Learning With the Online Finite and Infinite Echo-State Gaussian Processes publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 1970 ident: b0325 article-title: “Time Series Analysis – reference: Kamanditya, Bharindra, and Benyamin Kusumoputro. 2020. “Elman Recurrent Neural Networks Based Direct Inverse Control for Quadrotor Attitude and Altitude Control.” In 2020 International Conference on Intelligent Engineering and Management (ICIEM), 39–43. – reference: Wen, Xi, Hong Wang, and Weiming Zhai. 2015. “Intelligent Coordinate Registration Method for Computer-Assisted Surgery.” 2015 International Conference on Computational Intelligence and Communication Networks (CICN): 630–34. – reference: 10.1109/ISMSIT.2019.8932818. – reference: 10.1109/I-SMAC49090.2020.9243556. – start-page: 283 year: 2011 end-page: 290 ident: b0200 article-title: Comparing Evolutionary Methods for Reservoir Computing Pre-Training publication-title: In The 2011 International Joint Conference on Neural Networks – volume: 121 start-page: 471 year: 1997 end-page: 495 ident: b0060 article-title: Serial Order: A Parallel Distributed Processing Approach publication-title: Advances in psychology – volume: 62 start-page: 524 year: 2018 end-page: 535 ident: b0130 article-title: A Novel Echo State Network for Multivariate and Nonlinear Time Series Prediction publication-title: Appl. Soft Comput. – reference: 10.1109/BIBM.2018.8621092. – reference: Valencia, C.H., M.M.B.R. Vellasco, and K.T. Figueiredo. 2014. 274 Advances in Intelligent Systems and Computing Trajectory Tracking Control Using Echo State Networks for the CoroBot’s Arm. https://doi.org/10.1007/978-3-319-05582-4_38. – volume: 14 start-page: 179 year: 1990 end-page: 211 ident: b0070 article-title: Finding Structure in Time publication-title: Cognitive Science – reference: Jaeger, H. 2005. “Reservoir Riddles: Suggestions for Echo State Network Research.” Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. 3: 1460–62 vol. 3. – reference: Luque, Bartolo, and Ricard v Solé. 2000. “Lyapunov Exponents in Random Boolean Networks.” Physica A-statistical Mechanics and Its Applications 284: 33–45. https://doi.org/10.1016/S0378-4371(00)00184-9 – reference: 10.1109/IJCNN.2005.1556095. – reference: 10.1109/ICSCAN49426.2020.9262379. – reference: Steil, Jochen J. 2004. “Backpropagation-Decorrelation: Online Recurrent Learning with O(N) Complexity.” 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541) 2: 843–48 vol.2. – volume: 18 start-page: 49 year: 1988 end-page: 60 ident: b0065 article-title: Bidirectional Associative Memories publication-title: IEEE Trans. Syst. Man Cybern. – start-page: 148 year: 2001 ident: b0080 article-title: The’’echo State’’approach to Analysing and Training Recurrent Neural Networks – volume: 453 start-page: 122 year: 2015 end-page: 127 ident: b0185 article-title: A Support Vector Machine for Spectral Classification of Emission-Line Galaxies from the Sloan Digital Sky Survey publication-title: Monthly Notices of the Royal Astronomical Society – volume: 304 start-page: 78 year: 2004 end-page: 80 ident: b0215 article-title: Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication publication-title: Science – reference: 10.1109/IJCNN.2015.7280687. – reference: 10.23919/ECC.2019.8795677. – volume: 24 start-page: 661 year: 2020 end-page: 680 ident: b0320 article-title: A new method for prediction of air pollution based on intelligent computation publication-title: Soft Comput – reference: Lemayian, Joel Poncha, and Jehad M Hamamreh. 2020. “Recurrent Neural Network-Based Channel Prediction in MMIMO for Enhanced Performance in Future Wireless Communication.” In 2020 International Conference on UK-China Emerging Technologies (UCET), 1–4. – reference: Armenio, Luca Bugliari, Enrico Terzi, Marcello Farina, and Riccardo Scattolini. 2019. “Echo State Networks: Analysis, Training and Predictive Control.” In 2019 18th European Control Conference (ECC), , 799–804. – reference: W. Maass Liquid State Machines: Motivation, Theory, and Applications 2010 10.1142/9781848162778_0008. – start-page: 258 year: 2015 end-page: 263 ident: b0160 article-title: Building Interchangeable Black-Box Models of Integrated Circuits for EMC Simulations publication-title: 2015 10th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo) – volume: 61 start-page: 1099 year: 2014 end-page: 1112 ident: b0100 article-title: Fuzzy Echo State Neural Networks and Funnel Dynamic Surface Control for Prescribed Performance of a Nonlinear Dynamic System publication-title: IEEE Transactions on Industrial Electronics – reference: Bertschinger, Nils, Thomas Natschläger, and Robert A Legenstein. 2004. “At the Edge of Chaos: Real-Time Computations and Self-Organized Criticality in Recurrent Neural Networks.” In NIPS. https://dl.acm.org/doi/abs/10.5555/2976040.2976059. – reference: 10.1109/CICN.2015.129. – volume: 27 start-page: 999 year: 1997 end-page: 1007 ident: b0310 article-title: A Genetic Algorithm Approach to Chinese Handwriting Normalization publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) – reference: N. Grando Máquina de Estado Líquido Para Previsão de Séries Temporais Contínuas: Aplicacão na Demanda de Energia Elétrica 2010 http://repositorio.utfpr.edu.br/jspui/handle/1/896. – volume: 51 start-page: 1613 year: 2021 end-page: 1625 ident: b0170 article-title: Convolutional Multitimescale Echo State Network publication-title: IEEE Transactions on Cybernetics – start-page: 1 year: 2013 end-page: 6 ident: b0180 article-title: Classification of Real Time Moving Object Using Echo State Network publication-title: 2013 International Conference on Informatics, Electronics and Vision (ICIEV) – reference: 10.1109/IJCNN.2004.1380039. – volume: 287 start-page: 251 year: 2002 end-page: 265 ident: b0085 article-title: Spiking Neurons and the Induction of Finite State Machines publication-title: Theoretical Computer Science – ident: 10.1016/j.neucom.2023.126317_b0025 doi: 10.1109/ITT48889.2019.9075065 – ident: 10.1016/j.neucom.2023.126317_b0235 – start-page: 148 year: 2001 ident: 10.1016/j.neucom.2023.126317_b0080 – ident: 10.1016/j.neucom.2023.126317_b0090 doi: 10.1109/IJCNN.2004.1380039 – ident: 10.1016/j.neucom.2023.126317_b0195 doi: 10.1109/IJCNN.2005.1556095 – ident: 10.1016/j.neucom.2023.126317_b0050 doi: 10.1109/ICSCAN49426.2020.9262379 – volume: 20 start-page: 335 issue: 3 year: 2007 ident: 10.1016/j.neucom.2023.126317_b0230 article-title: Optimization and Applications of Echo State Networks with Leaky- Integrator Neurons publication-title: Neural networks : the official journal of the International Neural Network Society doi: 10.1016/j.neunet.2007.04.016 – volume: 3 start-page: 127 year: 2009 ident: 10.1016/j.neucom.2023.126317_b0260 article-title: Reservoir Computing Approaches to Recurrent Neural Network Training publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2009.03.005 – ident: 10.1016/j.neucom.2023.126317_b0295 doi: 10.1007/978-3-319-05582-4_38 – start-page: 258 year: 2015 ident: 10.1016/j.neucom.2023.126317_b0160 article-title: Building Interchangeable Black-Box Models of Integrated Circuits for EMC Simulations – start-page: 556 year: 2010 ident: 10.1016/j.neucom.2023.126317_b0315 article-title: An Improved Genetic Algorithm and Its Application – volume: 287 start-page: 251 issue: 1 year: 2002 ident: 10.1016/j.neucom.2023.126317_b0085 article-title: Spiking Neurons and the Induction of Finite State Machines publication-title: Theoretical Computer Science doi: 10.1016/S0304-3975(02)00099-3 – ident: 10.1016/j.neucom.2023.126317_b0270 – ident: 10.1016/j.neucom.2023.126317_b0010 doi: 10.1109/UCET51115.2020.9205452 – volume: 62 start-page: 524 year: 2018 ident: 10.1016/j.neucom.2023.126317_b0130 article-title: A Novel Echo State Network for Multivariate and Nonlinear Time Series Prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.10.038 – volume: 26 start-page: 522 year: 2015 ident: 10.1016/j.neucom.2023.126317_b0150 article-title: Spatio-Temporal Learning With the Online Finite and Infinite Echo-State Gaussian Processes publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2014.2316291 – ident: 10.1016/j.neucom.2023.126317_b0305 – volume: 304 start-page: 78 year: 2004 ident: 10.1016/j.neucom.2023.126317_b0215 article-title: Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication publication-title: Science doi: 10.1126/science.1091277 – ident: 10.1016/j.neucom.2023.126317_b0285 doi: 10.1016/S0378-4371(00)00184-9 – ident: 10.1016/j.neucom.2023.126317_b0290 – ident: 10.1016/j.neucom.2023.126317_b0225 doi: 10.1142/9781848162778_0008 – year: 1980 ident: 10.1016/j.neucom.2023.126317_b0335 – volume: 61 start-page: 1099 issue: 2 year: 2014 ident: 10.1016/j.neucom.2023.126317_b0100 article-title: Fuzzy Echo State Neural Networks and Funnel Dynamic Surface Control for Prescribed Performance of a Nonlinear Dynamic System publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2013.2253072 – start-page: 283 year: 2011 ident: 10.1016/j.neucom.2023.126317_b0200 article-title: Comparing Evolutionary Methods for Reservoir Computing Pre-Training – volume: 24 start-page: 661 year: 2020 ident: 10.1016/j.neucom.2023.126317_b0320 article-title: A new method for prediction of air pollution based on intelligent computation publication-title: Soft Comput doi: 10.1007/s00500-019-04495-1 – volume: 14 start-page: 179 issue: 2 year: 1990 ident: 10.1016/j.neucom.2023.126317_b0070 article-title: Finding Structure in Time publication-title: Cognitive Science doi: 10.1207/s15516709cog1402_1 – ident: 10.1016/j.neucom.2023.126317_b0045 doi: 10.1109/I-SMAC49090.2020.9243556 – start-page: 3848 year: 2006 ident: 10.1016/j.neucom.2023.126317_b0265 article-title: Spatiotemporal Pattern Recognition via Liquid State Machines – ident: 10.1016/j.neucom.2023.126317_b0245 – ident: 10.1016/j.neucom.2023.126317_b0020 doi: 10.1109/ICIEM48762.2020.9160191 – ident: 10.1016/j.neucom.2023.126317_b0140 doi: 10.1109/CICN.2015.129 – ident: 10.1016/j.neucom.2023.126317_b0330 doi: 10.1016/j.eswa.2015.07.017 – volume: 20 start-page: 391 issue: 3 year: 2007 ident: 10.1016/j.neucom.2023.126317_b0275 article-title: An Experimental Unification of Reservoir Computing Methods publication-title: Neural networks : the official journal of the International Neural Network Society doi: 10.1016/j.neunet.2007.04.003 – ident: 10.1016/j.neucom.2023.126317_b0115 doi: 10.1109/IJCNN.2015.7280687 – volume: 453 start-page: 122 issue: 1 year: 2015 ident: 10.1016/j.neucom.2023.126317_b0185 article-title: A Support Vector Machine for Spectral Classification of Emission-Line Galaxies from the Sloan Digital Sky Survey publication-title: Monthly Notices of the Royal Astronomical Society doi: 10.1093/mnras/stv1617 – volume: 27 start-page: 999 issue: 6 year: 1997 ident: 10.1016/j.neucom.2023.126317_b0310 article-title: A Genetic Algorithm Approach to Chinese Handwriting Normalization publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) doi: 10.1109/3477.650059 – volume: 17 start-page: 100847 year: 2023 ident: 10.1016/j.neucom.2023.126317_b0205 article-title: Codon -mRNA prediction using deep optimal neurocomputing technique (DLSTM-DSN-WOA) and multivariate analysis publication-title: Result in Engineering doi: 10.1016/j.rineng.2022.100847 – volume: 11 start-page: 2882 issue: 4 year: 2017 ident: 10.1016/j.neucom.2023.126317_b0030 article-title: Fault Accommodation Control for a Biped Robot Using a Recurrent Wavelet Elman Neural Network publication-title: IEEE Systems Journal doi: 10.1109/JSYST.2015.2409888 – volume: 7 start-page: 311 year: 1995 ident: 10.1016/j.neucom.2023.126317_b0075 article-title: A Model of Corticostriatal Plasticity for Learning Oculomotor Associations and Sequences publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn.1995.7.3.311 – volume: 193 start-page: 116778 year: 2020 ident: 10.1016/j.neucom.2023.126317_b0125 article-title: Effective Energy Consumption Forecasting Using Enhanced Bagged Echo State Network publication-title: Energy doi: 10.1016/j.energy.2019.116778 – ident: 10.1016/j.neucom.2023.126317_b0095 doi: 10.1109/ROBOT.2005.1570399 – ident: 10.1016/j.neucom.2023.126317_b0300 doi: 10.7551/mitpress/3927.001.0001 – volume: 121 start-page: 471 year: 1997 ident: 10.1016/j.neucom.2023.126317_b0060 article-title: Serial Order: A Parallel Distributed Processing Approach publication-title: Advances in psychology doi: 10.1016/S0166-4115(97)80111-2 – volume: 95 start-page: 521 year: 2005 ident: 10.1016/j.neucom.2023.126317_b0135 article-title: Isolated Word Recognition with the Liquid State Machine: A Case Study publication-title: Inf. Process. Lett. doi: 10.1016/j.ipl.2005.05.019 – ident: 10.1016/j.neucom.2023.126317_b0035 doi: 10.1109/BIBM.2018.8621092 – volume: 65 start-page: 117 year: 1993 ident: 10.1016/j.neucom.2023.126317_b0280 article-title: A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/0167-2789(93)90009-P – year: 2002 ident: 10.1016/j.neucom.2023.126317_b0255 article-title: Adaptive Nonlinear System Identification with Echo State Networks publication-title: In NIPS. – volume: 22 start-page: 131 year: 2011 ident: 10.1016/j.neucom.2023.126317_b0165 article-title: Minimum Complexity Echo State Network publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2010.2089641 – year: 1970 ident: 10.1016/j.neucom.2023.126317_b0325 – volume: 8 start-page: 12228 issue: 10 year: 2015 ident: 10.1016/j.neucom.2023.126317_b0240 article-title: Echo State Network with Bayesian Regularization for Forecasting Short-Term Power Production of Small Hydropower Plants publication-title: Energies doi: 10.3390/en81012228 – start-page: 1 year: 2013 ident: 10.1016/j.neucom.2023.126317_b0180 article-title: Classification of Real Time Moving Object Using Echo State Network – start-page: 6418 year: 2019 ident: 10.1016/j.neucom.2023.126317_b0175 article-title: Recurrent Neural Networks for Reconstructing Complex Directed Brain Connectivity – start-page: 1 year: 2010 ident: 10.1016/j.neucom.2023.126317_b0210 article-title: Unifying Quality Metrics for Reservoir Networks – ident: 10.1016/j.neucom.2023.126317_b0015 doi: 10.1109/SMC52423.2021.9659281 – ident: 10.1016/j.neucom.2023.126317_b0105 doi: 10.23919/ECC.2019.8795677 – volume: 79 start-page: 2554 issue: 8 year: 1982 ident: 10.1016/j.neucom.2023.126317_b0055 article-title: Neural networks and physical systems with emergent collective computational abilities. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.79.8.2554 – volume: 184 start-page: 282 year: 2021 ident: 10.1016/j.neucom.2023.126317_b0120 article-title: Comparison of Echo State Network and Feed-Forward Neural Networks in Electrical Load Forecasting for Demand Response Programs publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2020.07.011 – volume: 24 start-page: 10943 year: 2020 ident: 10.1016/j.neucom.2023.126317_b0340 article-title: An Innovative synthesis of deep learning techniques (DCapsNet & DCOM) for generation electrical renewable energy from wind energy publication-title: Soft Comput doi: 10.1007/s00500-020-04905-9 – volume: 23 start-page: 175 issue: 1 year: 2012 ident: 10.1016/j.neucom.2023.126317_b0155 article-title: Nonlinear System Modeling With Random Matrices: Echo State Networks Revisited publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2011.2178562 – ident: 10.1016/j.neucom.2023.126317_b0250 – ident: 10.1016/j.neucom.2023.126317_b0145 – volume: 51 start-page: 1613 issue: 3 year: 2021 ident: 10.1016/j.neucom.2023.126317_b0170 article-title: Convolutional Multitimescale Echo State Network publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2019.2919648 – volume: 29 start-page: 427 issue: 2 year: 2018 ident: 10.1016/j.neucom.2023.126317_b0220 article-title: Investigating Echo-State Networks Dynamics by Means of Recurrence Analysis publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2630802 – ident: 10.1016/j.neucom.2023.126317_b0005 doi: 10.1109/ISMSIT.2019.8932818 – ident: 10.1016/j.neucom.2023.126317_b0040 doi: 10.1109/ICDAR.2019.00211 – volume: 18 start-page: 49 year: 1988 ident: 10.1016/j.neucom.2023.126317_b0065 article-title: Bidirectional Associative Memories publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.87054 – volume: 52 start-page: 3409 year: 2004 ident: 10.1016/j.neucom.2023.126317_b0110 article-title: Prediction of Chaotic Time Series Based on the Recurrent Predictor Neural Network publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2004.837418 – ident: 10.1016/j.neucom.2023.126317_b0190 doi: 10.1109/IJCNN.2005.1556090 |
| SSID | ssj0017129 |
| Score | 2.5178387 |
| Snippet | The use of computational intelligence models for multi-step time series forecasting tasks has presented satisfactory results in such a way that they are... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 126317 |
| SubjectTerms | Echo State Network Genetic Algorithms Separation Ratio Graph Time Series Forecasting |
| Title | Echo State Networks: Novel reservoir selection and hyperparameter optimization model for time series forecasting |
| URI | https://dx.doi.org/10.1016/j.neucom.2023.126317 |
| Volume | 545 |
| WOSCitedRecordID | wos001001952400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LjxJBEO4g68GLb-O6avrgjQyZ6WFe3nDDZjVKjK6G26SfOgQGwiv7G_ZXW9XdM4tifCVeCJlXQ9dHdXVR31eEvIhMKKNMy0BnKg1gvVbgB8Mw4MKESrJUpMKKuL7NxuN8MinedzpXDRdmN8vqOr-8LJb_1dRwDIyN1Nm_MHf7UDgA78Ho8Apmh9c_MvwIHJqLIZHNi3VXtuptvNhp1PDHLOyiWvXWtgFOU4z8FbajK5QBn2N5TG8BjmTuGZquWY4rR6zmuodfQlsVBy35etMsfdNGBmoLS6JtFeGTEMM5ajEoBF6bdPjMkevk6nRP9Zqveuf99hzWY63lwjOJ0Gm967_qf2gvOKu-bHWFQqeezTbj-7kLFtvKuew6oXZAqnGZSZYEEHY6J62dX84zZhnv-447cUKUB4uAy0dM-7XeYkUQDtyPWBo7kugP8tofcTgcjcW2_fbkBjliWVLkXXI0fD2avGn_k8oi5pQb_cdriJi2WvBwrJ8HOnvBy8VdctvvOujQoeUe6ej6PrnTdPSg3sE_IEsED7XgoQ14XlILHdpCh7bQoQAd-j106D50qIUOBahQhA510KF70HlIPp2NLk7PA9-TI5AQqm-CJOGCp5wxKdLciEKrkBe5iIrCFKlOhdQqN0qp1AxMwUOlkiKSRgxgY2L0IOTxI9KtF7V-TGiuDZ42xmjYNgwYl8JAeAxPYXEmRXhM4mYCS-kF67FvyqxsKhOnpZv2Eqe9dNN-TIL2rqUTbPnN9Vljm9IHnS6YLAFOv7zzyT_feUJuXf8anpLuZrXVz8hNudtU69Vzj7tvLEWu_w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Echo+State+Networks%3A+Novel+reservoir+selection+and+hyperparameter+optimization+model+for+time+series+forecasting&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Valencia%2C+Cesar+H.&rft.au=Vellasco%2C+Marley+M.B.R.&rft.au=Figueiredo%2C+Karla&rft.date=2023-08-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=545&rft_id=info:doi/10.1016%2Fj.neucom.2023.126317&rft.externalDocID=S092523122300440X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |