Echo State Networks: Novel reservoir selection and hyperparameter optimization model for time series forecasting

The use of computational intelligence models for multi-step time series forecasting tasks has presented satisfactory results in such a way that they are considered models with an excellent future for this type of problem. From the point of view of computational cost, the current alternatives combine...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 545; s. 126317
Hlavní autori: Valencia, Cesar H., Vellasco, Marley M.B.R., Figueiredo, Karla
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 07.08.2023
Predmet:
ISSN:0925-2312, 1872-8286
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The use of computational intelligence models for multi-step time series forecasting tasks has presented satisfactory results in such a way that they are considered models with an excellent future for this type of problem. From the point of view of computational cost, the current alternatives combined with classical models are generating hybrid models that present even better results. Within the AutoML category, the optimization of hyperparameters and the selection of network topologies has become a challenge. Reservoir Computing, which is within the area of ​​Recurrent Neural Networks (RNN), proposes a particular model called Echo State Networks. which has been tested in different applications with excellent results; however, the difficulty in specifying the hyperparameters has been the subject of continuous study given the random nature of the set of neurons called Reservoir. Based on the Separation Ratio Graph (SRG) model for performance analysis, this paper proposes a new model, called Echo State Network - Genetic Algorithm - Separation Ratio Graph (ESN-GA-SRG), which optimizes network hyperparameters and at the same time selects the best topology for the Reservoir using the SRG coefficient, to find the reservoir that offers the most suitable dynamic behavior. The performance of this new model is evaluated on forecasting two sets of time series benchmarks with different characteristics of sampling periodicity, skewness, and stationarity. The results obtained show that the ESN-GA-SRG model was superior in predicting these time series in most cases, with statistical significance, when compared to other models that have been presented for this type of problem in the literature.
AbstractList The use of computational intelligence models for multi-step time series forecasting tasks has presented satisfactory results in such a way that they are considered models with an excellent future for this type of problem. From the point of view of computational cost, the current alternatives combined with classical models are generating hybrid models that present even better results. Within the AutoML category, the optimization of hyperparameters and the selection of network topologies has become a challenge. Reservoir Computing, which is within the area of ​​Recurrent Neural Networks (RNN), proposes a particular model called Echo State Networks. which has been tested in different applications with excellent results; however, the difficulty in specifying the hyperparameters has been the subject of continuous study given the random nature of the set of neurons called Reservoir. Based on the Separation Ratio Graph (SRG) model for performance analysis, this paper proposes a new model, called Echo State Network - Genetic Algorithm - Separation Ratio Graph (ESN-GA-SRG), which optimizes network hyperparameters and at the same time selects the best topology for the Reservoir using the SRG coefficient, to find the reservoir that offers the most suitable dynamic behavior. The performance of this new model is evaluated on forecasting two sets of time series benchmarks with different characteristics of sampling periodicity, skewness, and stationarity. The results obtained show that the ESN-GA-SRG model was superior in predicting these time series in most cases, with statistical significance, when compared to other models that have been presented for this type of problem in the literature.
ArticleNumber 126317
Author Vellasco, Marley M.B.R.
Valencia, Cesar H.
Figueiredo, Karla
Author_xml – sequence: 1
  givenname: Cesar H.
  surname: Valencia
  fullname: Valencia, Cesar H.
  email: cesar.valencia@ustabuca.edu.co
  organization: GRAM – Mechatronics Engineering Research Group, Facultad de Ingeniería Mecatrónica, Universidad Santo Tomás – Seccional Bucaramanga, Colombia
– sequence: 2
  givenname: Marley M.B.R.
  surname: Vellasco
  fullname: Vellasco, Marley M.B.R.
  organization: Electrical Engineering Department, PUC-Rio, Rio de Janeiro 22451-900, Brazil
– sequence: 3
  givenname: Karla
  surname: Figueiredo
  fullname: Figueiredo, Karla
  organization: Electrical Engineering Department, PUC-Rio, Rio de Janeiro 22451-900, Brazil
BookMark eNqFkMtOwzAQRS1UJNrCH7DwD6TYzqNxF0ioKg-pggWwthx7TF2SOLJNUfl60oYVC1iNZkZnNPdM0Kh1LSB0ScmMElpcbWctfCjXzBhh6YyyIqXzEzSm5ZwlJSuLERoTzvKEpZSdoUkIW0LonDI-Rt1KbRx-jjICfoT46fx7WOBHt4Maewjgd856HKAGFa1rsWw13uw78J30soEIHrsu2sZ-yeO-cbonjfO4H0IPegvh0IOSIdr27RydGlkHuPipU_R6u3pZ3ifrp7uH5c06UWnOYpLnspKFZExVRWkqDppIXlaUc8MLKCoFujRa68Jkhkuidc6pMlVGSmIgIzKdomy4q7wLwYMRnbeN9HtBiThYE1sxWBMHa2Kw1mOLX5iy8Rgtemnr_-DrAYY-2M6CF0FZaPtfbZ8_Cu3s3we-ATMikc8
CitedBy_id crossref_primary_10_1016_j_neucom_2025_130084
crossref_primary_10_1016_j_energy_2024_133579
crossref_primary_10_1007_s41060_025_00797_w
crossref_primary_10_1038_s44172_024_00330_0
crossref_primary_10_1007_s00521_024_10201_6
crossref_primary_10_1063_5_0272717
crossref_primary_10_1016_j_ces_2024_120397
crossref_primary_10_1007_s40313_023_01061_x
crossref_primary_10_1088_2634_4386_ad1d32
crossref_primary_10_1007_s10614_024_10797_w
crossref_primary_10_1088_1361_6501_ad71ea
crossref_primary_10_3390_app14198686
crossref_primary_10_1088_1361_6501_ada4c9
crossref_primary_10_1016_j_ins_2024_120166
crossref_primary_10_1016_j_neunet_2024_106510
crossref_primary_10_1016_j_neucom_2023_127131
crossref_primary_10_1016_j_neunet_2025_107986
Cites_doi 10.1109/ITT48889.2019.9075065
10.1109/IJCNN.2004.1380039
10.1109/IJCNN.2005.1556095
10.1109/ICSCAN49426.2020.9262379
10.1016/j.neunet.2007.04.016
10.1016/j.cosrev.2009.03.005
10.1007/978-3-319-05582-4_38
10.1016/S0304-3975(02)00099-3
10.1109/UCET51115.2020.9205452
10.1016/j.asoc.2017.10.038
10.1109/TNNLS.2014.2316291
10.1126/science.1091277
10.1016/S0378-4371(00)00184-9
10.1142/9781848162778_0008
10.1109/TIE.2013.2253072
10.1007/s00500-019-04495-1
10.1207/s15516709cog1402_1
10.1109/I-SMAC49090.2020.9243556
10.1109/ICIEM48762.2020.9160191
10.1109/CICN.2015.129
10.1016/j.eswa.2015.07.017
10.1016/j.neunet.2007.04.003
10.1109/IJCNN.2015.7280687
10.1093/mnras/stv1617
10.1109/3477.650059
10.1016/j.rineng.2022.100847
10.1109/JSYST.2015.2409888
10.1162/jocn.1995.7.3.311
10.1016/j.energy.2019.116778
10.1109/ROBOT.2005.1570399
10.7551/mitpress/3927.001.0001
10.1016/S0166-4115(97)80111-2
10.1016/j.ipl.2005.05.019
10.1109/BIBM.2018.8621092
10.1016/0167-2789(93)90009-P
10.1109/TNN.2010.2089641
10.3390/en81012228
10.1109/SMC52423.2021.9659281
10.23919/ECC.2019.8795677
10.1073/pnas.79.8.2554
10.1016/j.matcom.2020.07.011
10.1007/s00500-020-04905-9
10.1109/TNNLS.2011.2178562
10.1109/TCYB.2019.2919648
10.1109/TNNLS.2016.2630802
10.1109/ISMSIT.2019.8932818
10.1109/ICDAR.2019.00211
10.1109/21.87054
10.1109/TSP.2004.837418
10.1109/IJCNN.2005.1556090
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.neucom.2023.126317
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
ExternalDocumentID 10_1016_j_neucom_2023_126317
S092523122300440X
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
WUQ
XPP
~HD
ID FETCH-LOGICAL-c352t-55aba6a22cb68fb9ed0a98b199f96e6bced8fddd6f4f9a0dd591cfb4080fe40a3
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001001952400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 20:40:24 EST 2025
Sat Nov 29 07:15:05 EST 2025
Fri Feb 23 02:36:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Separation Ratio Graph
Echo State Network
Genetic Algorithms
Time Series Forecasting
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c352t-55aba6a22cb68fb9ed0a98b199f96e6bced8fddd6f4f9a0dd591cfb4080fe40a3
OpenAccessLink https://dx.doi.org/10.1016/j.neucom.2023.126317
ParticipantIDs crossref_primary_10_1016_j_neucom_2023_126317
crossref_citationtrail_10_1016_j_neucom_2023_126317
elsevier_sciencedirect_doi_10_1016_j_neucom_2023_126317
PublicationCentury 2000
PublicationDate 2023-08-07
PublicationDateYYYYMMDD 2023-08-07
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-07
  day: 07
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References 10.1109/SMC52423.2021.9659281.
Parthiban, R, R Ezhilarasi, and D Saravanan. 2020. “Optical Character Recognition for English Handwritten Text Using Recurrent Neural Network.” In 2020 International Conference on System, Computation, Automation and Networking (ICSCAN), , 1–5.
10.23919/ECC.2019.8795677.
Lukoeviius, Jaeger (b0260) 2009; 3
Han, Xi, Shi-guo, Yin (b0110) 2004; 52
Han, Lee (b0100) 2014; 61
W. Maass Liquid State Machines: Motivation, Theory, and Applications 2010 10.1142/9781848162778_0008.
Dominey, Arbib, Joseph (b0075) 1995; 7
Kosko (b0065) 1988; 18
Verstraeten, Schrauwen, Stroobandt, van Campenhout (b0135) 2005; 95
Duggento, Guerrisi, Toschi (b0175) 2019
10.1109/IJCNN.2005.1556090.
10.1109/IJCNN.2004.1380039.
Steil, Jochen J. 2004. “Backpropagation-Decorrelation: Online Recurrent Learning with O(N) Complexity.” 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541) 2: 843–48 vol.2.
Salmen, Matthias, and Paul-Gerhard Plöger. 2005. “Echo State Networks Used for Motor Control.” Proceedings of the 2005 IEEE International Conference on Robotics and Automation: 1953–58.
Conover (b0335) 1980
Jaeger (b0255) 2002
Mitul (b0180) 2013
Lin, Boldbaatar (b0030) 2017; 11
Tan, Ning, Peng Yu, Fenglei Ni, and Zhenglong Sun. 2021. “Trajectory Tracking of Soft Continuum Robots with Unknown Models Based on Varying Parameter Recurrent Neural Networks.” In 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 1035–41.
Al-Janabi, Mohammad, Al-Sultan (b0320) 2020; 24
10.1109/IJCNN.2015.7280687.
Xu, Dongming, Jing Lan, and José Carlos Príncipe. 2005. “Direct Adaptive Control: An Echo State Network and Genetic Algorithm Approach.” Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. 3: 1483–86 vol. 3.
Rodan, TjHo (b0165) 2011; 22
Natschläger, Maass (b0085) 2002; 287
Lacerda, E D. 2003. “Model Selection of RBF Networks via Genetic Algorithms.”.
Frank, S, and Micheal erHanský. 2008. “Generalization and Systematicity in Echo State Networks.” https://hdl.handle.net/11245/1.297610.
10.1109/BIBM.2018.8621092.
Wen, Xi, Hong Wang, and Weiming Zhai. 2015. “Intelligent Coordinate Registration Method for Computer-Assisted Surgery.” 2015 International Conference on Computational Intelligence and Communication Networks (CICN): 630–34.
10.1109/I-SMAC49090.2020.9243556.
Usman, Muhammad et al. 2019. “Data Analytics for Short Term Price and Load Forecasting in Smart Grids Using Enhanced Recurrent Neural Network.” In 2019 Sixth HCT Information Technology Trends (ITT), , 84–88.
Zhang, Miller, Wang (b0155) 2012; 23
Verstraeten, Schrauwen, D’Haene, Stroobandt (b0275) 2007; 20
Lei, Kuan-Cheok, and Xiaohua Douglas ZHANG. 2018. “An Approach on Discretizing Time Series Using Recurrent Neural Network.” In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2522–26S.
Armenio, Luca Bugliari, Enrico Terzi, Marcello Farina, and Riccardo Scattolini. 2019. “Echo State Networks: Analysis, Training and Predictive Control.” In 2019 18th European Control Conference (ECC), , 799–804.
Bian, Xinqian, and Chunhui Mou. 2011. “Identification of Non-Linear Dynamic Model of UUV Based on ESN Neural Network.” In Proceedings of the 30th Chinese Control Conference, , 1432–37. https://ieeexplore.ieee.org/document/6000405.
Kadhuim, Al-Janabi (b0205) 2023; 17
10.1109/ICSCAN49426.2020.9262379.
Jordan (b0060) 1997; 121
Jaeger, H. 2005. “Reservoir Riddles: Suggestions for Echo State Network Research.” Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. 3: 1460–62 vol. 3.
10.1109/ICDAR.2019.00211.
De Aquino, Ronaldo R B et al. 2015. “Echo State Networks, Artificial Neural Networks and Fuzzy Systems Models for Improve Short-Term Wind Speed Forecasting.” In 2015 International Joint Conference on Neural Networks (IJCNN), , 1–8.
Li, Li, Yu, Cheng (b0240) 2015; 8
N. Grando Máquina de Estado Líquido Para Previsão de Séries Temporais Contínuas: Aplicacão na Demanda de Energia Elétrica 2010 http://repositorio.utfpr.edu.br/jspui/handle/1/896.
Bianchi, Livi, Alippi (b0220) 2018; 29
Kamanditya, Bharindra, and Benyamin Kusumoputro. 2020. “Elman Recurrent Neural Networks Based Direct Inverse Control for Quadrotor Attitude and Altitude Control.” In 2020 International Conference on Intelligent Engineering and Management (ICIEM), 39–43.
Hu, Wang, Peng, Zeng (b0125) 2020; 193
Elman (b0070) 1990; 14
Ilies, Iulian et al. 2007. “Stepping Forward through Echoes of the Past : Forecasting with Echo State Networks.” http://www.neural-forecasting-competition.com/downloads/NN3/methods/27-NN3_Herbert_Jaeger_report.pdf.
10.1109/ISMSIT.2019.8932818.
Lin, Leou (b0310) 1997; 27
Sage, Clément et al. 2019. “Recurrent Neural Network Approach for Table Field Extraction in Business Documents.” In 2019 International Conference on Document Analysis and Recognition (ICDAR), 1308–13.
Gibbons (b0210) 2010
Soh, Demiris (b0150) 2015; 26
Bertschinger, Nils, Thomas Natschläger, and Robert A Legenstein. 2004. “At the Edge of Chaos: Real-Time Computations and Self-Organized Criticality in Recurrent Neural Networks.” In NIPS. https://dl.acm.org/doi/abs/10.5555/2976040.2976059.
Jaeger, Haas (b0215) 2004; 304
Shen, Chen, Zeng, Yang, Jin (b0130) 2018; 62
Jaeger (b0080) 2001
Schrauwen, Benjamin, Lars Buesing, and Robert A Legenstein. 2008. “On Computational Power and the Order-Chaos Phase Transition in Reservoir Computing.” In NIPS. https://dl.acm.org/doi/10.5555/2981780.2981958.
Jaeger, Lukoeviius, Popovici, Siewert (b0230) 2007; 20
Sasikumar, S, P N Renjith, K Ramesh, and K Sakthidasan Sankaran. 2020. “Attention Based Recurrent Neural Network for Lung Cancer Detection.” In 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 720–24.
Mitchell, Melanie. 1996. “An Introduction to Genetic Algorithms.”.
Al-Janabi, Alkaim, Adel (b0340) 2020; 24
Hopfield (b0055) 1982; 79
10.1109/ROBOT.2005.1570399.
Mansoor, Grimaccia, Leva, Mussetta (b0120) 2021; 184
Goodman, Ventura (b0265) 2006
Rosenstein, Collins, de Luca (b0280) 1993; 65
Luque, Bartolo, and Ricard v Solé. 2000. “Lyapunov Exponents in Random Boolean Networks.” Physica A-statistical Mechanics and Its Applications 284: 33–45. https://doi.org/10.1016/S0378-4371(00)00184-9
Valencia, C.H., M.M.B.R. Vellasco, and K.T. Figueiredo. 2014. 274 Advances in Intelligent Systems and Computing Trajectory Tracking Control Using Echo State Networks for the CoroBot’s Arm. https://doi.org/10.1007/978-3-319-05582-4_38.
Akdeniz, Fulya, and Yaşar Becerikli. 2019. “Performance Comparison of Support Vector Machine, K-Nearest-Neighbor, Artificial Neural Networks, and Recurrent Neural Networks in Gender Recognition from Voice Signals.” In 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1–4.
Ma, Chen, Lin, Yan, Yu, Ng (b0170) 2021; 51
De Olivaes V d S R and Vellasco M B R. 2015. “Neural Expert Weighting: A NEW framework for dynamic forecast combination.”, Expert Systems with Applications, Volume 42, Issue 22, 8625-8636. https://doi.org/10.1016/j.eswa.2015.07.017
10.1109/IJCNN.2005.1556095.
10.1109/UCET51115.2020.9205452.
Box, Jenkins (b0325) 1970
Ferreira, Ludermir (b0200) 2011
Magerl (b0160) 2015
Shi, Liu, Sun, Li, Lei, Wang (b0185) 2015; 453
10.1109/ITT48889.2019.9075065.
10.1109/ICIEM48762.2020.9160191.
10.1109/CICN.2015.129.
Lemayian, Joel Poncha, and Jehad M Hamamreh. 2020. “Recurrent Neural Network-Based Channel Prediction in MMIMO for Enhanced Performance in Future Wireless Communication.” In 2020 International Conference on UK-China Emerging Technologies (UCET), 1–4.
Lina, Zhihui, Gang (b0315) 2010
10.1016/j.neucom.2023.126317_b0225
Hopfield (10.1016/j.neucom.2023.126317_b0055) 1982; 79
10.1016/j.neucom.2023.126317_b0105
Lin (10.1016/j.neucom.2023.126317_b0310) 1997; 27
10.1016/j.neucom.2023.126317_b0305
Bianchi (10.1016/j.neucom.2023.126317_b0220) 2018; 29
Duggento (10.1016/j.neucom.2023.126317_b0175) 2019
Jaeger (10.1016/j.neucom.2023.126317_b0215) 2004; 304
Han (10.1016/j.neucom.2023.126317_b0100) 2014; 61
Verstraeten (10.1016/j.neucom.2023.126317_b0135) 2005; 95
10.1016/j.neucom.2023.126317_b0140
10.1016/j.neucom.2023.126317_b0020
Al-Janabi (10.1016/j.neucom.2023.126317_b0320) 2020; 24
Ferreira (10.1016/j.neucom.2023.126317_b0200) 2011
Jaeger (10.1016/j.neucom.2023.126317_b0255) 2002
10.1016/j.neucom.2023.126317_b0145
10.1016/j.neucom.2023.126317_b0025
Elman (10.1016/j.neucom.2023.126317_b0070) 1990; 14
10.1016/j.neucom.2023.126317_b0300
10.1016/j.neucom.2023.126317_b0115
Zhang (10.1016/j.neucom.2023.126317_b0155) 2012; 23
Lina (10.1016/j.neucom.2023.126317_b0315) 2010
Soh (10.1016/j.neucom.2023.126317_b0150) 2015; 26
Mitul (10.1016/j.neucom.2023.126317_b0180) 2013
Han (10.1016/j.neucom.2023.126317_b0110) 2004; 52
Ma (10.1016/j.neucom.2023.126317_b0170) 2021; 51
Conover (10.1016/j.neucom.2023.126317_b0335) 1980
Rosenstein (10.1016/j.neucom.2023.126317_b0280) 1993; 65
Kosko (10.1016/j.neucom.2023.126317_b0065) 1988; 18
10.1016/j.neucom.2023.126317_b0190
Jordan (10.1016/j.neucom.2023.126317_b0060) 1997; 121
10.1016/j.neucom.2023.126317_b0270
Shi (10.1016/j.neucom.2023.126317_b0185) 2015; 453
10.1016/j.neucom.2023.126317_b0195
Li (10.1016/j.neucom.2023.126317_b0240) 2015; 8
10.1016/j.neucom.2023.126317_b0035
Kadhuim (10.1016/j.neucom.2023.126317_b0205) 2023; 17
10.1016/j.neucom.2023.126317_b0235
10.1016/j.neucom.2023.126317_b0005
Magerl (10.1016/j.neucom.2023.126317_b0160) 2015
Al-Janabi (10.1016/j.neucom.2023.126317_b0340) 2020; 24
Lin (10.1016/j.neucom.2023.126317_b0030) 2017; 11
Goodman (10.1016/j.neucom.2023.126317_b0265) 2006
Mansoor (10.1016/j.neucom.2023.126317_b0120) 2021; 184
Verstraeten (10.1016/j.neucom.2023.126317_b0275) 2007; 20
Jaeger (10.1016/j.neucom.2023.126317_b0080) 2001
Box (10.1016/j.neucom.2023.126317_b0325) 1970
Natschläger (10.1016/j.neucom.2023.126317_b0085) 2002; 287
Rodan (10.1016/j.neucom.2023.126317_b0165) 2011; 22
Gibbons (10.1016/j.neucom.2023.126317_b0210) 2010
10.1016/j.neucom.2023.126317_b0040
Lukoeviius (10.1016/j.neucom.2023.126317_b0260) 2009; 3
10.1016/j.neucom.2023.126317_b0285
10.1016/j.neucom.2023.126317_b0045
10.1016/j.neucom.2023.126317_b0245
Hu (10.1016/j.neucom.2023.126317_b0125) 2020; 193
Jaeger (10.1016/j.neucom.2023.126317_b0230) 2007; 20
Shen (10.1016/j.neucom.2023.126317_b0130) 2018; 62
10.1016/j.neucom.2023.126317_b0090
10.1016/j.neucom.2023.126317_b0290
10.1016/j.neucom.2023.126317_b0050
10.1016/j.neucom.2023.126317_b0095
10.1016/j.neucom.2023.126317_b0250
10.1016/j.neucom.2023.126317_b0295
10.1016/j.neucom.2023.126317_b0010
10.1016/j.neucom.2023.126317_b0330
10.1016/j.neucom.2023.126317_b0015
Dominey (10.1016/j.neucom.2023.126317_b0075) 1995; 7
References_xml – reference: De Aquino, Ronaldo R B et al. 2015. “Echo State Networks, Artificial Neural Networks and Fuzzy Systems Models for Improve Short-Term Wind Speed Forecasting.” In 2015 International Joint Conference on Neural Networks (IJCNN), , 1–8.
– reference: Ilies, Iulian et al. 2007. “Stepping Forward through Echoes of the Past : Forecasting with Echo State Networks.” http://www.neural-forecasting-competition.com/downloads/NN3/methods/27-NN3_Herbert_Jaeger_report.pdf.
– volume: 20
  start-page: 391
  year: 2007
  end-page: 403
  ident: b0275
  article-title: An Experimental Unification of Reservoir Computing Methods
  publication-title: Neural networks : the official journal of the International Neural Network Society
– reference: Sage, Clément et al. 2019. “Recurrent Neural Network Approach for Table Field Extraction in Business Documents.” In 2019 International Conference on Document Analysis and Recognition (ICDAR), 1308–13.
– reference: 10.1109/IJCNN.2005.1556090.
– volume: 52
  start-page: 3409
  year: 2004
  end-page: 3416
  ident: b0110
  article-title: Prediction of Chaotic Time Series Based on the Recurrent Predictor Neural Network
  publication-title: IEEE Transactions on Signal Processing
– volume: 23
  start-page: 175
  year: 2012
  end-page: 182
  ident: b0155
  article-title: Nonlinear System Modeling With Random Matrices: Echo State Networks Revisited
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– reference: 10.1109/UCET51115.2020.9205452.
– year: 1980
  ident: b0335
  article-title: Practical Nonparametric Statistics
– reference: Akdeniz, Fulya, and Yaşar Becerikli. 2019. “Performance Comparison of Support Vector Machine, K-Nearest-Neighbor, Artificial Neural Networks, and Recurrent Neural Networks in Gender Recognition from Voice Signals.” In 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 1–4.
– volume: 29
  start-page: 427
  year: 2018
  end-page: 439
  ident: b0220
  article-title: Investigating Echo-State Networks Dynamics by Means of Recurrence Analysis
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 8
  start-page: 12228
  year: 2015
  end-page: 12241
  ident: b0240
  article-title: Echo State Network with Bayesian Regularization for Forecasting Short-Term Power Production of Small Hydropower Plants
  publication-title: Energies
– reference: Mitchell, Melanie. 1996. “An Introduction to Genetic Algorithms.”.
– volume: 11
  start-page: 2882
  year: 2017
  end-page: 2893
  ident: b0030
  article-title: Fault Accommodation Control for a Biped Robot Using a Recurrent Wavelet Elman Neural Network
  publication-title: IEEE Systems Journal
– volume: 184
  start-page: 282
  year: 2021
  end-page: 293
  ident: b0120
  article-title: Comparison of Echo State Network and Feed-Forward Neural Networks in Electrical Load Forecasting for Demand Response Programs
  publication-title: Math. Comput. Simul.
– reference: Tan, Ning, Peng Yu, Fenglei Ni, and Zhenglong Sun. 2021. “Trajectory Tracking of Soft Continuum Robots with Unknown Models Based on Varying Parameter Recurrent Neural Networks.” In 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 1035–41.
– reference: Xu, Dongming, Jing Lan, and José Carlos Príncipe. 2005. “Direct Adaptive Control: An Echo State Network and Genetic Algorithm Approach.” Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. 3: 1483–86 vol. 3.
– volume: 65
  start-page: 117
  year: 1993
  end-page: 134
  ident: b0280
  article-title: A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets
  publication-title: Physica D: Nonlinear Phenomena
– reference: Lacerda, E D. 2003. “Model Selection of RBF Networks via Genetic Algorithms.”.
– volume: 24
  start-page: 10943
  year: 2020
  end-page: 10962
  ident: b0340
  article-title: An Innovative synthesis of deep learning techniques (DCapsNet & DCOM) for generation electrical renewable energy from wind energy
  publication-title: Soft Comput
– start-page: 1
  year: 2010
  end-page: 7
  ident: b0210
  article-title: Unifying Quality Metrics for Reservoir Networks
  publication-title: In The 2010 International Joint Conference on Neural Networks (IJCNN)
– year: 2002
  ident: b0255
  article-title: Adaptive Nonlinear System Identification with Echo State Networks
  publication-title: In NIPS.
– start-page: 6418
  year: 2019
  end-page: 6421
  ident: b0175
  article-title: Recurrent Neural Networks for Reconstructing Complex Directed Brain Connectivity
  publication-title: In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 193
  start-page: 116778
  year: 2020
  ident: b0125
  article-title: Effective Energy Consumption Forecasting Using Enhanced Bagged Echo State Network
  publication-title: Energy
– volume: 95
  start-page: 521
  year: 2005
  end-page: 558
  ident: b0135
  article-title: Isolated Word Recognition with the Liquid State Machine: A Case Study
  publication-title: Inf. Process. Lett.
– reference: De Olivaes V d S R and Vellasco M B R. 2015. “Neural Expert Weighting: A NEW framework for dynamic forecast combination.”, Expert Systems with Applications, Volume 42, Issue 22, 8625-8636. https://doi.org/10.1016/j.eswa.2015.07.017
– reference: Parthiban, R, R Ezhilarasi, and D Saravanan. 2020. “Optical Character Recognition for English Handwritten Text Using Recurrent Neural Network.” In 2020 International Conference on System, Computation, Automation and Networking (ICSCAN), , 1–5.
– reference: 10.1109/ITT48889.2019.9075065.
– volume: 22
  start-page: 131
  year: 2011
  end-page: 144
  ident: b0165
  article-title: Minimum Complexity Echo State Network
  publication-title: IEEE Transactions on Neural Networks
– reference: 10.1109/SMC52423.2021.9659281.
– reference: Bian, Xinqian, and Chunhui Mou. 2011. “Identification of Non-Linear Dynamic Model of UUV Based on ESN Neural Network.” In Proceedings of the 30th Chinese Control Conference, , 1432–37. https://ieeexplore.ieee.org/document/6000405.
– reference: Sasikumar, S, P N Renjith, K Ramesh, and K Sakthidasan Sankaran. 2020. “Attention Based Recurrent Neural Network for Lung Cancer Detection.” In 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 720–24.
– reference: Salmen, Matthias, and Paul-Gerhard Plöger. 2005. “Echo State Networks Used for Motor Control.” Proceedings of the 2005 IEEE International Conference on Robotics and Automation: 1953–58.
– reference: Lei, Kuan-Cheok, and Xiaohua Douglas ZHANG. 2018. “An Approach on Discretizing Time Series Using Recurrent Neural Network.” In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2522–26S.
– reference: Usman, Muhammad et al. 2019. “Data Analytics for Short Term Price and Load Forecasting in Smart Grids Using Enhanced Recurrent Neural Network.” In 2019 Sixth HCT Information Technology Trends (ITT), , 84–88.
– reference: Schrauwen, Benjamin, Lars Buesing, and Robert A Legenstein. 2008. “On Computational Power and the Order-Chaos Phase Transition in Reservoir Computing.” In NIPS. https://dl.acm.org/doi/10.5555/2981780.2981958.
– start-page: 556
  year: 2010
  end-page: 558
  ident: b0315
  article-title: An Improved Genetic Algorithm and Its Application
  publication-title: In 2010 International Conference on Intelligent Computation Technology and Automation
– reference: 10.1109/ICIEM48762.2020.9160191.
– reference: Frank, S, and Micheal erHanský. 2008. “Generalization and Systematicity in Echo State Networks.” https://hdl.handle.net/11245/1.297610.
– reference: 10.1109/ICDAR.2019.00211.
– reference: 10.1109/ROBOT.2005.1570399.
– volume: 20
  start-page: 335
  year: 2007
  end-page: 352
  ident: b0230
  article-title: Optimization and Applications of Echo State Networks with Leaky- Integrator Neurons
  publication-title: Neural networks : the official journal of the International Neural Network Society
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: b0055
  article-title: Neural networks and physical systems with emergent collective computational abilities.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– start-page: 3848
  year: 2006
  end-page: 3853
  ident: b0265
  article-title: Spatiotemporal Pattern Recognition via Liquid State Machines
  publication-title: In The 2006 IEEE International Joint Conference on Neural Network Proceedings
– volume: 3
  start-page: 127
  year: 2009
  end-page: 149
  ident: b0260
  article-title: Reservoir Computing Approaches to Recurrent Neural Network Training
  publication-title: Comput. Sci. Rev.
– volume: 7
  start-page: 311
  year: 1995
  end-page: 336
  ident: b0075
  article-title: A Model of Corticostriatal Plasticity for Learning Oculomotor Associations and Sequences
  publication-title: Journal of Cognitive Neuroscience
– volume: 17
  start-page: 100847
  year: 2023
  ident: b0205
  article-title: Codon -mRNA prediction using deep optimal neurocomputing technique (DLSTM-DSN-WOA) and multivariate analysis
  publication-title: Result in Engineering
– volume: 26
  start-page: 522
  year: 2015
  end-page: 536
  ident: b0150
  article-title: Spatio-Temporal Learning With the Online Finite and Infinite Echo-State Gaussian Processes
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 1970
  ident: b0325
  article-title: “Time Series Analysis
– reference: Kamanditya, Bharindra, and Benyamin Kusumoputro. 2020. “Elman Recurrent Neural Networks Based Direct Inverse Control for Quadrotor Attitude and Altitude Control.” In 2020 International Conference on Intelligent Engineering and Management (ICIEM), 39–43.
– reference: Wen, Xi, Hong Wang, and Weiming Zhai. 2015. “Intelligent Coordinate Registration Method for Computer-Assisted Surgery.” 2015 International Conference on Computational Intelligence and Communication Networks (CICN): 630–34.
– reference: 10.1109/ISMSIT.2019.8932818.
– reference: 10.1109/I-SMAC49090.2020.9243556.
– start-page: 283
  year: 2011
  end-page: 290
  ident: b0200
  article-title: Comparing Evolutionary Methods for Reservoir Computing Pre-Training
  publication-title: In The 2011 International Joint Conference on Neural Networks
– volume: 121
  start-page: 471
  year: 1997
  end-page: 495
  ident: b0060
  article-title: Serial Order: A Parallel Distributed Processing Approach
  publication-title: Advances in psychology
– volume: 62
  start-page: 524
  year: 2018
  end-page: 535
  ident: b0130
  article-title: A Novel Echo State Network for Multivariate and Nonlinear Time Series Prediction
  publication-title: Appl. Soft Comput.
– reference: 10.1109/BIBM.2018.8621092.
– reference: Valencia, C.H., M.M.B.R. Vellasco, and K.T. Figueiredo. 2014. 274 Advances in Intelligent Systems and Computing Trajectory Tracking Control Using Echo State Networks for the CoroBot’s Arm. https://doi.org/10.1007/978-3-319-05582-4_38.
– volume: 14
  start-page: 179
  year: 1990
  end-page: 211
  ident: b0070
  article-title: Finding Structure in Time
  publication-title: Cognitive Science
– reference: Jaeger, H. 2005. “Reservoir Riddles: Suggestions for Echo State Network Research.” Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. 3: 1460–62 vol. 3.
– reference: Luque, Bartolo, and Ricard v Solé. 2000. “Lyapunov Exponents in Random Boolean Networks.” Physica A-statistical Mechanics and Its Applications 284: 33–45. https://doi.org/10.1016/S0378-4371(00)00184-9
– reference: 10.1109/IJCNN.2005.1556095.
– reference: 10.1109/ICSCAN49426.2020.9262379.
– reference: Steil, Jochen J. 2004. “Backpropagation-Decorrelation: Online Recurrent Learning with O(N) Complexity.” 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541) 2: 843–48 vol.2.
– volume: 18
  start-page: 49
  year: 1988
  end-page: 60
  ident: b0065
  article-title: Bidirectional Associative Memories
  publication-title: IEEE Trans. Syst. Man Cybern.
– start-page: 148
  year: 2001
  ident: b0080
  article-title: The’’echo State’’approach to Analysing and Training Recurrent Neural Networks
– volume: 453
  start-page: 122
  year: 2015
  end-page: 127
  ident: b0185
  article-title: A Support Vector Machine for Spectral Classification of Emission-Line Galaxies from the Sloan Digital Sky Survey
  publication-title: Monthly Notices of the Royal Astronomical Society
– volume: 304
  start-page: 78
  year: 2004
  end-page: 80
  ident: b0215
  article-title: Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication
  publication-title: Science
– reference: 10.1109/IJCNN.2015.7280687.
– reference: 10.23919/ECC.2019.8795677.
– volume: 24
  start-page: 661
  year: 2020
  end-page: 680
  ident: b0320
  article-title: A new method for prediction of air pollution based on intelligent computation
  publication-title: Soft Comput
– reference: Lemayian, Joel Poncha, and Jehad M Hamamreh. 2020. “Recurrent Neural Network-Based Channel Prediction in MMIMO for Enhanced Performance in Future Wireless Communication.” In 2020 International Conference on UK-China Emerging Technologies (UCET), 1–4.
– reference: Armenio, Luca Bugliari, Enrico Terzi, Marcello Farina, and Riccardo Scattolini. 2019. “Echo State Networks: Analysis, Training and Predictive Control.” In 2019 18th European Control Conference (ECC), , 799–804.
– reference: W. Maass Liquid State Machines: Motivation, Theory, and Applications 2010 10.1142/9781848162778_0008.
– start-page: 258
  year: 2015
  end-page: 263
  ident: b0160
  article-title: Building Interchangeable Black-Box Models of Integrated Circuits for EMC Simulations
  publication-title: 2015 10th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo)
– volume: 61
  start-page: 1099
  year: 2014
  end-page: 1112
  ident: b0100
  article-title: Fuzzy Echo State Neural Networks and Funnel Dynamic Surface Control for Prescribed Performance of a Nonlinear Dynamic System
  publication-title: IEEE Transactions on Industrial Electronics
– reference: Bertschinger, Nils, Thomas Natschläger, and Robert A Legenstein. 2004. “At the Edge of Chaos: Real-Time Computations and Self-Organized Criticality in Recurrent Neural Networks.” In NIPS. https://dl.acm.org/doi/abs/10.5555/2976040.2976059.
– reference: 10.1109/CICN.2015.129.
– volume: 27
  start-page: 999
  year: 1997
  end-page: 1007
  ident: b0310
  article-title: A Genetic Algorithm Approach to Chinese Handwriting Normalization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
– reference: N. Grando Máquina de Estado Líquido Para Previsão de Séries Temporais Contínuas: Aplicacão na Demanda de Energia Elétrica 2010 http://repositorio.utfpr.edu.br/jspui/handle/1/896.
– volume: 51
  start-page: 1613
  year: 2021
  end-page: 1625
  ident: b0170
  article-title: Convolutional Multitimescale Echo State Network
  publication-title: IEEE Transactions on Cybernetics
– start-page: 1
  year: 2013
  end-page: 6
  ident: b0180
  article-title: Classification of Real Time Moving Object Using Echo State Network
  publication-title: 2013 International Conference on Informatics, Electronics and Vision (ICIEV)
– reference: 10.1109/IJCNN.2004.1380039.
– volume: 287
  start-page: 251
  year: 2002
  end-page: 265
  ident: b0085
  article-title: Spiking Neurons and the Induction of Finite State Machines
  publication-title: Theoretical Computer Science
– ident: 10.1016/j.neucom.2023.126317_b0025
  doi: 10.1109/ITT48889.2019.9075065
– ident: 10.1016/j.neucom.2023.126317_b0235
– start-page: 148
  year: 2001
  ident: 10.1016/j.neucom.2023.126317_b0080
– ident: 10.1016/j.neucom.2023.126317_b0090
  doi: 10.1109/IJCNN.2004.1380039
– ident: 10.1016/j.neucom.2023.126317_b0195
  doi: 10.1109/IJCNN.2005.1556095
– ident: 10.1016/j.neucom.2023.126317_b0050
  doi: 10.1109/ICSCAN49426.2020.9262379
– volume: 20
  start-page: 335
  issue: 3
  year: 2007
  ident: 10.1016/j.neucom.2023.126317_b0230
  article-title: Optimization and Applications of Echo State Networks with Leaky- Integrator Neurons
  publication-title: Neural networks : the official journal of the International Neural Network Society
  doi: 10.1016/j.neunet.2007.04.016
– volume: 3
  start-page: 127
  year: 2009
  ident: 10.1016/j.neucom.2023.126317_b0260
  article-title: Reservoir Computing Approaches to Recurrent Neural Network Training
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2009.03.005
– ident: 10.1016/j.neucom.2023.126317_b0295
  doi: 10.1007/978-3-319-05582-4_38
– start-page: 258
  year: 2015
  ident: 10.1016/j.neucom.2023.126317_b0160
  article-title: Building Interchangeable Black-Box Models of Integrated Circuits for EMC Simulations
– start-page: 556
  year: 2010
  ident: 10.1016/j.neucom.2023.126317_b0315
  article-title: An Improved Genetic Algorithm and Its Application
– volume: 287
  start-page: 251
  issue: 1
  year: 2002
  ident: 10.1016/j.neucom.2023.126317_b0085
  article-title: Spiking Neurons and the Induction of Finite State Machines
  publication-title: Theoretical Computer Science
  doi: 10.1016/S0304-3975(02)00099-3
– ident: 10.1016/j.neucom.2023.126317_b0270
– ident: 10.1016/j.neucom.2023.126317_b0010
  doi: 10.1109/UCET51115.2020.9205452
– volume: 62
  start-page: 524
  year: 2018
  ident: 10.1016/j.neucom.2023.126317_b0130
  article-title: A Novel Echo State Network for Multivariate and Nonlinear Time Series Prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.10.038
– volume: 26
  start-page: 522
  year: 2015
  ident: 10.1016/j.neucom.2023.126317_b0150
  article-title: Spatio-Temporal Learning With the Online Finite and Infinite Echo-State Gaussian Processes
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2014.2316291
– ident: 10.1016/j.neucom.2023.126317_b0305
– volume: 304
  start-page: 78
  year: 2004
  ident: 10.1016/j.neucom.2023.126317_b0215
  article-title: Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication
  publication-title: Science
  doi: 10.1126/science.1091277
– ident: 10.1016/j.neucom.2023.126317_b0285
  doi: 10.1016/S0378-4371(00)00184-9
– ident: 10.1016/j.neucom.2023.126317_b0290
– ident: 10.1016/j.neucom.2023.126317_b0225
  doi: 10.1142/9781848162778_0008
– year: 1980
  ident: 10.1016/j.neucom.2023.126317_b0335
– volume: 61
  start-page: 1099
  issue: 2
  year: 2014
  ident: 10.1016/j.neucom.2023.126317_b0100
  article-title: Fuzzy Echo State Neural Networks and Funnel Dynamic Surface Control for Prescribed Performance of a Nonlinear Dynamic System
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2013.2253072
– start-page: 283
  year: 2011
  ident: 10.1016/j.neucom.2023.126317_b0200
  article-title: Comparing Evolutionary Methods for Reservoir Computing Pre-Training
– volume: 24
  start-page: 661
  year: 2020
  ident: 10.1016/j.neucom.2023.126317_b0320
  article-title: A new method for prediction of air pollution based on intelligent computation
  publication-title: Soft Comput
  doi: 10.1007/s00500-019-04495-1
– volume: 14
  start-page: 179
  issue: 2
  year: 1990
  ident: 10.1016/j.neucom.2023.126317_b0070
  article-title: Finding Structure in Time
  publication-title: Cognitive Science
  doi: 10.1207/s15516709cog1402_1
– ident: 10.1016/j.neucom.2023.126317_b0045
  doi: 10.1109/I-SMAC49090.2020.9243556
– start-page: 3848
  year: 2006
  ident: 10.1016/j.neucom.2023.126317_b0265
  article-title: Spatiotemporal Pattern Recognition via Liquid State Machines
– ident: 10.1016/j.neucom.2023.126317_b0245
– ident: 10.1016/j.neucom.2023.126317_b0020
  doi: 10.1109/ICIEM48762.2020.9160191
– ident: 10.1016/j.neucom.2023.126317_b0140
  doi: 10.1109/CICN.2015.129
– ident: 10.1016/j.neucom.2023.126317_b0330
  doi: 10.1016/j.eswa.2015.07.017
– volume: 20
  start-page: 391
  issue: 3
  year: 2007
  ident: 10.1016/j.neucom.2023.126317_b0275
  article-title: An Experimental Unification of Reservoir Computing Methods
  publication-title: Neural networks : the official journal of the International Neural Network Society
  doi: 10.1016/j.neunet.2007.04.003
– ident: 10.1016/j.neucom.2023.126317_b0115
  doi: 10.1109/IJCNN.2015.7280687
– volume: 453
  start-page: 122
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2023.126317_b0185
  article-title: A Support Vector Machine for Spectral Classification of Emission-Line Galaxies from the Sloan Digital Sky Survey
  publication-title: Monthly Notices of the Royal Astronomical Society
  doi: 10.1093/mnras/stv1617
– volume: 27
  start-page: 999
  issue: 6
  year: 1997
  ident: 10.1016/j.neucom.2023.126317_b0310
  article-title: A Genetic Algorithm Approach to Chinese Handwriting Normalization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/3477.650059
– volume: 17
  start-page: 100847
  year: 2023
  ident: 10.1016/j.neucom.2023.126317_b0205
  article-title: Codon -mRNA prediction using deep optimal neurocomputing technique (DLSTM-DSN-WOA) and multivariate analysis
  publication-title: Result in Engineering
  doi: 10.1016/j.rineng.2022.100847
– volume: 11
  start-page: 2882
  issue: 4
  year: 2017
  ident: 10.1016/j.neucom.2023.126317_b0030
  article-title: Fault Accommodation Control for a Biped Robot Using a Recurrent Wavelet Elman Neural Network
  publication-title: IEEE Systems Journal
  doi: 10.1109/JSYST.2015.2409888
– volume: 7
  start-page: 311
  year: 1995
  ident: 10.1016/j.neucom.2023.126317_b0075
  article-title: A Model of Corticostriatal Plasticity for Learning Oculomotor Associations and Sequences
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn.1995.7.3.311
– volume: 193
  start-page: 116778
  year: 2020
  ident: 10.1016/j.neucom.2023.126317_b0125
  article-title: Effective Energy Consumption Forecasting Using Enhanced Bagged Echo State Network
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116778
– ident: 10.1016/j.neucom.2023.126317_b0095
  doi: 10.1109/ROBOT.2005.1570399
– ident: 10.1016/j.neucom.2023.126317_b0300
  doi: 10.7551/mitpress/3927.001.0001
– volume: 121
  start-page: 471
  year: 1997
  ident: 10.1016/j.neucom.2023.126317_b0060
  article-title: Serial Order: A Parallel Distributed Processing Approach
  publication-title: Advances in psychology
  doi: 10.1016/S0166-4115(97)80111-2
– volume: 95
  start-page: 521
  year: 2005
  ident: 10.1016/j.neucom.2023.126317_b0135
  article-title: Isolated Word Recognition with the Liquid State Machine: A Case Study
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2005.05.019
– ident: 10.1016/j.neucom.2023.126317_b0035
  doi: 10.1109/BIBM.2018.8621092
– volume: 65
  start-page: 117
  year: 1993
  ident: 10.1016/j.neucom.2023.126317_b0280
  article-title: A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/0167-2789(93)90009-P
– year: 2002
  ident: 10.1016/j.neucom.2023.126317_b0255
  article-title: Adaptive Nonlinear System Identification with Echo State Networks
  publication-title: In NIPS.
– volume: 22
  start-page: 131
  year: 2011
  ident: 10.1016/j.neucom.2023.126317_b0165
  article-title: Minimum Complexity Echo State Network
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2010.2089641
– year: 1970
  ident: 10.1016/j.neucom.2023.126317_b0325
– volume: 8
  start-page: 12228
  issue: 10
  year: 2015
  ident: 10.1016/j.neucom.2023.126317_b0240
  article-title: Echo State Network with Bayesian Regularization for Forecasting Short-Term Power Production of Small Hydropower Plants
  publication-title: Energies
  doi: 10.3390/en81012228
– start-page: 1
  year: 2013
  ident: 10.1016/j.neucom.2023.126317_b0180
  article-title: Classification of Real Time Moving Object Using Echo State Network
– start-page: 6418
  year: 2019
  ident: 10.1016/j.neucom.2023.126317_b0175
  article-title: Recurrent Neural Networks for Reconstructing Complex Directed Brain Connectivity
– start-page: 1
  year: 2010
  ident: 10.1016/j.neucom.2023.126317_b0210
  article-title: Unifying Quality Metrics for Reservoir Networks
– ident: 10.1016/j.neucom.2023.126317_b0015
  doi: 10.1109/SMC52423.2021.9659281
– ident: 10.1016/j.neucom.2023.126317_b0105
  doi: 10.23919/ECC.2019.8795677
– volume: 79
  start-page: 2554
  issue: 8
  year: 1982
  ident: 10.1016/j.neucom.2023.126317_b0055
  article-title: Neural networks and physical systems with emergent collective computational abilities.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.79.8.2554
– volume: 184
  start-page: 282
  year: 2021
  ident: 10.1016/j.neucom.2023.126317_b0120
  article-title: Comparison of Echo State Network and Feed-Forward Neural Networks in Electrical Load Forecasting for Demand Response Programs
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2020.07.011
– volume: 24
  start-page: 10943
  year: 2020
  ident: 10.1016/j.neucom.2023.126317_b0340
  article-title: An Innovative synthesis of deep learning techniques (DCapsNet & DCOM) for generation electrical renewable energy from wind energy
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-04905-9
– volume: 23
  start-page: 175
  issue: 1
  year: 2012
  ident: 10.1016/j.neucom.2023.126317_b0155
  article-title: Nonlinear System Modeling With Random Matrices: Echo State Networks Revisited
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2011.2178562
– ident: 10.1016/j.neucom.2023.126317_b0250
– ident: 10.1016/j.neucom.2023.126317_b0145
– volume: 51
  start-page: 1613
  issue: 3
  year: 2021
  ident: 10.1016/j.neucom.2023.126317_b0170
  article-title: Convolutional Multitimescale Echo State Network
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2019.2919648
– volume: 29
  start-page: 427
  issue: 2
  year: 2018
  ident: 10.1016/j.neucom.2023.126317_b0220
  article-title: Investigating Echo-State Networks Dynamics by Means of Recurrence Analysis
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2016.2630802
– ident: 10.1016/j.neucom.2023.126317_b0005
  doi: 10.1109/ISMSIT.2019.8932818
– ident: 10.1016/j.neucom.2023.126317_b0040
  doi: 10.1109/ICDAR.2019.00211
– volume: 18
  start-page: 49
  year: 1988
  ident: 10.1016/j.neucom.2023.126317_b0065
  article-title: Bidirectional Associative Memories
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.87054
– volume: 52
  start-page: 3409
  year: 2004
  ident: 10.1016/j.neucom.2023.126317_b0110
  article-title: Prediction of Chaotic Time Series Based on the Recurrent Predictor Neural Network
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2004.837418
– ident: 10.1016/j.neucom.2023.126317_b0190
  doi: 10.1109/IJCNN.2005.1556090
SSID ssj0017129
Score 2.5178387
Snippet The use of computational intelligence models for multi-step time series forecasting tasks has presented satisfactory results in such a way that they are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 126317
SubjectTerms Echo State Network
Genetic Algorithms
Separation Ratio Graph
Time Series Forecasting
Title Echo State Networks: Novel reservoir selection and hyperparameter optimization model for time series forecasting
URI https://dx.doi.org/10.1016/j.neucom.2023.126317
Volume 545
WOSCitedRecordID wos001001952400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LjxJBEO4g68GLb-O6avrgjQyZ6WFe3nDDZjVKjK6G26SfOgQGwiv7G_ZXW9XdM4tifCVeCJlXQ9dHdXVR31eEvIhMKKNMy0BnKg1gvVbgB8Mw4MKESrJUpMKKuL7NxuN8MinedzpXDRdmN8vqOr-8LJb_1dRwDIyN1Nm_MHf7UDgA78Ho8Apmh9c_MvwIHJqLIZHNi3VXtuptvNhp1PDHLOyiWvXWtgFOU4z8FbajK5QBn2N5TG8BjmTuGZquWY4rR6zmuodfQlsVBy35etMsfdNGBmoLS6JtFeGTEMM5ajEoBF6bdPjMkevk6nRP9Zqveuf99hzWY63lwjOJ0Gm967_qf2gvOKu-bHWFQqeezTbj-7kLFtvKuew6oXZAqnGZSZYEEHY6J62dX84zZhnv-447cUKUB4uAy0dM-7XeYkUQDtyPWBo7kugP8tofcTgcjcW2_fbkBjliWVLkXXI0fD2avGn_k8oi5pQb_cdriJi2WvBwrJ8HOnvBy8VdctvvOujQoeUe6ej6PrnTdPSg3sE_IEsED7XgoQ14XlILHdpCh7bQoQAd-j106D50qIUOBahQhA510KF70HlIPp2NLk7PA9-TI5AQqm-CJOGCp5wxKdLciEKrkBe5iIrCFKlOhdQqN0qp1AxMwUOlkiKSRgxgY2L0IOTxI9KtF7V-TGiuDZ42xmjYNgwYl8JAeAxPYXEmRXhM4mYCS-kF67FvyqxsKhOnpZv2Eqe9dNN-TIL2rqUTbPnN9Vljm9IHnS6YLAFOv7zzyT_feUJuXf8anpLuZrXVz8hNudtU69Vzj7tvLEWu_w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Echo+State+Networks%3A+Novel+reservoir+selection+and+hyperparameter+optimization+model+for+time+series+forecasting&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Valencia%2C+Cesar+H.&rft.au=Vellasco%2C+Marley+M.B.R.&rft.au=Figueiredo%2C+Karla&rft.date=2023-08-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=545&rft_id=info:doi/10.1016%2Fj.neucom.2023.126317&rft.externalDocID=S092523122300440X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon