On Independent Sets and Bicliques in Graphs

Bicliques of graphs have been studied extensively, partially motivated by the large number of applications. In this paper we improve Prisner’s upper bound on the number of maximal bicliques (Combinatorica, 20, 109–117, 2000 ) and show that the maximum number of maximal bicliques in a graph on n vert...

Full description

Saved in:
Bibliographic Details
Published in:Algorithmica Vol. 62; no. 3-4; pp. 637 - 658
Main Authors: Gaspers, Serge, Kratsch, Dieter, Liedloff, Mathieu
Format: Journal Article
Language:English
Published: New York Springer-Verlag 01.04.2012
Springer
Springer Verlag
Subjects:
ISSN:0178-4617, 1432-0541
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bicliques of graphs have been studied extensively, partially motivated by the large number of applications. In this paper we improve Prisner’s upper bound on the number of maximal bicliques (Combinatorica, 20, 109–117, 2000 ) and show that the maximum number of maximal bicliques in a graph on n vertices is Θ(3 n /3 ). Our major contribution is an exact exponential-time algorithm. This branching algorithm computes the number of distinct maximal independent sets in a graph in time O (1.3642 n ), where n is the number of vertices of the input graph. We use this counting algorithm and previously known algorithms for various other problems related to independent sets to derive algorithms for problems related to bicliques via polynomial-time reductions.
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-010-9474-1