On Independent Sets and Bicliques in Graphs
Bicliques of graphs have been studied extensively, partially motivated by the large number of applications. In this paper we improve Prisner’s upper bound on the number of maximal bicliques (Combinatorica, 20, 109–117, 2000 ) and show that the maximum number of maximal bicliques in a graph on n vert...
Saved in:
| Published in: | Algorithmica Vol. 62; no. 3-4; pp. 637 - 658 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer-Verlag
01.04.2012
Springer Springer Verlag |
| Subjects: | |
| ISSN: | 0178-4617, 1432-0541 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Bicliques of graphs have been studied extensively, partially motivated by the large number of applications. In this paper we improve Prisner’s upper bound on the number of maximal bicliques (Combinatorica, 20, 109–117,
2000
) and show that the maximum number of maximal bicliques in a graph on
n
vertices is Θ(3
n
/3
). Our major contribution is an exact exponential-time algorithm. This branching algorithm computes the number of distinct maximal independent sets in a graph in time
O
(1.3642
n
), where
n
is the number of vertices of the input graph. We use this counting algorithm and previously known algorithms for various other problems related to independent sets to derive algorithms for problems related to bicliques via polynomial-time reductions. |
|---|---|
| ISSN: | 0178-4617 1432-0541 |
| DOI: | 10.1007/s00453-010-9474-1 |