On Independent Sets and Bicliques in Graphs

Bicliques of graphs have been studied extensively, partially motivated by the large number of applications. In this paper we improve Prisner’s upper bound on the number of maximal bicliques (Combinatorica, 20, 109–117, 2000 ) and show that the maximum number of maximal bicliques in a graph on n vert...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 62; číslo 3-4; s. 637 - 658
Hlavní autoři: Gaspers, Serge, Kratsch, Dieter, Liedloff, Mathieu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer-Verlag 01.04.2012
Springer
Springer Verlag
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Bicliques of graphs have been studied extensively, partially motivated by the large number of applications. In this paper we improve Prisner’s upper bound on the number of maximal bicliques (Combinatorica, 20, 109–117, 2000 ) and show that the maximum number of maximal bicliques in a graph on n vertices is Θ(3 n /3 ). Our major contribution is an exact exponential-time algorithm. This branching algorithm computes the number of distinct maximal independent sets in a graph in time O (1.3642 n ), where n is the number of vertices of the input graph. We use this counting algorithm and previously known algorithms for various other problems related to independent sets to derive algorithms for problems related to bicliques via polynomial-time reductions.
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-010-9474-1